JPH0451469A - Operating method for fuel cell power generation system - Google Patents

Operating method for fuel cell power generation system

Info

Publication number
JPH0451469A
JPH0451469A JP2160801A JP16080190A JPH0451469A JP H0451469 A JPH0451469 A JP H0451469A JP 2160801 A JP2160801 A JP 2160801A JP 16080190 A JP16080190 A JP 16080190A JP H0451469 A JPH0451469 A JP H0451469A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
gas
power generation
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2160801A
Other languages
Japanese (ja)
Other versions
JP2931372B2 (en
Inventor
Masaaki Matsumoto
正昭 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15722741&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0451469(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2160801A priority Critical patent/JP2931372B2/en
Publication of JPH0451469A publication Critical patent/JPH0451469A/en
Application granted granted Critical
Publication of JP2931372B2 publication Critical patent/JP2931372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To avoid deterioration of a catalyst, prevent ill influence upon a fuel cell concerned, and providing possibility of safely stopping the fuel cell power generation system by permitting an inert gas to purge the inside of a combustor and furnace upon passing through a fuel electrode from the upstream line of a fuel modification processing device at the time operation is stopped, and also making supply of water vapor until the raw material goes out. CONSTITUTION:When a fuel cell power generation system is at a standstill, an air electrode 10a is purged directly with an air type inert purge gas 20, and the rate of flow of the raw material 17 on the fuel line is nullified, and a fuel type inert purge gas 21 is allowed to pass through a fuel electrode 10b from the upstream line of a fuel modifier device 22 and reach a burner 8c to purge even inside of a modification furnace 8a. Water vapor 18 in an amount in compliance with the rate of flow of the inert purge gas 21 or the residual amount of raw fuel gas until the raw fuel 17 in the upper stream piping is purged off by the fuel type inert purge gas 21, and when purging that part is completed, the supply shall be stopped. The inert gases 20, 21 are supplied until their objective systems are fully purged.

Description

【発明の詳細な説明】 「産業上の利用分野] この発明は、燃料電池発電システムの運転方法に関し、
もう少し詳しくいうと、少なくとも燃料電池本体と燃料
改質処理装置を含む燃料電池発電システムの運転停止時
を主眼とした燃料電池発電システムの運転方法に関する
ものである。
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to a method of operating a fuel cell power generation system,
More specifically, the present invention relates to a method of operating a fuel cell power generation system, which focuses on when the fuel cell power generation system including at least the fuel cell body and the fuel reforming device is stopped.

[従来の技術] 第3図は、例えば特開昭60−1.38854号公報に
示された従来の燃料電池発電システムであり、図におい
て、燃料電池(1)と並列に抵抗器(2)が接続され、
開閉器(3)が燃料電池(1)と抵抗器(2)とを接続
している。(6)は直流遮断器、(7)は負荷装置であ
る。空気供給路(4)および燃料供給路(5)は、空気
と燃料を燃料電池(1)の空気極、燃料極にそれぞれ供
給し、化学反応により直流電力を発する。
[Prior Art] Fig. 3 shows a conventional fuel cell power generation system disclosed in, for example, Japanese Patent Laid-Open No. 60-1.38854. In the figure, a resistor (2) is connected in parallel with a fuel cell (1). is connected,
A switch (3) connects the fuel cell (1) and the resistor (2). (6) is a DC breaker, and (7) is a load device. The air supply path (4) and the fuel supply path (5) supply air and fuel to the air electrode and fuel electrode of the fuel cell (1), respectively, and generate DC power through a chemical reaction.

次に運転方法について説明する。いま、燃料電池発電シ
ステムが定常運転を行っていると、直流遮断器(6)が
投入されており、燃料電池(1)に負荷装W(7)が接
続されている。ここで、負荷装置(7)に短絡事故が発
生したとすると制御装置(図示せず)からの信号により
、直流遮断器<6)を1・リップして負荷装置(7)を
切離す。それと同時に開閉器(3)を投入し、抵抗器(
2)に燃料電池(1)の出力を与える。また、燃料電池
の運転を停止するため、空気供給路(4)と燃料供給路
(5)より供給される反応ガスの流量を徐々に絞ってい
く。流量が零になった後、開閉器<3〉を開き、抵抗器
り2)を切離し、停止動作を終了する。
Next, the driving method will be explained. When the fuel cell power generation system is currently in steady operation, the DC circuit breaker (6) is turned on and the load device W (7) is connected to the fuel cell (1). Here, if a short-circuit accident occurs in the load device (7), a signal from a control device (not shown) causes the DC breaker <6) to be turned off by 1 to disconnect the load device (7). At the same time, turn on the switch (3) and turn on the resistor (
2) gives the output of the fuel cell (1). Further, in order to stop the operation of the fuel cell, the flow rate of the reaction gas supplied from the air supply path (4) and the fuel supply path (5) is gradually reduced. After the flow rate becomes zero, open the switch <3>, disconnect the resistor 2), and complete the stop operation.

[発明が解決しようとする課題] 以上のような従来の燃料電池発電システムの運転方法で
は、負荷遮断が以」二のように行われるので、空気およ
び燃料供給量が零となった制御動作終了後も、電池本体
内に残った(電極に付着したものを含む)反応ガスによ
り空気極は高い電位におかれ(以降、残留電圧と呼ぶ)
、電池劣化の要因となるなどの問題があった。これは、
負荷遮断に限らず、一般の停止時にも問題となる。
[Problems to be Solved by the Invention] In the conventional operating method of the fuel cell power generation system as described above, load shedding is performed as follows. Even after this, the air electrode is kept at a high potential (hereinafter referred to as residual voltage) due to the reactive gas remaining in the battery body (including that attached to the electrode).
There were problems such as causing battery deterioration. this is,
This is a problem not only during load shedding but also during general stoppages.

この問題を改善するため、この発明者は特開昭63−1
81.268号公報において残留電圧を放電抵抗で解消
するシステムを開示した。
In order to improve this problem, the inventor published Japanese Unexamined Patent Publication No. 63-1
No. 81.268 discloses a system for eliminating residual voltage using a discharge resistor.

燃料電池発電システム全体における負荷遮断、停止時の
問題点をまとめると、(1)燃料改質処理装置中に負荷
遮断・停止直後には原燃料カスが存在し、水蒸気の供給
なしにパージのみを行うと原燃料ガスの分解などにより
改質処理装置の触媒が劣化する。(2)燃料電池空気極
には空気(酸化剤)が残留し電極が高い電位におかれる
ため電極の触媒が劣化する。また、残留電圧解消のため
放電負荷を取った場合、一部のセルで燃料の欠乏が生し
るとその部分のセルの電極が反応し劣化する。(3)シ
ステムの各機器および配管内に可燃性ガスが残留し安定
性が十分でない。また、各機器別に不活性ガスによりパ
ージすると不活性ガスの消費量が多くなる。なとが考え
られる。
To summarize the problems during load shedding and shutdown in the entire fuel cell power generation system, (1) Raw fuel scum exists in the fuel reforming processing equipment immediately after load shedding and shutdown, and it is difficult to purge only without supplying steam. If this is done, the catalyst in the reformer will deteriorate due to decomposition of the raw fuel gas. (2) Air (oxidizing agent) remains in the fuel cell air electrode and the electrode is placed at a high potential, causing the electrode catalyst to deteriorate. Furthermore, when a discharge load is taken to eliminate residual voltage, if fuel starvation occurs in some cells, the electrodes of the cells in those areas react and deteriorate. (3) Flammable gas remains in each device and piping of the system, resulting in insufficient stability. Furthermore, if each device is purged with inert gas, the amount of inert gas consumed will increase. I can think of something like that.

また、」1記(])の問問題法のため改質処理装置へ不
活性パージガスと共に水蒸気を供給する場合、水蒸気が
過剰な条件でパージされると電極本体の電解質に水蒸気
が吸収され電池性能に悪い影響を与−えるおそれがある
In addition, when water vapor is supplied to the reformer together with an inert purge gas for the problem method in item 1 (), if the water vapor is purged under excessive conditions, the water vapor will be absorbed by the electrolyte in the electrode body, resulting in poor battery performance. may have a negative impact on

この発明は上記のような問題を解消するためになされた
ものて、燃料改質処理装置系統の触媒を劣化させること
なく、かつ、電池本体の残留電圧対策を行うことにより
、電池に悪影響を与えることなく速やかに、また、燃料
電池発電システムの系内に可燃性ガスを残すことなく安
全に停止するとともに、不活性パージガスの使用量を減
らずことができる燃料電池発電システムの運転方法を得
ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and by taking measures against residual voltage in the battery body without deteriorating the catalyst in the fuel reforming system, it is possible to eliminate the negative effects on the battery. To obtain a method for operating a fuel cell power generation system that can quickly and safely stop the fuel cell power generation system without leaving any flammable gas in the system, and without reducing the amount of inert purge gas used. With the goal.

[課題を解決するための手段] この発明の第一の発明に係る燃料電池発電システムの運
転方法は、運転停止時に燃料改質処理装置の上流ライン
より燃料電池本体の燃料極を経由して燃料改質処理装置
中の燃焼器および燃焼炉内をシリースに不活性ガスでパ
ージすると共に、原燃料が無くなるまでの期間もしくは
パージの期間中、燃料改質処理装置へ水蒸気の供給も行
う。
[Means for Solving the Problems] A method for operating a fuel cell power generation system according to the first aspect of the present invention is to supply fuel from an upstream line of a fuel reformer through a fuel electrode of a fuel cell main body when the operation is stopped. The combustor and combustion furnace in the reformer are purged with inert gas in series, and steam is also supplied to the fuel reformer until the raw fuel is used up or during the purge period.

また、第二の発明に係る燃料電池発電システムの運転方
法は、改質処理装置へ供給する上記の水蒸気量を不活性
ガスパージ流量もしくは原燃料ガス濃度に対し制御する
Moreover, in the operating method of the fuel cell power generation system according to the second invention, the amount of water vapor supplied to the reforming device is controlled with respect to the inert gas purge flow rate or the raw fuel gas concentration.

「作用] 第一の発明においては、システムの運転停止時に、燃料
改質処理装置の上流ラインより燃料電池本体の燃料極を
経由し燃料改質処理装置中の燃焼器および燃焼炉内をシ
リースに不活性ガスでパージすると共に初期の一定期間
(原燃料ガスが無くなるまでの期間)、燃料改質処理装
置へ水蒸気の供給も行うことにより燃料改質処理装置の
触媒へのカーボン析出などによる劣化を防止する。この
とき、不活性ガスにより空気系統および燃料系統のパー
ジをすると同時に、燃料電池と並列に接続された放電負
荷で電池電圧を監視し、その開閉器を制御することによ
り残留電圧を低下させ電池(電極)の劣化を防止する。
"Operation" In the first invention, when the system is stopped, the combustor and combustion furnace in the fuel reformer are serially connected from the upstream line of the fuel reformer through the fuel electrode of the fuel cell main body. In addition to purging with inert gas, water vapor is also supplied to the fuel reformer for an initial period (until the raw fuel gas is used up) to prevent deterioration due to carbon deposition on the catalyst of the fuel reformer. At this time, the air system and fuel system are purged with inert gas, and at the same time, the battery voltage is monitored with a discharge load connected in parallel with the fuel cell, and the residual voltage is reduced by controlling the switch. to prevent battery (electrode) deterioration.

また、第二の発明においては、運転停止時の上記改質処
理装置へ供給する水蒸気量は不活性ガスパージ流量もし
くは原燃料ガス濃度に応じた流量で流すことにより、電
池本体燃料極へ過度の水蒸気を含むガスが流れないよう
にする。
In addition, in the second invention, the amount of water vapor supplied to the reforming processing device when the operation is stopped is caused to flow at an inert gas purge flow rate or a flow rate according to the raw fuel gas concentration, thereby preventing excessive water vapor from reaching the fuel electrode of the cell main body. Prevent gas containing from flowing.

[実施例] 以下、この各発明の一実施例を図面を参照して説明する
。第1図は燃料電池発電システムを示し、(8a)は改
質炉、(8b)は改質反応器、(8c)は燃焼器(バー
ナ)、(8)はこれらからなる改質器、(9)は改質器
(8)で改質されたガスをさら水素リッチに転化反応さ
せる転化器である。(10)は燃料電池本体で、空気極
(10a) 、燃料極(]、Ob)、出力端子(10c
)、冷却器(1,Od )などからなっている。(11
)は気水分離器、(12)は冷却水を燃料電池(10)
に循環させるポンプである。(13)は燃料電池(10
)および改質器(8)に必要な空気を供給する空気ブロ
アである。
[Example] Hereinafter, an example of each of the inventions will be described with reference to the drawings. Figure 1 shows a fuel cell power generation system, in which (8a) is a reforming furnace, (8b) is a reforming reactor, (8c) is a combustor (burner), (8) is a reformer consisting of these, ( 9) is a converter that converts the gas reformed in the reformer (8) into a hydrogen-rich gas. (10) is the fuel cell main body, which includes an air electrode (10a), a fuel electrode (], Ob), an output terminal (10c
), cooler (1, Od ), etc. (11
) is a steam-water separator, (12) is a fuel cell with cooling water (10)
This is a pump that circulates the water. (13) is a fuel cell (10
) and an air blower that supplies the necessary air to the reformer (8).

(14)および〈15)は燃料電池出力端に並列に接続
された開閉器および放電負荷である。 (+6)は燃料
電池(10)で発生した直流出力を交流出力に変換する
直交変換器である。(+7)および(18)は燃料電池
の反応に必要な燃料ガスを製造するための原燃料ガスお
よび水蒸気、(19)は同じく反応に必要な空気、(2
0)、(21,)は燃料電池発電システムの定時時に流
す空気系および燃料系不活性パージカスである。
(14) and <15) are a switch and a discharge load connected in parallel to the fuel cell output terminal. (+6) is an orthogonal converter that converts the DC output generated by the fuel cell (10) into AC output. (+7) and (18) are the raw fuel gas and water vapor for producing the fuel gas necessary for the fuel cell reaction, (19) is the air also necessary for the reaction, and (2
0) and (21,) are air system and fuel system inert purge scum flowing at fixed times in the fuel cell power generation system.

(22)は燃料改質処理装置である。(22) is a fuel reforming processing device.

なお、この図は概要を示すもので、バルブその他の機器
について省略している。
Note that this figure shows an overview, and valves and other equipment are omitted.

次に運転方法について説明する。まず、第一の発明ては
、燃料電池発電システムの運転停止は、直交変換器(1
6)の交流出力を低下させると共に出力に見合っノご反
応ガス量にするよう、原燃料(+7)、水蒸気(18〉
および反応用空気(19a)の流量を低下させる。さら
に、直交変換器(16)への直流入力を零とすると同時
に電気系統では開閉器(14)を閉じて燃料電池(10
)の出力を放電負荷(15)に消費させる。このとき、
燃料電池(10)の電圧値より判定し、開閉器〈15)
を開放させる。一方、カス系統では、空気系統の反応用
空気(19a)の流量を零とし、空、紙糸不活性パージ
ガス(例N2など)(20)で空気極(10a)を直接
に、また燃料系統の原燃料(17)(例C11,など〉
の流量を零とし、燃料系不活性パージガス(21)で燃
料改質装置(22)の上流ラインより燃料極(1,Ob
)を経由してバーナ(8c)に達し、改質炉(8a)内
までパージする。
Next, the driving method will be explained. First, in the first invention, the operation of the fuel cell power generation system is stopped using an orthogonal converter (1
In order to reduce the AC output of 6) and increase the amount of reaction gas commensurate with the output, raw fuel (+7) and steam (18)
and the flow rate of the reaction air (19a) is reduced. Furthermore, at the same time as the DC input to the orthogonal converter (16) is made zero, the switch (14) in the electrical system is closed and the fuel cell (10
) is consumed by the discharge load (15). At this time,
Judging from the voltage value of the fuel cell (10), the switch
to be opened. On the other hand, in the waste system, the flow rate of the reaction air (19a) in the air system is set to zero, and the air electrode (10a) is directly connected to the air electrode (10a) using empty, paper thread inert purge gas (eg N2, etc.) (20). Raw fuel (17) (Example C11, etc.)
The flow rate of the fuel electrode (1, Ob
), it reaches the burner (8c) and is purged into the reforming furnace (8a).

また、第二の発明では、燃料系統のパージにおいて、水
蒸気(18)はそれより」1流の配管内の加燃料(17
)が燃料系不活性パージガス(21)でパージされるま
で不活性パージカス(21)の流量もしくは残留原燃f
fJガスB、に見合った量を供給し続け、同部分のパー
ジかされた以降はその供給を停止する。
In addition, in the second invention, when purging the fuel system, the water vapor (18) is removed from the fuel (17) in the first flow pipe.
) is purged with the fuel system inert purge gas (21), the flow rate of the inert purge gas (21) or the residual raw fuel f
The amount corresponding to fJ gas B is continued to be supplied, and the supply is stopped after the same portion is purged.

不活性パージカス(20)および(21)によるパージ
はそれぞれの系統が充分パージされるまで供給し、その
後供給を止める。
Purging with inert purge gas (20) and (21) is supplied until each system is sufficiently purged, and then the supply is stopped.

この間、燃料改質処理装置(22)には、パージカスで
押出された原燃料カス(17)とそれに見合った量の水
蒸気(18)が供給されるので、燃料改質処理袋fi 
(22)では原燃料ガスが無くなるまで運転中と同し改
質反応が続けられ、その後、不活性パージガス(21)
もしくは不活性パージカス(21)と水蒸気(18)で
パージされる。
During this time, the fuel reforming processing device (22) is supplied with the raw fuel scum (17) pushed out by the purge scum and a corresponding amount of steam (18), so the fuel reforming processing bag fi
In (22), the reforming reaction continues as during operation until the raw fuel gas runs out, and then the inert purge gas (21)
Alternatively, it is purged with an inert purge gas (21) and water vapor (18).

第1図でもわかるように、空気系統は短かく容積が小さ
いので短時間てパージされる。燃料系統はパージが始っ
ても改質反応器(8b)の上流のパージが終るまでは改
質反応が続けられることと、燃料改質処理装置(22〉
の系の容積が大きく空気系統のパージに要する時間に比
べ長くなる。この結果、放電負荷(15)て残留電圧を
放電させている間、燃料極(1,Ob )側では燃料カ
スの欠乏を生じることなしに空気1(10a)側の空気
(酸化剤)のパージと消費が行われる。
As can be seen in Figure 1, the air system is short and has a small volume, so it can be purged in a short time. In the fuel system, even if the purge starts, the reforming reaction continues until the purge upstream of the reforming reactor (8b) is completed, and the fuel reforming processing device (22)
The volume of the system is large and the time required to purge the air system is longer. As a result, while the residual voltage is being discharged by the discharge load (15), the air (oxidant) on the air 1 (10a) side can be purged without causing a lack of fuel scum on the fuel electrode (1, Ob) side. and consumption takes place.

なお、負荷遮断後の出力電圧と空気極および燃料極大口
ての酸素および燃料のガス濃度変化の説明図を第2図に
例示した。
Furthermore, an explanatory diagram of the output voltage after the load is cut off and the changes in the oxygen and fuel gas concentrations at the air electrode and the fuel outlet is illustrated in FIG.

なお、」1記実施例では、燃料系統のパージにおける水
蒸気流量の制御の詳細については記述していないが、次
のいずれかの方法で達成できる。
Note that although the first embodiment does not describe the details of controlling the water vapor flow rate in purging the fuel system, it can be achieved by any of the following methods.

(1)燃料系統の不活性ガスパージにおいて、改質器入
口配管中の可燃性ガス濃度変化をあらかじめ測定調査し
、この濃度に見合った水蒸気流量をプログラム制御する
(1) In the inert gas purge of the fuel system, changes in combustible gas concentration in the reformer inlet piping are measured and investigated in advance, and the water vapor flow rate is program-controlled in accordance with this concentration.

(2)燃料系統の不活性ガスパージにおいて、改質器入
口配管中の可燃性ガス濃度をIIJ定し、この濃度出力
に応して水蒸気流量を制御する。
(2) In the inert gas purge of the fuel system, the combustible gas concentration in the reformer inlet pipe is determined IIJ, and the water vapor flow rate is controlled according to this concentration output.

[発明の効果] 以上のように、第一の発明によれは、運転停止時に燃料
改質処理装置の」1流ラインより燃料電池本体の燃料極
を経由し燃料改質処理装置中の燃焼器および燃焼炉内を
シリースに不活性ガスでパージすると共に、原燃料ガス
が無くなるまでの期間もしくはパージの間中、燃料改質
処理装置へ水蒸気の供給も行うようにしなので、燃料改
質処理装置の触媒の劣化を防止できる効果がある。
[Effects of the Invention] As described above, according to the first invention, when the operation is stopped, the combustor in the fuel reformer is connected from the first flow line of the fuel reformer through the fuel electrode of the fuel cell main body. In addition to purging the inside of the combustion furnace with inert gas in series, steam is also supplied to the fuel reforming processing equipment until the raw fuel gas is used up or during the purge, so the fuel reforming processing equipment It has the effect of preventing deterioration of the catalyst.

また、第二の発明によれば、燃料改質処理装置へ供給す
る水蒸気量を不活性ガスパージ流量もしくは原燃料ガス
濃度に応じた量に制御することにより、燃料電池の燃料
極l\過剰な水蒸気濃度のガスを送り込まないので、電
池性能に悪い影響を与えない効果がある。
Further, according to the second invention, by controlling the amount of water vapor supplied to the fuel reforming processing device to an amount according to the inert gas purge flow rate or the raw fuel gas concentration, excess water vapor can be removed from the fuel electrode of the fuel cell. Since the gas is not sent in at a high concentration, it has the effect of not having a negative effect on battery performance.

さらに、上記いずれの発明においても、運転停止時に空
気極は直接に、燃料系統は燃料改質処理装置の上流ライ
ンより燃料極を経由し燃料改質装置中の燃焼器および燃
焼炉内のシリースに不活性ガスでパージするようにし、
かつ、燃焼電池の残留電圧を速やかに放電するようにす
れば、電池に悪影響を与えることなく速やかに、また発
電システムの系内に可燃性ガスを残すことなく安全に停
止できるし、不活性パージガスの使用量を減らす効果が
ある。
Furthermore, in any of the above inventions, when the operation is stopped, the air electrode is directly connected to the air electrode, and the fuel system is connected to the series in the combustor and combustion furnace in the fuel reformer through the fuel electrode from the upstream line of the fuel reformer. Make sure to purge with inert gas,
In addition, if the residual voltage of the combustion battery is quickly discharged, the power generation system can be shut down quickly without adversely affecting the battery, and without leaving any flammable gas in the power generation system. It has the effect of reducing the amount of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するための燃料電池発電
システムの回路構成図、第2図は」二足実施例における
負荷遮断後の燃料電池の出力電圧と空気極および燃料極
の入口の酸素および燃料カスの濃度変化の特性線図、第
3図は従来の燃料電池発電システムの運転方法を説明す
るための回路構成図である。 (8)   改質器、(8c)   燃焼器、(10)
   燃料電池本体、(1,Ob )   燃料極、(
17)  ・原燃料ガス、(18)・ 水蒸気、(19
)  ・空気、(20)・空気系不活性パージカス、(
21)・ 燃料系不活性パージガス、(22)・・燃料
改質処理装置。
Fig. 1 is a circuit diagram of a fuel cell power generation system for explaining the present invention in detail, and Fig. 2 shows the output voltage of the fuel cell after load shedding in the two-legged embodiment and the inlets of the air electrode and fuel electrode. FIG. 3 is a characteristic diagram of changes in concentration of oxygen and fuel scum, and is a circuit configuration diagram for explaining an operating method of a conventional fuel cell power generation system. (8) Reformer, (8c) Combustor, (10)
Fuel cell body, (1, Ob) Fuel electrode, (
17) - Raw fuel gas, (18) - Water vapor, (19
)・Air, (20)・Air-based inert purge gas, (
21)・Fuel system inert purge gas, (22)・・Fuel reforming processing device.

Claims (2)

【特許請求の範囲】[Claims] (1)燃料電池本体と燃料改質処理装置を含む燃料電池
発電システムの運転停止時に前記燃料改質処理装置の上
流ラインより前記燃料電池本体の燃料極を経由し前記燃
料改質処理装置中の燃焼器および燃焼炉内をシリースに
不活性ガスでパージすると共に、初期の一定期間および
前記パージの期間のいずれかの期間中、前記燃料改質処
理装置へ水蒸気の供給も行う燃料電池発電システムの運
転方法。
(1) When the fuel cell power generation system including the fuel cell main body and the fuel reforming processing device is stopped, the fuel in the fuel reforming processing device is transmitted from the upstream line of the fuel reforming processing device through the fuel electrode of the fuel cell main body. A fuel cell power generation system that purges the inside of a combustor and a combustion furnace with an inert gas in series, and also supplies steam to the fuel reforming processing device during an initial fixed period and any one of the purge periods. how to drive.
(2)燃料改質処理装置への水蒸気の供給量を不活性ガ
スパージ流量および原燃料ガス濃度のいずれかに対し制
御する請求項(1)記載の燃料電池発電システムの運転
方法。
(2) The method for operating a fuel cell power generation system according to claim (1), wherein the amount of water vapor supplied to the fuel reforming device is controlled with respect to either an inert gas purge flow rate or a raw fuel gas concentration.
JP2160801A 1990-06-18 1990-06-18 Operating method of fuel cell power generation system Expired - Lifetime JP2931372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2160801A JP2931372B2 (en) 1990-06-18 1990-06-18 Operating method of fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160801A JP2931372B2 (en) 1990-06-18 1990-06-18 Operating method of fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH0451469A true JPH0451469A (en) 1992-02-19
JP2931372B2 JP2931372B2 (en) 1999-08-09

Family

ID=15722741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160801A Expired - Lifetime JP2931372B2 (en) 1990-06-18 1990-06-18 Operating method of fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2931372B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301282A (en) * 1995-05-04 1996-11-19 Man Roland Druckmas Ag Device to stack printing leaf paper at time of pile automatic replacement
WO2001097312A1 (en) * 2000-06-14 2001-12-20 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, and fuel cell power generation interrupting method
WO2002061870A1 (en) * 2001-01-31 2002-08-08 Kabushiki Kaisha Toshiba Fuel battery system and purging method therefor
JP2009035480A (en) * 2008-09-22 2009-02-19 Toyota Motor Corp Shutdown method of hydrogen producing system operation
JP2009196893A (en) * 2009-06-12 2009-09-03 Panasonic Corp Method for driving hydrogen generating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301282A (en) * 1995-05-04 1996-11-19 Man Roland Druckmas Ag Device to stack printing leaf paper at time of pile automatic replacement
WO2001097312A1 (en) * 2000-06-14 2001-12-20 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation system, and fuel cell power generation interrupting method
US7432004B2 (en) 2000-06-14 2008-10-07 Matsushita Electric Industrial Co., Ltd. Fuel cell electric power generating system and method of stopping fuel cell electric power generation
WO2002061870A1 (en) * 2001-01-31 2002-08-08 Kabushiki Kaisha Toshiba Fuel battery system and purging method therefor
US7687162B2 (en) 2001-01-31 2010-03-30 Kabushiki Kaisha Toshiba Purging method of fuel cell system
JP2009035480A (en) * 2008-09-22 2009-02-19 Toyota Motor Corp Shutdown method of hydrogen producing system operation
JP2009196893A (en) * 2009-06-12 2009-09-03 Panasonic Corp Method for driving hydrogen generating device

Also Published As

Publication number Publication date
JP2931372B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JP2660097B2 (en) Fuel cell generator
JP3686062B2 (en) Fuel cell power generation system and fuel cell power generation stop method
CN101443945B (en) Decontamination procedure for a fuel cell power plant
JP2501872B2 (en) Method for converting inert gas of fuel electrode when fuel cell is shut down
JPH0668891A (en) Fuel cell generator and control thereof
JP2007531969A (en) Fuel release management for fuel cell systems
WO2006049299A1 (en) Fuel cell system
JP2009533829A (en) Fuel cell system having a fuel flow control structure including a low flow bypass
JPH0451469A (en) Operating method for fuel cell power generation system
JP3722868B2 (en) Fuel cell system
JPH01128362A (en) Operating method for fuel cell
JP2541288B2 (en) How to shut down the fuel cell
JPS63116373A (en) Fuel cell operating method
JP2001291523A (en) Fuel cell control system and control method of fuel cell
JP2004342389A (en) Fuel cell device
JP2001028270A (en) Fuel cell power generating device with raw fuel changeover apparatus and operation method therefor
JPH03159073A (en) Fuel cell power generation device
JP4622244B2 (en) Operation control method of fuel cell power generator
JP3192517B2 (en) Fuel cell generator
JPH02281569A (en) Fused carbonate fuel cell power generating plant
JPH07249424A (en) Phosphoric acid fuel cell power generating plant
JP2000348746A (en) Surplus hydrogen processing method in reform type fuel cell power supply system
JP2916312B2 (en) Fuel cell power plant
JPS6132362A (en) Fuel cell power generation system
JPS62285368A (en) Fuel cell power generation plant