JP2931372B2 - Operating method of fuel cell power generation system - Google Patents

Operating method of fuel cell power generation system

Info

Publication number
JP2931372B2
JP2931372B2 JP2160801A JP16080190A JP2931372B2 JP 2931372 B2 JP2931372 B2 JP 2931372B2 JP 2160801 A JP2160801 A JP 2160801A JP 16080190 A JP16080190 A JP 16080190A JP 2931372 B2 JP2931372 B2 JP 2931372B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
gas
power generation
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2160801A
Other languages
Japanese (ja)
Other versions
JPH0451469A (en
Inventor
正昭 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15722741&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2931372(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2160801A priority Critical patent/JP2931372B2/en
Publication of JPH0451469A publication Critical patent/JPH0451469A/en
Application granted granted Critical
Publication of JP2931372B2 publication Critical patent/JP2931372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、燃料電池発電システムの運転方法に関
し、もう少し詳しくいうと、少なくとも燃料電池本体と
燃料改質処理装置を含む燃料電池発電システムの運転停
止時を主眼とした燃料電池発電システムの運転方法に関
するものである。
Description: TECHNICAL FIELD The present invention relates to an operation method of a fuel cell power generation system, and more specifically, to an operation of a fuel cell power generation system including at least a fuel cell body and a fuel reforming processing device. The present invention relates to a method of operating a fuel cell power generation system with a focus on stopping.

[従来の技術] 第3図は、例えば特開昭60−138854号公報に示された
従来の燃料電池発電システムであり、図において、燃料
電池(1)と並列に抵抗器(2)が接続され、開閉器
(3)が燃料電池(1)と抵抗器(2)とを接続してい
る。(6)は直流遮断器、(7)は負荷装置である。空
気供給路(4)および燃料供給路(5)は、空気と燃料
を燃料電池(1)の空気極、燃料極にそれぞれ供給し、
化学反応により直流電力を発する。
[Prior Art] FIG. 3 shows a conventional fuel cell power generation system disclosed in, for example, JP-A-60-138854, in which a resistor (2) is connected in parallel with a fuel cell (1). A switch (3) connects the fuel cell (1) and the resistor (2). (6) is a DC breaker, and (7) is a load device. The air supply path (4) and the fuel supply path (5) supply air and fuel to the air electrode and the fuel electrode of the fuel cell (1), respectively.
DC power is generated by a chemical reaction.

次に運転方法について説明する。いま、燃料電池発電
システムが定常運転を行っていると、直流遮断器(6)
が投入されており、燃料電池(1)に負荷装置(7)が
接続されている。ここで、負荷装置(7)に短絡事故が
発生したとすると制御装置(図示せず)からの信号によ
り、直流遮断器(6)をトリップして負荷装置(7)を
切離す。それと同時に開閉器(3)を投入し、抵抗器
(2)に燃料電池(1)の出力を与える。また、燃料電
池の運転を停止するため、空気供給路(4)と燃料供給
路(5)より供給される反応ガスの流量を徐々に絞って
いく。流量が零になった後、開閉器(3)を開き、抵抗
器(2)を切離し、停止動作を終了する。
Next, the operation method will be described. Now, if the fuel cell power generation system is operating normally, the DC breaker (6)
And a load device (7) is connected to the fuel cell (1). Here, if a short circuit accident occurs in the load device (7), the DC breaker (6) is tripped and the load device (7) is disconnected by a signal from a control device (not shown). At the same time, the switch (3) is turned on, and the output of the fuel cell (1) is given to the resistor (2). Further, in order to stop the operation of the fuel cell, the flow rate of the reaction gas supplied from the air supply path (4) and the fuel supply path (5) is gradually reduced. After the flow rate becomes zero, the switch (3) is opened, the resistor (2) is disconnected, and the stop operation is completed.

[発明が解決しようとする課題] 以上のような従来の燃料電池発電システムの運転方法
では、負荷遮断が以上のように行われるので、空気およ
び燃料供給量が零となった制御動作終了後も、電池本体
内に残った(電極に付着したものを含む)反応ガスによ
り空気極は高い電位におかれ(以降、残留電圧と呼
ぶ)、電池劣化の要因となるなどの問題があった。これ
は、負荷遮断に限らず、一般の停止時にも問題となる。
[Problems to be Solved by the Invention] In the conventional method of operating the fuel cell power generation system as described above, the load is cut off as described above. However, there has been a problem that the air electrode is set to a high potential (hereinafter referred to as a residual voltage) due to the reaction gas remaining in the battery main body (including the one attached to the electrode), which causes battery deterioration. This is a problem not only in load shedding but also in general stoppage.

この問題を改善するため、この発明者は特開昭63−18
1268号公報において残留電圧を放電抵抗で解消するシス
テムを開示した。
To solve this problem, the present inventor has disclosed in Japanese Patent Application Laid-Open No. 63-18 / 1988.
Japanese Patent Publication No. 1268 discloses a system for eliminating a residual voltage with a discharge resistor.

燃料電池発電システム全体における負荷遮断、停止時
の問題点をまとめると、(1)燃料改質処理装置中に負
荷遮断・停止直後には原燃料ガスが存在し、水蒸気の供
給なしにパージのみを行うと原燃料ガスの分解などによ
り改質処理装置の触媒が劣化する。(2)燃料電池空気
極には空気(酸化剤)が残留し電極が高い電位におかれ
るため電極の触媒が劣化する。また、残留電圧解消のた
め放電負荷を取った場合、一部のセルで燃料の欠乏が生
じるとその部分のセルの電極が反応し劣化する。(3)
システムの各機器および配管内に可燃性ガスが残留し安
全性が十分でない。また、各機器別に不活性ガスにより
パージすると不活性ガスの消費量が多くなる。などが考
えられる。
The problems at the time of load shedding and stoppage in the entire fuel cell power generation system are summarized as follows: (1) Raw fuel gas is present immediately after load shedding and stoppage in the fuel reformer, and only purge is performed without supplying steam. If this is done, the catalyst of the reformer will deteriorate due to decomposition of the raw fuel gas and the like. (2) Air (oxidant) remains in the air electrode of the fuel cell and the electrode is placed at a high potential, so that the catalyst of the electrode deteriorates. In addition, when a discharge load is applied to eliminate the residual voltage, if fuel deficiency occurs in some of the cells, the electrodes of those cells react and deteriorate. (3)
Flammable gas remains in each device and piping of the system, and safety is not sufficient. Further, purging with inert gas for each device increases the consumption of inert gas. And so on.

また、上記(1)の問題解決のため改質処理装置へ不
活性パージガスと共に水蒸気を供給する場合、水蒸気が
過剰な条件でパージされると電極本体の電解質に水蒸気
が吸収され電池性能に悪い影響を与えるおそれがある。
When water vapor is supplied to the reforming apparatus together with the inert purge gas to solve the problem (1), if the water vapor is purged under excessive conditions, the water vapor is absorbed by the electrolyte of the electrode body, which adversely affects battery performance. May be given.

この発明は上記のようた問題を解消するためになされ
たもので、燃料改質処理装置系統の触媒を劣化させるこ
となく、かつ、電池本体の残留電圧対策を行うことによ
り、電池に悪影響を与えることなく速やかに、また、燃
料電池発電システムの系内に可燃性ガスを残すことなく
安全に停止するとともに、不活性パージガスの使用量を
減らすことができる燃料電池発電システムの運転方法を
得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and has an adverse effect on a battery without deteriorating a catalyst of a fuel reforming treatment system and by taking measures against a residual voltage of a battery body. It is necessary to obtain a method of operating a fuel cell power generation system that can shut down quickly and safely without leaving flammable gas in the system of the fuel cell power generation system and reduce the amount of inert purge gas used. Aim.

[課題を解決するための手段] この発明の燃料電池システムの運転方法は、燃料電池
本体と燃料改質処理装置を含む燃料電池発電システムの
運転停止時に前記燃料改質処理装置の上流ラインより前
記燃料電池本体の燃料極を経由し前記燃料改質処理装置
中の燃焼器および燃焼炉内をシリースに不活性ガスでパ
ージすると共に、初期の一定時間および前記パージの期
間のいずれかの期間中、前記燃料改質処理装置へ水蒸気
の供給も行い、かつ前記燃料改質処理装置への前記水蒸
気の供給量を不活性ガスパージ流量および原燃料ガス濃
度のいずれかに対し制御するようになっているものであ
る。
[Means for Solving the Problems] The method for operating a fuel cell system according to the present invention is characterized in that the operation of the fuel cell power generation system including the fuel cell body and the fuel reforming device is stopped from the upstream line of the fuel reforming device. While purging the combustor and the inside of the combustion furnace in the fuel reforming apparatus with an inert gas to the series via the fuel electrode of the fuel cell body, during any one of the initial fixed time and the purge period, A device that also supplies steam to the fuel reforming device, and controls the supply amount of the steam to the fuel reforming device with respect to one of an inert gas purge flow rate and a raw fuel gas concentration. It is.

[作用] この発明においては、システムの運転停止時に燃料改
質処理装置の上流ラインより燃料電池本体の燃料極を経
由し燃料改質処理装置中の燃焼器および燃焼炉内をシリ
ースに不活性ガスでパージすると共に、初期の一定期間
および前記パージの期間のいずれかの期間中、前記燃料
改質処理装置へ水蒸気の供給も行うことにより、燃料改
質処理装置の触媒へのカーボン析出などによる劣化を防
止する。このとき、不活性ガスにより空気系統および燃
料系統のパージをすると同時に、燃料電池と並列に接続
された放電負荷で電池電圧を監視し、その開閉器を制御
することにより残留電圧を低下させ、電池(電極)の劣
化を防止する。また、運転停止時の改質処理装置へ供給
する水蒸気量は不活性ガスパージ流量もしくは原燃料ガ
ス濃度に応じた流量で流すことにより、電池本体燃料極
へ過度の水蒸気を含むガスが流れないようにする。
[Operation] In the present invention, when the operation of the system is stopped, the inert gas is supplied from the upstream line of the fuel reformer to the combustor and the combustion furnace in the fuel reformer via the fuel electrode of the fuel cell main body. And the supply of steam to the fuel reforming apparatus during one of the initial fixed period and the purging period, thereby causing deterioration of the fuel reforming apparatus due to carbon deposition on the catalyst. To prevent At this time, the air system and the fuel system are purged with an inert gas, and at the same time, the battery voltage is monitored with a discharge load connected in parallel with the fuel cell, and the residual voltage is reduced by controlling the switch to reduce the residual voltage. (Electrode) is prevented from deteriorating. In addition, the amount of water vapor supplied to the reforming treatment device when the operation is stopped is caused to flow at an inert gas purge flow rate or at a flow rate corresponding to the raw fuel gas concentration so that gas containing excessive water vapor does not flow to the fuel electrode of the battery body. I do.

[実施例] 以下、この各発明の一実施例を図面を参照して説明す
る。第1図は燃料電池発電システムを示し、(8a)は改
質炉、(8b)は改質反応器、(8c)は燃焼器(バー
ナ)、(8)はこれからなる改質器、(9)は改質器
(8)で改質されたガスをさらに水素リッチに転化反応
させる転化器である。(10)は燃料電池本体で、空気極
(10a)、燃料極(10b)、出力端子(10c)、冷却器(1
0d)などからなっている。(11)は気水分離器、(12)
は冷却水を燃料電池(10)に循環させるポンプである。
(13)は燃料電池(10)および改質器(8)に必要な空
気を供給する空気ブロアである。(14)および(15)は
燃料電池出力端に並列に接続された開閉器および放電負
荷である。(16)は燃料電池(10)で発生した直流出力
に交流出力に変換する直交変換器である。(17)および
(18)は燃料電池の反応に必要な燃料ガスを製造するた
めの原燃料ガスおよび水蒸気、(19)は同じく反応に必
要な空気、(20),(21)は燃料電池発電システムの停
止時に流す空気系および燃料系不活性パージガスであ
る。(22)は燃料改質処理装置である。
[Embodiment] Hereinafter, an embodiment of each invention will be described with reference to the drawings. FIG. 1 shows a fuel cell power generation system, in which (8a) is a reforming furnace, (8b) is a reforming reactor, (8c) is a combustor (burner), (8) is a reformer comprising the same, and (9) ) Is a converter for further converting the gas reformed by the reformer (8) into a hydrogen-rich gas. (10) is the fuel cell body, which has an air electrode (10a), a fuel electrode (10b), an output terminal (10c), and a cooler (1
0d). (11) is a steam separator, (12)
Is a pump for circulating cooling water through the fuel cell (10).
(13) is an air blower for supplying necessary air to the fuel cell (10) and the reformer (8). (14) and (15) are a switch and a discharge load connected in parallel to the output terminal of the fuel cell. (16) is a quadrature converter for converting a DC output generated by the fuel cell (10) into an AC output. (17) and (18) are raw fuel gas and water vapor for producing fuel gas required for fuel cell reaction, (19) is air also required for reaction, (20) and (21) are fuel cell power generation It is an air-based and fuel-based inert purge gas that flows when the system is stopped. (22) is a fuel reforming treatment device.

なお、この図は概要を示すもので、バルブその他の機
器について省略している。
This figure shows the outline, and the valve and other devices are omitted.

次に運転方法について説明する。この発明では、燃料
電池発電システムの運転停止は、直交交換器(16)の交
流出力を低下させると共に出力に見合った反応ガス量に
するよう、原燃料(17)、水蒸気(18)および反応用空
気(19a)の流量を低下させる。さらに、直交交換器(1
6)への直流入力を零とすると同時に電気系統では開閉
器(14)を閉じて燃料電池(10)の出力を放電負荷(1
5)に消費させる。このとき、燃料電池(10)の電圧値
より判定し、開閉器(15)を開放させる。一方、ガス系
統では、空気系統の反応用空気(19a)の流量を零と
し、空気系不活性パージガス(例N2など)(20)で空気
極(10a)を直接に、また燃料系統の原燃料(17)(例C
H4など)の流量を零とし、燃料系不活性パージガス(2
1)で燃料改質装置(22)の上流ラインより燃料極(10
b)を経由してバーナ(8c)に達し、改質炉(8a)内ま
でパージする。
Next, the operation method will be described. According to the present invention, the operation of the fuel cell power generation system is stopped so that the AC output of the orthogonal exchanger (16) is reduced and the reaction gas amount is adjusted to the output so that the raw fuel (17), steam (18), Reduce the flow of air (19a). In addition, a quadrature exchanger (1
At the same time that the DC input to 6) is reduced to zero, the switch (14) is closed in the electrical system and the output of the fuel cell (10) is discharged to the discharge load (1).
5) to consume. At this time, it is determined from the voltage value of the fuel cell (10), and the switch (15) is opened. On the other hand, in the gas system, the flow rate of air for the reaction of the air system (19a) is set to zero, (such as eg N 2) air-based inert purge gas directly into the air electrode (10a) with (20), also of the fuel system Hara Fuel (17) (Example C)
The flow rate of H such 4) is set to zero, the fuel-based inert purge gas (2
In 1), the fuel electrode (10
The burner (8c) is reached via b) and purged into the reforming furnace (8a).

また、燃料系統のパージにおいて、水蒸気(18)はそ
れより上流の配管内の原燃料(17)が燃料系不活性パー
ジガス(21)でパージされるまで不活性パージガス(2
1)の流量もしくは残留原燃料ガス量に見合った量を供
給し続け、同部分のパージがされた以降はその供給を停
止する。不活性パージガス(20)および(21)によるパ
ージはそれぞれの系統が充分パージされるまで供給し、
その後供給を止める。
In purging the fuel system, the water vapor (18) is purged with the inert purge gas (2) until the raw fuel (17) in the pipe upstream thereof is purged with the fuel inert purge gas (21).
The supply corresponding to the flow rate of 1) or the amount of residual raw fuel gas is continued to be supplied, and after the purging of the same portion is stopped, the supply is stopped. Purge by inert purge gas (20) and (21) is supplied until each system is sufficiently purged.
Then supply is stopped.

この間、燃料改質処理装置(22)には、パージガスで
押出された原燃料ガス(17)とそれに見合った量の水蒸
気(18)が供給されるので、燃料改質処理装置(22)で
は原燃料ガスが無くなるまで運転中と同じ改質反応が続
けられ、その後、不活性パージガス(21)もしくは不活
性パージガス(21)と水蒸気(18)でパージされる。
During this time, the raw fuel gas (17) extruded with the purge gas and the corresponding amount of steam (18) are supplied to the fuel reformer (22). The same reforming reaction as during the operation is continued until the fuel gas is exhausted, and then the purge is performed with the inert purge gas (21) or the inert purge gas (21) and steam (18).

第1図でもわかるように、空気系統は短かく容積が小
さいので短時間でパージされる。燃料系統はパージが始
っても改質反応器(8b)の上流のパージが終るまでは改
質反応が続けられることと、燃料改質処理装置(22)の
系の容積が大きく空気系統のパージに要する時間に比べ
長くなる。この結果、放電負荷(15)で残留電圧を放電
させている間、燃料極(10b)側では燃料ガスの欠乏を
生じることなしに空気極(10a)側の空気(酸化剤)の
パージと消費が行われる。
As can be seen from FIG. 1, the air system is short and has a small volume, so that it is purged in a short time. In the fuel system, the reforming reaction continues until the purge upstream of the reforming reactor (8b) is completed even after the purge starts, and the volume of the system of the fuel reforming processor (22) is large and the air system This is longer than the time required for purging. As a result, while the residual voltage is being discharged by the discharge load (15), the fuel (10b) side purges and consumes the air (oxidizing agent) on the air electrode (10a) side without causing fuel gas deficiency. Is performed.

なお、負荷遮断後の出力電圧と空気極および燃料極入
口での酸素および燃料のガス濃度変化の説明図を第2図
に例示した。
FIG. 2 illustrates an explanatory diagram of the output voltage after the load is cut off and the changes in the oxygen and fuel gas concentrations at the air electrode and fuel electrode inlets.

なお、上記実施例では、燃料系統のパージにおける水
蒸気流量の制御の詳細については記述していないが、次
のいずれかの方法で達成できる。
Although the details of controlling the flow rate of steam in purging the fuel system are not described in the above embodiment, it can be achieved by any of the following methods.

(1)燃料系統の不活性ガスパージにおいて、改質器入
口配管中の可燃性ガス濃度変化をあらかじめ測定調査
し、この濃度に見合った水蒸気流量をプログラム制御す
る。
(1) In purging an inert gas in a fuel system, a change in the concentration of flammable gas in a reformer inlet pipe is measured and investigated in advance, and a steam flow rate corresponding to the concentration is controlled by a program.

(2)燃料系統の不活性ガスパージにおいて、改質器入
口あるいは出口配管中の可燃性ガス濃度を測定し、この
濃度出力に応じて水蒸気流量を制御する。
(2) In purging the fuel system with an inert gas, the concentration of the flammable gas in the reformer inlet or outlet pipe is measured, and the steam flow rate is controlled in accordance with the concentration output.

[発明の効果] 以上のように、この発明によれば、運転停止時に燃料
改質処理装置の上流ラインより燃料電池本体の燃料極を
経由し燃料改質処理装置中の燃焼器および燃料炉内をシ
リースに不活性ガスでパージすると共に、原燃料ガスが
無くなるまでの期間もしくはパージの間中、燃料改質処
理装置へ水蒸気の供給も行うようにしたので、燃料改質
処理装置の触媒の劣化を防止できる効果がある。
[Effects of the Invention] As described above, according to the present invention, when the operation is stopped, the combustion chamber and the inside of the fuel furnace in the fuel reforming processing device pass from the upstream line of the fuel reforming processing device via the fuel electrode of the fuel cell body. Is purged to the series with an inert gas, and steam is also supplied to the fuel reformer during the period until the raw fuel gas is exhausted or during the purge. There is an effect that can be prevented.

また、燃料改質処理装置へ供給する水蒸気量を不活性
ガスパージ流量もしくは原燃料ガス濃度に応じた量に制
御することにより、燃料電池の燃料極へ過剰な水蒸気濃
度のガスを送り込まないので、電池性能に悪い影響を与
えない効果がある。
In addition, by controlling the amount of steam supplied to the fuel reforming apparatus to an inert gas purge flow rate or an amount corresponding to the raw fuel gas concentration, gas with an excessive steam concentration is not sent to the fuel electrode of the fuel cell. This has the effect of not adversely affecting performance.

さらに、上記いずれの発明においても、運転停止時に
空気極は直接に、燃料系統は燃料改質処理装置の上流ラ
インより燃料極を経由し燃料改質装置中の燃焼器および
燃料炉内をシリースに不活性ガスでパージするように
し、かつ、燃料電池の残留電圧を速やかに放電するよう
にすれば、電池に悪影響を与えることなく、また発電シ
ステムの系内に可燃性ガスを残すことなく速やかに安全
に停止できるし、不活性パージガスの使用量を減らす効
果がある。
Further, in any of the above-mentioned inventions, when the operation is stopped, the air electrode is directly connected to the fuel system, and the fuel system is connected to the series through the combustor and the fuel furnace in the fuel reformer via the fuel electrode from the upstream line of the fuel reformer. By purging with an inert gas and quickly discharging the residual voltage of the fuel cell, the fuel cell is quickly and without adversely affecting the battery and without leaving any flammable gas in the system of the power generation system. It can be stopped safely and has the effect of reducing the amount of inert purge gas used.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例を説明するための燃料電池シ
ステムの回路構成図、第2図は上記実施例における負荷
遮断後の燃料電池の出力電圧と空気極および燃料極の入
口の酸素および燃料ガスの濃度変化の特性線図、第3図
は従来の燃料電池システムの運転方法を説明するための
回路構成図である。 (8)……改質器、(8c)……燃焼器、(10)……燃料
電池本体、(10b)……燃料極、(17)……原燃料ガ
ス、(18)……水蒸気、(19)……空気、(20)……空
気系不活性パージガス、(21)……燃料系不活性パージ
ガス、(22)……燃料改質処理装置。
FIG. 1 is a circuit diagram of a fuel cell system for explaining an embodiment of the present invention, and FIG. 2 is a diagram showing the output voltage of the fuel cell and the oxygen and oxygen at the inlet of the air electrode and the fuel electrode after the load is cut off in the above embodiment. FIG. 3 is a circuit diagram for explaining an operation method of a conventional fuel cell system. (8) ... reformer, (8c) ... combustor, (10) ... fuel cell body, (10b) ... fuel electrode, (17) ... raw fuel gas, (18) ... steam, (19) ... air, (20) ... air-based inert purge gas, (21) ... fuel-based inert purge gas, (22) ... fuel reformer.

フロントページの続き (56)参考文献 特開 昭57−212774(JP,A) 特開 平4−26070(JP,A) FUEL CELL HANDBOO K(1998)第113頁 FIG.1−4 ONSITE 40−KILOWATT FUEL CELL POWER P LANT MANUFACTURING AND FIELD TEST PR OGRAM(1985)第2−24頁 FI G.2−13 (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24 Continuation of the front page (56) References JP-A-57-212774 (JP, A) JP-A-4-26070 (JP, A) FUEL CELL HANDBOOK (1998) p. 113 FIG. 1-4 ONSITE 40-KILOWATT FUEL CELL POWER PLANT MANUFACTURING AND FIELD TEST PROGRAM (1985), pp. 2-24, FIG. 2-13 (58) Fields surveyed (Int. Cl. 6 , DB name) H01M 8/00-8/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料電池本体と燃料改質処理装置を含む燃
料電池発電システムの運転停止時に前記燃料改質処理装
置の上流ラインより前記燃料電池本体の燃料極を経由し
前記燃料改質処理装置中の燃焼器および燃焼炉内をシリ
ースに不活性ガスでパージすると共に、初期の一定時間
および前記パージの期間のいずれかの期間中、前記燃料
改質処理装置へ水蒸気の供給も行い、かつ前記燃料改質
処理装置への前記水蒸気の供給量を不活性ガスパージ流
量および原燃料ガス濃度のいずれかに対し制御するよう
になっている燃料電池発電システムの運転方法。
When the operation of a fuel cell power generation system including a fuel cell main body and a fuel reforming apparatus is stopped, the fuel reforming apparatus is connected to a fuel electrode of the fuel cell main body from an upstream line of the fuel reforming apparatus. While purging the inside of the combustor and the inside of the combustion furnace with an inert gas to the series, during one of the initial fixed time and the period of the purge, it also supplies steam to the fuel reforming treatment device, and A method of operating a fuel cell power generation system, wherein the supply amount of the steam to the fuel reforming apparatus is controlled with respect to one of an inert gas purge flow rate and a raw fuel gas concentration.
JP2160801A 1990-06-18 1990-06-18 Operating method of fuel cell power generation system Expired - Lifetime JP2931372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2160801A JP2931372B2 (en) 1990-06-18 1990-06-18 Operating method of fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160801A JP2931372B2 (en) 1990-06-18 1990-06-18 Operating method of fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH0451469A JPH0451469A (en) 1992-02-19
JP2931372B2 true JP2931372B2 (en) 1999-08-09

Family

ID=15722741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160801A Expired - Lifetime JP2931372B2 (en) 1990-06-18 1990-06-18 Operating method of fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2931372B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516039C2 (en) * 1995-05-04 1997-09-18 Roland Man Druckmasch Pallet for automated batch processing
CN1255892C (en) 2000-06-14 2006-05-10 松下电器产业株式会社 Fuel cell power generation system, and fuel cell power generation interrupting method
JP2002231293A (en) 2001-01-31 2002-08-16 Toshiba Corp Purge device for fuel cell system and its method
JP4893719B2 (en) * 2008-09-22 2012-03-07 トヨタ自動車株式会社 Method for shutting down hydrogen gas generation system
JP5289199B2 (en) * 2009-06-12 2013-09-11 パナソニック株式会社 Operation method of hydrogen generator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUEL CELL HANDBOOK(1998)第113頁 FIG.1−4
ONSITE 40−KILOWATT FUEL CELL POWER PLANT MANUFACTURING AND FIELD TEST PROGRAM(1985)第2−24頁 FIG.2−13

Also Published As

Publication number Publication date
JPH0451469A (en) 1992-02-19

Similar Documents

Publication Publication Date Title
JP3360318B2 (en) Fuel cell generator
JP4350944B2 (en) Method for improving operating efficiency of fuel cell power equipment
JPS6010425B2 (en) How to reduce the output power of a fuel cell
JPH10144334A (en) Fuel cell system power plant, and starting and stopping method therefor
JP2003243020A (en) Fuel cell system
JP2924009B2 (en) How to stop fuel cell power generation
JP2007273276A (en) Fuel cell power generation system and its operation method
JPH025366A (en) Fuel cell and its operating method
JP2001023658A (en) Temperature monitoring and control method for fuel treating equipment
JP2006310109A (en) Fuel cell power generating system
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
JP2007287633A (en) Fuel cell power generator and control program as well as control method
KR20190094123A (en) Methods for Transitioning a Fuel Cell System between Modes of Operation
JP2931372B2 (en) Operating method of fuel cell power generation system
JP4828078B2 (en) Method for controlling oxidant flow rate in fuel cell system
JPH05251102A (en) Phospholic acid type fuel cell power generating plant
JP2007265786A (en) Fuel cell system and its control method
JPH0955219A (en) Fuel cell power generating device and operation method
JPS60177565A (en) Operation method of fuel cell power generating system
US20080292928A1 (en) Method for purging pem-type fuel cells
JPH01128362A (en) Operating method for fuel cell
KR20190094121A (en) Methods for Transitioning a Fuel Cell System between Modes of Operation
JP2542096B2 (en) How to stop the fuel cell
JPH088113B2 (en) Fuel cell generator
JPH07249424A (en) Phosphoric acid fuel cell power generating plant