JP2009196893A - Method for driving hydrogen generating device - Google Patents

Method for driving hydrogen generating device Download PDF

Info

Publication number
JP2009196893A
JP2009196893A JP2009141001A JP2009141001A JP2009196893A JP 2009196893 A JP2009196893 A JP 2009196893A JP 2009141001 A JP2009141001 A JP 2009141001A JP 2009141001 A JP2009141001 A JP 2009141001A JP 2009196893 A JP2009196893 A JP 2009196893A
Authority
JP
Japan
Prior art keywords
reforming
catalyst
fuel
temperature
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009141001A
Other languages
Japanese (ja)
Other versions
JP5289199B2 (en
Inventor
Kunihiro Ukai
邦弘 鵜飼
Takeshi Tomizawa
猛 富澤
Kiyoshi Taguchi
清 田口
Toshiyuki Shono
敏之 庄野
Koichiro Kitagawa
浩一郎 北河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009141001A priority Critical patent/JP5289199B2/en
Publication of JP2009196893A publication Critical patent/JP2009196893A/en
Application granted granted Critical
Publication of JP5289199B2 publication Critical patent/JP5289199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide method for driving a hydrogen generating device in which, regarding a hydrogen generating device by steam reforming, in the case it is stopped and is cooled, the intrusion of air into the device is evaded without introducing an inert gas, and deterioration (oxidation) in a reforming catalyst or a shift catalyst is prevented. <P>SOLUTION: Regarding the method for driving a hydrogen generating device, in the hydrogen generating device comprising: a reforming section having a reforming catalyst for steam-reforming fuel; a raw material feeding section feeding the fuel and water to the reforming section; a heating section for the reforming catalyst; and a modification section having a catalyst at least including copper, and where a gas generated in the reforming section is fed to the modification section, the method comprises: a stage (a) where the heating operation in the heating section is stopped; a stage (b) where the amounts of the fuel and water to be fed are gradually reduced; a stage (c) where the feed of the water is stopped; and a stage (d) where the feed of the fuel is stopped. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、例えば炭化水素系などの燃料を水蒸気改質して水素を生成する水素発生装置の運転方法に関する。   The present invention relates to a method of operating a hydrogen generator that generates steam by steam reforming, for example, a hydrocarbon-based fuel.

従来から、水素の生成する方法として、例えば天然ガス、LPG、ナフサなどの炭化水素、またはメタノールなどのアルコールなどの燃料を原料とした水蒸気改質法が行われている。そして、この水蒸気改質には、ニッケル系または白金属系などの貴金属触媒が用いられている。
このような水蒸気改質方法においては、改質反応により水素および二酸化炭素のほかに一酸化炭素が生成する。また、水素発生量を増加させるために、さらに水とシフト反応させることで、水素を得る。このシフト反応には銅系触媒が用いられることが多い。
Conventionally, as a method for generating hydrogen, for example, a steam reforming method using a fuel such as a hydrocarbon such as natural gas, LPG, naphtha, or an alcohol such as methanol as a raw material has been performed. For this steam reforming, a noble metal catalyst such as nickel or white metal is used.
In such a steam reforming method, carbon monoxide is generated in addition to hydrogen and carbon dioxide by the reforming reaction. In order to increase the amount of hydrogen generated, hydrogen is further obtained by a shift reaction with water. A copper-based catalyst is often used for this shift reaction.

一酸化炭素と水のシフト反応に用いられる変成触媒には、他の触媒と比較して高い触媒活性を有する銅を主成分とした銅系触媒が、一般的に多く用いられている。この触媒は、酸化状態の銅を還元処理して使用することで、触媒活性が得られる。したがって、変成部を有する水素発生装置は、あらかじめ銅系触媒の還元処理を行ってから起動させる必要がある。連続的に装置を運転する場合には、変成部通過ガスが水素を含む還元性のガスであるため、触媒活性は維持される。   As the shift catalyst used for the shift reaction of carbon monoxide and water, a copper-based catalyst mainly composed of copper having higher catalytic activity than other catalysts is generally used. This catalyst can obtain catalytic activity by reducing copper in an oxidized state. Therefore, it is necessary to start the hydrogen generator having the shift portion after reducing the copper catalyst in advance. When the apparatus is operated continuously, the catalytic activity is maintained because the gas passing through the shift zone is a reducing gas containing hydrogen.

しかし、装置停止時に、何らかの原因で装置内に空気が混入した場合、銅系触媒酸化され触媒活性が低下することとなる。また、装置停起動を頻繁に行い空気混入機会が増加した場合、銅系触媒の酸化還元時の発熱により触媒がシンタリングし、触媒活性が大幅に低下する可能性がある。特に装置停止時は装置内の温度が高いため、装置冷却に伴い装置内が減圧状態となり外部より空気を吸引する可能性が高くなる。   However, when air is mixed into the apparatus for some reason when the apparatus is stopped, the copper-based catalyst is oxidized and the catalytic activity is reduced. In addition, when the apparatus is stopped frequently and the chance of air mixing increases, the catalyst may be sintered due to heat generated during oxidation-reduction of the copper-based catalyst, and the catalyst activity may be significantly reduced. In particular, when the apparatus is stopped, the temperature inside the apparatus is high, and as the apparatus cools, the inside of the apparatus is in a reduced pressure state, and the possibility of sucking air from the outside increases.

そこで、装置停止時には、窒素ガス等の不活性ガスを装置内を通気パージし、装置を冷却させて空気の混入を防止する方法が一般的に用いられている。しかし、頻繁に起動停止させる必要のある水素発生装置では、不活性ガスを常時準備する必要がある。そのため、装置停止時には、窒素などの不活性ガスを装置内に導入して冷却する方法が一般的に用いられている。   Therefore, when the apparatus is stopped, a method is generally used in which an inert gas such as nitrogen gas is purged with air to cool the apparatus to prevent air from entering. However, in a hydrogen generator that needs to be frequently started and stopped, it is necessary to always prepare an inert gas. Therefore, when the apparatus is stopped, a method of cooling by introducing an inert gas such as nitrogen into the apparatus is generally used.

確かに、連続的に運転し、一定期間装置を停止するようなプラントなどに用いられる水素発生装置では、不活性ガスを装置に導入し冷却することは大きな問題とはならない。
しかし、日常的に起動・停止を繰り返す水素発生装置においては、不活性ガスを常時用意することは比較的困難であるという問題がある。
Certainly, in a hydrogen generator used in a plant or the like that operates continuously and stops the apparatus for a certain period of time, it is not a big problem to introduce an inert gas into the apparatus and cool it.
However, in a hydrogen generator that repeatedly starts and stops on a daily basis, there is a problem that it is relatively difficult to always prepare an inert gas.

そこで、本発明は、水蒸気改質による水素発生装置において、装置が停止して冷却した場合に、不活性ガスを導入することなく装置内への空気混入を回避し、改質触媒またはシフト触媒の酸化(劣化)を防止することを目的とする。   Accordingly, the present invention provides a hydrogen generation apparatus using steam reforming that avoids air mixing into the apparatus without introducing an inert gas when the apparatus is stopped and cooled, The purpose is to prevent oxidation (deterioration).

本発明は、燃料を水蒸気改質するための改質触媒を有する改質部、前記改質部に前記燃料および水を供給する原料供給部、前記改質触媒用の加熱部、ならびに少なくとも銅を含む触媒を有する変成部を具備し、前記改質部において発生するガスを前記変成部に供給する水素発生装置において、(a)前記加熱部の加熱操作を停止させる工程、(b)前記燃料および水の供給量を徐々に低下させる工程、(c)水の供給を停止する工程、および(d)前記燃料の供給を停止する工程を順に含む水素発生装置の運転方法を提供する。
この場合、工程(b)における改質温度が改質触媒の耐熱温度を超えない温度であるのが好ましい。
工程(b)において前記燃料および水の供給量を低下させるとき、燃料の供給量に比べて水の供給量をより少なくするのが好ましい。
また、工程(c)における改質温度が改質触媒上に炭素を析出しない温度であるのが好ましい。
また、工程(d)における変成触媒温度が空気酸化により変成触媒の触媒活性を低下させない温度であるのが好ましい。
さらに、燃料が常温で液体である場合、工程(c)と工程(d)の間に、再度前記加熱部を作動・停止させる工程(e)を含むのが好ましい。
また、変成部出口に開閉弁を設け、工程(d)において前記開閉弁を閉状態とするのが好ましい。
The present invention includes a reforming unit having a reforming catalyst for steam reforming a fuel, a raw material supply unit for supplying the fuel and water to the reforming unit, a heating unit for the reforming catalyst, and at least copper. A hydrogen generation apparatus comprising a shift section having a catalyst containing and supplying gas generated in the reforming section to the shift section; (a) stopping the heating operation of the heating section; (b) the fuel and Provided is a method for operating a hydrogen generator, which includes a step of gradually reducing the amount of water supply, (c) a step of stopping the supply of water, and (d) a step of stopping the supply of fuel.
In this case, the reforming temperature in step (b) is preferably a temperature that does not exceed the heat resistance temperature of the reforming catalyst.
In the step (b), when the supply amount of the fuel and water is decreased, it is preferable that the supply amount of water is smaller than the supply amount of fuel.
Moreover, it is preferable that the reforming temperature in the step (c) is a temperature at which carbon is not deposited on the reforming catalyst.
Moreover, it is preferable that the shift catalyst temperature in the step (d) is a temperature at which the catalytic activity of the shift catalyst is not lowered by air oxidation.
Furthermore, when the fuel is liquid at normal temperature, it is preferable to include a step (e) of operating and stopping the heating unit again between the step (c) and the step (d).
Further, it is preferable that an opening / closing valve is provided at the outlet of the transformation section, and the opening / closing valve is closed in the step (d).

また、本発明は、燃料を水蒸気改質するための改質触媒を有する改質部、前記改質部に前記燃料および水を供給する原料供給部、前記改質触媒用の加熱部、ならびに少なくとも銅を含む触媒を有する変成部を具備し、前記改質部において発生するガスを前記変成部に供給する水素発生装置において、(a’)前記加熱部の加熱操作を停止させ、温度低下により水素発生装置内が減圧状態になったとき、少なくとも体積減少量に相当する量の燃料を水素発生装置内に供給する水素発生装置の運転方法を提供するものである。   The present invention also includes a reforming section having a reforming catalyst for steam reforming fuel, a raw material supply section for supplying the fuel and water to the reforming section, a heating section for the reforming catalyst, and at least In a hydrogen generator comprising a shift section having a catalyst containing copper and supplying gas generated in the reforming section to the shift section, (a ′) heating operation of the heating section is stopped, Provided is a method of operating a hydrogen generator that supplies at least an amount of fuel corresponding to a volume reduction amount into the hydrogen generator when the inside of the generator is depressurized.

本発明によれば、従来の水素発生装置停止時の問題を解決することができ、装置停止冷却時の装置内への空気混入を回避し、水蒸気改質触媒あるいはシフト触媒の酸化を防止することができる。また、不活性ガスを利用しないことで日常的な起動停止に対応した水素発生装置を提供し得る。
以上のように本発明は、水素発生装置の水素供給停止時において、加熱部の加熱操作を停止させた後、燃料および水の供給量を低下させ、つぎに水の供給を停止し、最後に炭化水素成分の供給を停止する。燃料が常温で液状であれば、もう一度加熱部を作動させ、最後に燃料の供給を停止させる。
特に、燃料および水の供給量を低下させる時、燃料より水の供給量を少なくすることにより、装置内における水の結露を防止できる。また、加熱部の加熱操作を停止させた後、装置内が減圧状態となったとき、少なくとも体積減少量に相当する量の燃料を供給することにより、装置内への空気の混入の割合を低減させることができる。さらに、燃料の供給停止時に前記開閉弁を閉状態とすることにより、装置冷却時の外部空気吸引を最小限にし、触媒劣化を防止することができる。
According to the present invention, it is possible to solve the problem at the time of stopping the conventional hydrogen generator, avoid air mixing into the apparatus at the time of cooling the apparatus stopped, and prevent oxidation of the steam reforming catalyst or the shift catalyst. Can do. In addition, it is possible to provide a hydrogen generator that can be used for routine startup and stop by not using an inert gas.
As described above, the present invention stops the heating operation of the heating unit when the hydrogen supply of the hydrogen generator is stopped, then reduces the supply amount of fuel and water, then stops the supply of water, and finally Stop supplying hydrocarbon components. If the fuel is liquid at room temperature, the heating unit is activated once more, and finally the supply of fuel is stopped.
In particular, when the fuel and water supply amounts are reduced, the water supply amount in the apparatus can be prevented from dew condensation by reducing the water supply amount from the fuel. Also, after the heating operation of the heating unit is stopped, when the inside of the device is in a depressurized state, the amount of air mixed into the device is reduced by supplying at least an amount of fuel corresponding to the volume reduction amount. Can be made. Further, by closing the on-off valve when the fuel supply is stopped, external air suction during the cooling of the apparatus can be minimized and catalyst deterioration can be prevented.

本発明の一実施の形態における水素発生装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the hydrogen generator in one embodiment of this invention. 本発明の他の実施の形態における水素発生装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the hydrogen generator in other embodiment of this invention.

以下、本発明の実施の形態について、理解の容易のため、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings for easy understanding.

第1の実施の形態
図1は、本発明の第1の実施の形態による水素発生装置の概略縦断面図である。図1において、水蒸気改質反応の原料となる例えば炭化水素などの燃料および水は、原料供給部1から供給される。また、改質部2においては、水蒸気改質反応に用いられる改質触媒2bが触媒部2aに収容されている。ここでは、改質触媒2bとして、白金属系貴金属から調製した触媒を用いた。
また、3は、改質触媒温度測定部3は改質触媒2aの温度を検出し、例えば火炎バーナーなどの加熱手段を有する加熱部4により改質部2を加熱する。変成部6は変成触媒6aを収容し、変成触媒6aの温度を検出する変成触媒温度測定部部7が設けられている。ここでは、変成触媒6aとして、少なくとも銅を成分として含む触媒を用いた。
原料供給路5においては、原料供給部1から改質部2に原料を供給し、ガス供給路8を経て改質部2から改質後のガスを変成部6に供給する。また、水素排気経路9から変成部6において生じた水素を排気する。
First Embodiment FIG. 1 is a schematic longitudinal sectional view of a hydrogen generator according to a first embodiment of the present invention. In FIG. 1, for example, a fuel such as hydrocarbons and water, which are raw materials for the steam reforming reaction, are supplied from a raw material supply unit 1. In the reforming unit 2, the reforming catalyst 2b used for the steam reforming reaction is accommodated in the catalyst unit 2a. Here, a catalyst prepared from a white metal noble metal was used as the reforming catalyst 2b.
In 3, the reforming catalyst temperature measuring unit 3 detects the temperature of the reforming catalyst 2 a, and heats the reforming unit 2 by a heating unit 4 having heating means such as a flame burner. The shift unit 6 accommodates the shift catalyst 6a and is provided with a shift catalyst temperature measuring unit 7 that detects the temperature of the shift catalyst 6a. Here, a catalyst containing at least copper as a component was used as the shift catalyst 6a.
In the raw material supply path 5, the raw material is supplied from the raw material supply section 1 to the reforming section 2, and the reformed gas is supplied from the reforming section 2 to the shift section 6 through the gas supply path 8. Further, the hydrogen generated in the shift unit 6 is exhausted from the hydrogen exhaust path 9.

本発明の方法を適用することのできるこのような水素発生装置において、定常的に水素供給をする場合の動作について説明する。
まず、加熱部4を作動させ改質部2の改質触媒2aを加熱する。原料である燃料および水を原料供給部1より原料供給経路5を通して加熱中の改質触媒2aに供給し、水蒸気改質反応を進行させる。改質後のガスは、ガス供給経路8を通して変成部6に通気し、水素排気経路9より一酸化炭素を変成させることにより発生する水素を外部に供給する。
そして、装置を停止する時には、加熱部4による加熱動作を停止するとともに(工程(a))、燃料および水の供給量を徐々に低下させ(工程(b))、つぎに水の供給を停止し(工程(c))、最後に燃料の供給を停止させる(工程(d))。
In such a hydrogen generator to which the method of the present invention can be applied, the operation in the case of supplying hydrogen constantly will be described.
First, the heating unit 4 is operated to heat the reforming catalyst 2a of the reforming unit 2. The raw material fuel and water are supplied from the raw material supply unit 1 to the reforming catalyst 2a being heated through the raw material supply path 5, and the steam reforming reaction proceeds. The reformed gas passes through the gas supply path 8 to the shift section 6 and supplies hydrogen generated by converting carbon monoxide from the hydrogen exhaust path 9 to the outside.
And when stopping an apparatus, while stopping the heating operation by the heating part 4 (process (a)), the supply amount of fuel and water is gradually reduced (process (b)), and then the supply of water is stopped. (Step (c)), and finally the supply of fuel is stopped (Step (d)).

水素供給を停止する場合、はじめに、工程(a)として加熱部4による加熱動作を停止する。これは、加熱停止と同時に原料供給を停止した場合、改質触媒および変成触媒等装置内が高温のため、装置冷却に伴い装置内が減圧状態となり、外部より空気が混入する可能性が高くなるためである。   When stopping the hydrogen supply, first, the heating operation by the heating unit 4 is stopped as a step (a). This is because when the supply of raw materials is stopped at the same time as the heating is stopped, the inside of the apparatus such as the reforming catalyst and the shift catalyst is at a high temperature. Because.

そして、加熱動作停止直後、改質部および変成部はそれぞれの触媒反応に対応した温度であり、外気温と比較して800deg以上の高温状態である。この状態で、燃料および水の供給を停止した場合、水素発生装置の温度の低下に伴い、装置内減圧状態となる。装置内を完全な密閉状態に保った場合は問題は生じないが、そうでない場合は外部から装置内に空気が侵入してくる。
したがって、工程(a)後も燃料および、水を供給し、水蒸気改質反応時の吸熱反応により改質部の温度を低下させるものである。
Immediately after the heating operation is stopped, the reforming section and the shift section are at temperatures corresponding to respective catalytic reactions, and are in a high temperature state of 800 deg or more as compared with the outside air temperature. When the supply of fuel and water is stopped in this state, the pressure in the apparatus is reduced as the temperature of the hydrogen generator decreases. If the inside of the apparatus is kept in a completely sealed state, there is no problem. Otherwise, air enters the apparatus from the outside.
Therefore, fuel and water are supplied even after the step (a), and the temperature of the reforming section is lowered by an endothermic reaction during the steam reforming reaction.

このとき、燃料および水の供給量は一定でも構わないが、改質部の触媒温度の低下に伴い、水蒸気改質反応性が低下してくるため、燃料および水の供給量を改質部の触媒温度の低下に伴って減少させるのが好ましい。   At this time, the supply amount of fuel and water may be constant, but the steam reforming reactivity decreases as the catalyst temperature of the reforming unit decreases, so the supply amount of fuel and water is reduced in the reforming unit. It is preferable to decrease as the catalyst temperature decreases.

つぎに、装置内が充分に冷却された後に水の供給を停止した場合、装置内に水がたまるおそれがあるため、燃料の供給を停止する前に水の供給を停止する。   Next, when the supply of water is stopped after the inside of the apparatus is sufficiently cooled, water may be collected in the apparatus. Therefore, the supply of water is stopped before the supply of fuel is stopped.

最後に、装置内、特に改質部および変成部を充分に冷却し、冷却された装置内が減圧することにより生じる空気の侵入が最小限となるように、装置内を燃料でパージした後、燃料の供給を停止する。特に、燃料が常温で気体である場合、燃料のパージ効果が大きくなる。
これにより、本発明の水素発生装置の運転方法は、装置内への空気混入を最小限に抑制し、触媒の酸化、特に変成触媒の酸化を防止することができる。
Finally, after sufficiently purging the inside of the apparatus, particularly the reforming section and the transformation section, and purging the inside of the apparatus with fuel so that the intrusion of air caused by the decompression of the inside of the cooled apparatus is minimized, Stop supplying fuel. In particular, when the fuel is a gas at normal temperature, the fuel purge effect is increased.
As a result, the operation method of the hydrogen generator of the present invention can suppress the mixing of air into the apparatus to the minimum and prevent oxidation of the catalyst, particularly oxidation of the shift catalyst.

工程(b)では、燃料および水の原料供給を急激に低下させた場合、水蒸気改質反応による吸熱量が低下し改質触媒温度が高温となり、改質触媒が耐熱使用温度上回る可能性もあるため、改質触媒の耐熱温度を考慮しながら低下させるのが好ましい。   In the step (b), when the supply of fuel and water is drastically reduced, the endothermic amount due to the steam reforming reaction is reduced, the reforming catalyst temperature becomes high, and the reforming catalyst may exceed the heat-resistant use temperature. Therefore, it is preferable to lower the temperature while taking into consideration the heat resistant temperature of the reforming catalyst.

そして、工程(c)では、改質触媒がある程度の高温時に水の供給を停止させた場合、改質触媒上で炭素析出が生じる可能性がある。また、十分に装置内が冷却された後に水の供給を停止させることは、装置内に水がたまる原因となる。そこで、改質温度が、改質触媒上に炭素を析出しない温度にまで低下してから、工程(c)を行うのが好ましい。   In step (c), when the supply of water is stopped when the reforming catalyst is at a certain high temperature, carbon deposition may occur on the reforming catalyst. Further, stopping the supply of water after the inside of the apparatus is sufficiently cooled causes water to accumulate in the apparatus. Therefore, it is preferable to perform the step (c) after the reforming temperature is lowered to a temperature at which carbon is not deposited on the reforming catalyst.

最後に、工程(d)では、燃料の供給を停止させる。空気酸化により変成触媒の活性の低下が著しく進行しない温度、または装置内が充分に冷却され、変成触媒活性が著しく低下しない程度の空気侵入量となる温度まで、充分に冷却してから、工程(d)を行うのが好ましい。以上の操作により、装置冷却による空気吸引確率を低下させ、吸引空気による触媒酸化を防止するものである。   Finally, in step (d), the fuel supply is stopped. The process (( It is preferred to carry out d). By the above operation, the air suction probability due to the apparatus cooling is reduced, and catalytic oxidation by the suction air is prevented.

ここで、本実施の形態における、水素発生装置の一動作例を示す。
原料である燃料として炭化水素成分のメタンガスを用いた。メタンガス1モルに対して、2モル以上の水を付加して、改質部2の改質触媒2aに供給し、水蒸気改質反応を進行させた。
この時の改質触媒温度は約700℃の状態に加熱部4の加熱動作により維持した。改質部後のガスは、銅系変成触媒を充填した変成部6に供給し、改質部後ガス中の一酸化炭素を水とのシフト反応により低下させた。この時の変成触媒は約300℃以下の温度で使用した。この装置において、加熱停止とともに原料供給を停止した場合、温度冷却に伴い大気開放部分と比較して改質触媒部分では約1/4、変成触媒部分では約1/2の減圧状態となる。装置が密閉状態でない限り、減圧依存分は外部空気を吸引する結果となる。
Here, an operation example of the hydrogen generator in this embodiment will be described.
The hydrocarbon component methane gas was used as the raw material fuel. 2 mol or more of water was added to 1 mol of methane gas, and the water was supplied to the reforming catalyst 2a of the reforming unit 2 to advance the steam reforming reaction.
The reforming catalyst temperature at this time was maintained at about 700 ° C. by the heating operation of the heating unit 4. The gas after the reforming section was supplied to the shift section 6 filled with a copper-based shift catalyst, and the carbon monoxide in the gas after the reforming section was lowered by a shift reaction with water. The shift catalyst at this time was used at a temperature of about 300 ° C. or lower. In this apparatus, when the supply of raw materials is stopped together with the stop of heating, the reduced pressure state is reduced to about 1/4 in the reforming catalyst portion and about 1/2 in the shift catalyst portion as compared to the open air portion with temperature cooling. Unless the device is hermetically sealed, the reduced pressure dependence results in the suction of external air.

そこで、まず、工程(a)として加熱部を停止させ、改質触媒温度が水蒸気改質反応を進行させることのできる温度を維持している期間は、原料を供給し改質触媒温度を低下させた。ついで、工程(b)において、改質触媒温度は改質触媒温度測定部で検出したが、この温度が改質触媒が耐熱温度をこす危険性のない温度である650℃になったことを確認した後、メタンガスおよび水の供給量を低下させた。   Therefore, first, as the step (a), the heating unit is stopped, and during the period in which the reforming catalyst temperature is maintained at a temperature at which the steam reforming reaction can proceed, the raw material is supplied to lower the reforming catalyst temperature. It was. Next, in step (b), the reforming catalyst temperature was detected by the reforming catalyst temperature measuring section, and it was confirmed that this temperature reached 650 ° C., which is a temperature at which the reforming catalyst does not rub the heat-resistant temperature. After that, the supply of methane gas and water was reduced.

つぎに、工程(c)として、改質触媒の温度が、改質触媒上でメタンガス分解反応が進行し炭素析出しなくなる400℃以下となったことを確認して、水の供給を停止した。   Next, as a step (c), it was confirmed that the temperature of the reforming catalyst became 400 ° C. or less at which the methane gas decomposition reaction proceeded on the reforming catalyst and no carbon deposition occurred, and the water supply was stopped.

そして、最後に、工程(d)として、変成触媒温度測定部における検出温度が、混入空気の触媒酸化による触媒活性低下を防止できる温度である50℃となったことを確認した後、燃料の供給を停止した。このとき、改質触媒部の温度も充分に低下していることを確認する必要がある。
なお、前述の改質触媒の温度および変成触媒の温度は、触媒の種類および特性、供給する燃料の種類などに応じて決定すればよい。
Finally, as a step (d), after confirming that the detected temperature in the shift catalyst temperature measurement unit has reached 50 ° C., which is a temperature that can prevent the catalytic activity from being reduced due to catalytic oxidation of the mixed air, fuel supply Stopped. At this time, it is necessary to confirm that the temperature of the reforming catalyst portion is also sufficiently lowered.
The temperature of the reforming catalyst and the temperature of the shift catalyst may be determined according to the type and characteristics of the catalyst, the type of fuel to be supplied, and the like.

上記操作を行うことで、繰り返し装置の起動停止をさせた場合でも変わらない水蒸気発生特性が得られることは確認した。なお、本発明に示す方法を実行せず装置を停止させた場合、外部空気吸引により触媒が酸化され、次回装置起動時には、シフト反応が充分に維持できず、水素発生装置の出口における一酸化炭素濃度は、本発明による装置停止事例と比較してかなり高い値となることも確認した。   It was confirmed that by performing the above operation, water vapor generation characteristics that remain unchanged even when the apparatus is repeatedly started and stopped are obtained. When the apparatus is stopped without executing the method of the present invention, the catalyst is oxidized by external air suction, and the shift reaction cannot be sufficiently maintained when the apparatus is started next time, and carbon monoxide at the outlet of the hydrogen generator It has also been confirmed that the concentration is considerably higher than that in the case of stopping the apparatus according to the present invention.

なお、上記一動作例では、改質触媒温度および変成触媒温度の検出結果をもとに燃料および水の供給量を低下させ、つぎに水の供給を停止し、最後に燃料の供給を停止する動作を行ったが、供給する燃料の種類および供給量ならびに装置の運転条件が既知であれば、工程(b)、(c)および(d)を行う期間を時間で設定しても構わない。
また、改質触媒として、白金属系貴金属触媒を用いたが、ニッケルを主成分とするニッケル系触媒を用いることも可能である。ニッケル系触媒も銅系触媒同様還元状態で高い触媒活性が得られるため、本発明における方法により水素発生装置を停止させることで、その酸化も防止できる。
In the above operation example, the supply amount of fuel and water is reduced based on the detection results of the reforming catalyst temperature and the shift catalyst temperature, then the water supply is stopped, and finally the fuel supply is stopped. Although the operation has been performed, if the type and supply amount of fuel to be supplied and the operating conditions of the apparatus are known, the period for performing steps (b), (c) and (d) may be set in terms of time.
Further, although the white metal-based noble metal catalyst is used as the reforming catalyst, it is also possible to use a nickel-based catalyst whose main component is nickel. Since the nickel-based catalyst can obtain a high catalytic activity in the reduced state like the copper-based catalyst, the oxidation can be prevented by stopping the hydrogen generator by the method of the present invention.

さらに、燃料として炭化水素であるメタンガスを用いたが、他の炭化水素成分あるいはその混合物でも同様な結果が得られることはいうまでもない。
また、炭化水素および水の供給を低下させる場合、同様の比率で低下させる必要はない。水の供給割合をより少なくなるように低下させることで水蒸気分圧を低下させ、装置内に水が結露する危険性を少なくさせることができる。また、加熱部として火炎バーナーを用いたが、改質触媒を加熱できる構成であれば、どのような加熱形態でも構わない。
Furthermore, although methane gas, which is a hydrocarbon, was used as the fuel, it goes without saying that similar results can be obtained with other hydrocarbon components or mixtures thereof.
Moreover, when reducing the supply of hydrocarbons and water, it is not necessary to reduce them at the same ratio. By reducing the water supply ratio to be smaller, the water vapor partial pressure can be reduced, and the risk of water condensation in the apparatus can be reduced. Moreover, although the flame burner was used as a heating part, as long as it is the structure which can heat a reforming catalyst, what kind of heating form may be sufficient.

第2の実施の形態
つぎに、図2を用いて本発明の第2の実施の形態についてを説明する。本実施の形態における水素発生装置は、図1に示すものとほぼ同一構成であり、以下に相違点のみを説明する。相違点は水素排気経路9出口に、10の開閉弁を設けた点である。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG. The hydrogen generator in this embodiment has almost the same configuration as that shown in FIG. 1, and only the differences will be described below. The difference is that 10 on-off valves are provided at the outlet of the hydrogen exhaust passage 9.

第2の実施の形態では、実施の形態1とほぼ同様の動作を行い水素を発生する。相違点は、燃料の供給を停止する工程(d)において、炭化水素停止時に、開閉弁を閉じ装置内を密閉空間とすることである。このように開閉弁を設け、燃料供給停止時に、開閉弁を閉じ装置内を密閉空間とすることで、燃料パージ後の装置内に、拡散による空気混入を防止できる。
特に、長期間装置停止時に、拡散空気による触媒酸化の程度を大幅に低減させるのができる。本発明における装置構成において、装置停止後開閉弁10の開状態、および閉状態で長期間放置させた一動作を行った。その結果、閉状態で放置させた変成触媒の酸化状態を分析した結果、開状態のものと比較して明らかに酸化の進行を防止できることを確認した。
In the second embodiment, hydrogen is generated by performing substantially the same operation as in the first embodiment. The difference is that, in the step (d) of stopping the supply of fuel, when the hydrocarbon is stopped, the on-off valve is closed to make the inside of the device a sealed space. By providing the on-off valve in this manner and closing the on-off valve when the fuel supply is stopped, the inside of the apparatus is made a sealed space, so that air mixing due to diffusion can be prevented in the apparatus after the fuel purge.
In particular, when the apparatus is stopped for a long period of time, the degree of catalytic oxidation by the diffusion air can be greatly reduced. In the apparatus configuration according to the present invention, one operation was performed in which the on-off valve 10 was left open for a long period of time after the apparatus was stopped. As a result, the oxidation state of the shift catalyst left in the closed state was analyzed. As a result, it was confirmed that the progress of oxidation could be clearly prevented as compared with the open state.

第3の実施の形態
つぎに、本発明の第3の実施の形態について説明する。ここで用いる水素発生装置の構成は図1に示す第1の実施の形態と同様の構成である。
本実施の形態では、実施の形態1とほぼ同様の動作を行い装置を停止する。相違点は、工程(d)において、工程(a)において停止させた加熱部を再び作動させた後、燃料の供給を停止する点である。これは、原料となる燃料として、常温で液体となる燃料を用いる場合に好ましい態様である。
Third Embodiment Next, a third embodiment of the present invention will be described. The configuration of the hydrogen generator used here is the same as that of the first embodiment shown in FIG.
In the present embodiment, the apparatus is stopped by performing substantially the same operation as in the first embodiment. The difference is that in step (d), the fuel supply is stopped after the heating unit stopped in step (a) is actuated again. This is a preferred embodiment when a fuel that is liquid at room temperature is used as the raw material fuel.

本実施例における、水素発生装置停止方法における一動作例を示す。原料の燃料として、常温で液体となるナフサを用いた。原料を停止させるまでは第1の実施の形態の一動作例に示す動作と同様である。
常温で液体であるナフサを用いたとき、装置内が常温近くまで冷却した後原料の供給を停止させた場合、装置内に大量の炭化水素成分が液体として残留する可能性が高くなる。このことは、触媒酸化防止に加え、装置の安全確保の観点からも好ましくない。
そこで、工程(d)において燃料の供給を停止する前に、工程(e)を行うのが好ましい。前記加熱部を作動させてナフサを改質触媒上で熱分解してガス成分として装置内をパージさせた後、加熱部を停止し、前記燃料の供給を停止する。これにより、装置内にナフサが液体として残留する量を大幅に低減させることができる。
An example of operation in the method for stopping the hydrogen generator in this embodiment will be shown. Naphtha, which is liquid at room temperature, was used as a raw material fuel. The operation is the same as that shown in the operation example of the first embodiment until the raw material is stopped.
When naphtha that is liquid at room temperature is used, if the supply of the raw material is stopped after the inside of the apparatus is cooled to near room temperature, there is a high possibility that a large amount of hydrocarbon components remain in the apparatus as a liquid. This is not preferable from the viewpoint of ensuring the safety of the apparatus in addition to preventing the catalyst oxidation.
Therefore, it is preferable to perform the step (e) before stopping the fuel supply in the step (d). After operating the heating unit to thermally decompose naphtha on the reforming catalyst to purge the inside of the apparatus as a gas component, the heating unit is stopped and the fuel supply is stopped. As a result, the amount of naphtha remaining as a liquid in the apparatus can be greatly reduced.

なお、この場合も前記実施の形態1と同様に、工程(b)において、燃料および水の原料供給を急激に低下させた場合、水蒸気改質反応による吸熱量が低下し改質触媒温度が高温となり、改質触媒が耐熱使用温度上回る可能性もあるため、改質触媒の耐熱温度を考慮しながら低下させるのが好ましい。
そして、工程(c)では、改質触媒がある程度の高温時に水の供給を停止させた場合、改質触媒上で炭素析出が生じる可能性がある。また、十分に装置内が冷却された後に水の供給を停止させることは、装置内に水がたまる原因となる。そこで、改質温度が、改質触媒上に炭素を析出しない温度にまで低下してから、工程(c)を行うのが好ましい。
Also in this case, as in the first embodiment, in the step (b), when the feed of the fuel and water is drastically reduced, the endothermic amount due to the steam reforming reaction is reduced and the reforming catalyst temperature is high. Therefore, since the reforming catalyst may exceed the heat-resistant use temperature, it is preferable to lower it while considering the heat-resistant temperature of the reforming catalyst.
In step (c), when the supply of water is stopped when the reforming catalyst is at a certain high temperature, carbon deposition may occur on the reforming catalyst. Further, stopping the supply of water after the inside of the apparatus is sufficiently cooled causes water to accumulate in the apparatus. Therefore, it is preferable to perform the step (c) after the reforming temperature is lowered to a temperature at which carbon is not deposited on the reforming catalyst.

また、改質触媒上で燃料分解時に炭素析出が生じる可能性はあるが、改質触媒として白金属系貴金属触媒を用いることで、炭素析出による触媒活性低下最小限に抑制できる。また、第2の実施の形態のように開閉弁を設け、燃料供給停止時に、開閉弁を閉じ装置内を密閉空間とすることで、炭化水素パージ後の装置内に、拡散による空気混入を防止できる。   In addition, carbon deposition may occur on the reforming catalyst during fuel decomposition, but by using a white metal noble metal catalyst as the reforming catalyst, it is possible to suppress a decrease in catalyst activity due to carbon deposition to a minimum. Also, as in the second embodiment, an on-off valve is provided, and when the fuel supply is stopped, the on-off valve is closed to make the inside of the device a sealed space, thereby preventing air from being mixed into the device after hydrocarbon purge. it can.

本発明では燃料を水蒸気改質し水素を供給するために、改質部および変成部を設けたが、燃料としてメタノールなどのアルコールを水蒸気改質させる場合は、改質部のみの構成でよい。多くのアルコール成分も常温で液体となることから、加熱部停止後、改質部が所定温度となった後、原料停止前にもう一度加熱部を作動させる本実施の形態に示す停止方法を行うことで、装置内にアルコールが液状で存在する可能性を低くすることができる。   In the present invention, the reforming section and the shift section are provided in order to steam reform the fuel and supply hydrogen. However, when alcohol such as methanol is steam reformed as the fuel, only the reforming section may be used. Since many alcohol components also become liquid at room temperature, after stopping the heating unit, after the reforming unit reaches a predetermined temperature, the stopping method shown in this embodiment is performed again before the raw material is stopped. Thus, the possibility that alcohol exists in liquid form in the apparatus can be reduced.

第4の実施の形態
つぎに本発明での第4の実施形態を示す。装置構成は実施の形態1に示す図1と同様の構成である。
本実施の形態では、加熱部の加熱操作を停止させた後、水素発生装置内が温度低下により減圧状態となったとき、少なくとも体積減少量に対応する量の炭化水素成分を水素発生装置に供給する。この動作により装置停止時の冷却過程における空気混入確率を低下させることができる。
Fourth Embodiment Next, a fourth embodiment of the present invention will be described. The apparatus configuration is the same as that shown in FIG.
In the present embodiment, after the heating operation of the heating unit is stopped, when the inside of the hydrogen generator is in a reduced pressure state due to a temperature drop, at least an amount of hydrocarbon components corresponding to the volume reduction amount is supplied to the hydrogen generator. To do. This operation can reduce the probability of air mixing during the cooling process when the apparatus is stopped.

改質触媒高温時に燃料のみを供給した場合、燃料が分解し触媒上で炭素析出する。しかし、改質触媒として白金属系貴金属触媒を用いた場合、炭素析出による触媒活性低下は小さくなる。また、装置定常動作時に、水を余剰量供給することで析出した炭素成分と反応させ、炭素成分を減少させることができる。したがって、加熱部の加熱操作を停止させた後水素発生装置内が温度低下による減圧状態となったとき、少なくとも体積減少量に対応する量の燃料を水素発生装置に供給する。この動作により装置停止時の冷却過程において空気が混入する割合を低下させることができる。   When only the fuel is supplied at a high temperature of the reforming catalyst, the fuel is decomposed and carbon is deposited on the catalyst. However, when a white metal-based noble metal catalyst is used as the reforming catalyst, the decrease in catalytic activity due to carbon deposition is reduced. Moreover, it can be made to react with the deposited carbon component by supplying an excessive amount of water during the steady operation of the apparatus, and the carbon component can be reduced. Therefore, after the heating operation of the heating unit is stopped, when the inside of the hydrogen generator is in a reduced pressure state due to a temperature drop, at least an amount of fuel corresponding to the volume reduction is supplied to the hydrogen generator. By this operation, it is possible to reduce the proportion of air mixed in the cooling process when the apparatus is stopped.

つぎに、本実施例における水素発生装置の運転方法における一動作例を示す。なお、改質触媒として、白金属系貴金属触媒を用いた。加熱部の加熱操作を停止させた後水素発生装置内が温度低下による減圧状態となったとき、少なくとも体積減少量に対応する量の燃料を水素発生装置に供給する動作を、繰り返し100回以上行った結果、初期の水素発生装置の特性とほぼ同じ特性が得られることを確認した。   Next, an operation example in the operation method of the hydrogen generator in the present embodiment will be shown. Note that a white metal-based noble metal catalyst was used as the reforming catalyst. After the heating operation of the heating section is stopped, when the inside of the hydrogen generator is in a reduced pressure state due to a temperature drop, the operation of supplying at least an amount of fuel corresponding to the volume reduction amount to the hydrogen generator is repeated 100 times or more. As a result, it was confirmed that almost the same characteristics as those of the initial hydrogen generator were obtained.

1 原料供給部
2 改質部
2a 触媒部
2b 改質触媒
3 改質触媒温度測定部
4 加熱部
5 原料供給経路
6 変成部
6a 変成触媒
7 変成触媒温度測定部
8 ガス供給経路
9 水素排気経路
10 開閉弁
DESCRIPTION OF SYMBOLS 1 Raw material supply part 2 Reforming part 2a Catalyst part 2b Reforming catalyst 3 Reforming catalyst temperature measurement part 4 Heating part 5 Raw material supply path 6 Transformation part 6a Transformation catalyst 7 Transformation catalyst temperature measurement part 8 Gas supply path 9 Hydrogen exhaust path 10 On-off valve

Claims (7)

燃料を水蒸気改質するための改質触媒を有する改質部、前記改質部に前記燃料および水を供給する原料供給部、前記改質触媒用の加熱部、ならびに少なくとも銅を含む触媒を有する変成部を具備し、前記改質部において発生するガスを前記変成部に供給する水素発生装置において、
(a)前記加熱部の加熱操作を停止させる工程、(b)前記燃料および水の供給量を徐々に低下させる工程、(c)水の供給を停止する工程、および(d)前記燃料の供給を停止する工程を、工程(a)、(b)、(c)および(d)の順に含む水素発生装置の運転方法。
A reforming unit having a reforming catalyst for steam reforming fuel, a raw material supply unit for supplying the fuel and water to the reforming unit, a heating unit for the reforming catalyst, and a catalyst containing at least copper In a hydrogen generator comprising a shift section and supplying gas generated in the reforming section to the shift section,
(A) a step of stopping the heating operation of the heating unit, (b) a step of gradually decreasing the supply amount of the fuel and water, (c) a step of stopping the supply of water, and (d) supply of the fuel The operation method of the hydrogen generator which includes the process of stopping this in order of process (a), (b), (c) and (d).
工程(b)における改質温度が改質触媒の耐熱温度を超えない温度である請求項1記載の水素発生装置の運転方法。   The method for operating a hydrogen generator according to claim 1, wherein the reforming temperature in step (b) is a temperature not exceeding the heat resistance temperature of the reforming catalyst. 工程(c)における改質温度が改質触媒上に炭素を析出しない温度である請求項1記載の水素発生装置の運転方法。   The method for operating a hydrogen generator according to claim 1, wherein the reforming temperature in step (c) is a temperature at which carbon is not deposited on the reforming catalyst. 工程(d)における変成触媒温度が空気酸化により変成触媒の触媒活性を低下させない温度である請求項1記載の水素発生装置の運転方法。   The method for operating a hydrogen generator according to claim 1, wherein the shift catalyst temperature in step (d) is a temperature at which the catalytic activity of the shift catalyst is not reduced by air oxidation. 燃料が常温で液体である場合、工程(c)と工程(d)の間に、再度前記加熱部を作動・停止させる工程(e)を含む請求項1記載の水素発生装置の運転方法。   The operation method of the hydrogen generator of Claim 1 including the process (e) of starting and stopping the said heating part again between a process (c) and a process (d) when a fuel is liquid at normal temperature. 工程(b)において前記燃料および水の供給量を低下させるとき、燃料の供給量に比べて水の供給量をより少なくする請求項1〜5のいずれかに記載の水素発生装置の停止方法。   The method for stopping a hydrogen generator according to any one of claims 1 to 5, wherein when the supply amounts of fuel and water are reduced in step (b), the supply amount of water is made smaller than the supply amount of fuel. 変成部出口に開閉弁を設け、工程(d)において前記開閉弁を閉状態とする請求項1〜6のいずれかに記載の水素発生装置の運転方法。   The operation method of the hydrogen generator according to any one of claims 1 to 6, wherein an opening / closing valve is provided at the outlet of the shift section, and the opening / closing valve is closed in the step (d).
JP2009141001A 2009-06-12 2009-06-12 Operation method of hydrogen generator Expired - Fee Related JP5289199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141001A JP5289199B2 (en) 2009-06-12 2009-06-12 Operation method of hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141001A JP5289199B2 (en) 2009-06-12 2009-06-12 Operation method of hydrogen generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09809299A Division JP4380836B2 (en) 1998-09-09 1999-04-05 Operation method of hydrogen generator

Publications (2)

Publication Number Publication Date
JP2009196893A true JP2009196893A (en) 2009-09-03
JP5289199B2 JP5289199B2 (en) 2013-09-11

Family

ID=41140827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141001A Expired - Fee Related JP5289199B2 (en) 2009-06-12 2009-06-12 Operation method of hydrogen generator

Country Status (1)

Country Link
JP (1) JP5289199B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168867A (en) * 1984-09-12 1986-04-09 Toshiba Corp Fuel cell plant controller
JPS6270201A (en) * 1985-09-20 1987-03-31 Nippon Shokubai Kagaku Kogyo Co Ltd Production of hydrogen gas
JPS62184774A (en) * 1986-02-07 1987-08-13 Hitachi Ltd Starting method for fuel cell power generating system
JPH02132766A (en) * 1988-11-11 1990-05-22 Yamaha Motor Co Ltd Stopping method for fuel cell system
JPH03257762A (en) * 1990-03-07 1991-11-18 Osaka Gas Co Ltd Fuel cell power generating system, and its nitrogen purge method and temperature raising method
JPH0451469A (en) * 1990-06-18 1992-02-19 Mitsubishi Electric Corp Operating method for fuel cell power generation system
JPH0471169A (en) * 1990-07-10 1992-03-05 Fuji Electric Co Ltd Start-up of fuel cell power generation system
JPH07226221A (en) * 1994-02-14 1995-08-22 Toshiba Corp Purging device of liquid fuel type fuel cell
JPH09237635A (en) * 1996-02-28 1997-09-09 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPH1064571A (en) * 1996-08-21 1998-03-06 Toshiba Corp Fuel cell power generating system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168867A (en) * 1984-09-12 1986-04-09 Toshiba Corp Fuel cell plant controller
JPS6270201A (en) * 1985-09-20 1987-03-31 Nippon Shokubai Kagaku Kogyo Co Ltd Production of hydrogen gas
JPS62184774A (en) * 1986-02-07 1987-08-13 Hitachi Ltd Starting method for fuel cell power generating system
JPH02132766A (en) * 1988-11-11 1990-05-22 Yamaha Motor Co Ltd Stopping method for fuel cell system
JPH03257762A (en) * 1990-03-07 1991-11-18 Osaka Gas Co Ltd Fuel cell power generating system, and its nitrogen purge method and temperature raising method
JPH0451469A (en) * 1990-06-18 1992-02-19 Mitsubishi Electric Corp Operating method for fuel cell power generation system
JPH0471169A (en) * 1990-07-10 1992-03-05 Fuji Electric Co Ltd Start-up of fuel cell power generation system
JPH07226221A (en) * 1994-02-14 1995-08-22 Toshiba Corp Purging device of liquid fuel type fuel cell
JPH09237635A (en) * 1996-02-28 1997-09-09 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPH1064571A (en) * 1996-08-21 1998-03-06 Toshiba Corp Fuel cell power generating system

Also Published As

Publication number Publication date
JP5289199B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5063584B2 (en) FUEL CELL DEVICE FOR FUEL CELL DEVICE AND METHOD OF OPERATING FUEL PROCESSING DEVICE FOR FUEL CELL DEVICE
JP5721310B2 (en) Oxygen removal
WO2007111124A1 (en) Method of shutdown of reforming apparatus
WO2020246197A1 (en) Hydrogen generator, fuel cell system using same, and operation method thereof
JP5340657B2 (en) Hydrogen generator, fuel cell system, and operation method of hydrogen generator
WO2004090077A2 (en) Autothermal reforming in a fuel processor utilizing non-pyrophoric shift catalyst
JP2003306309A (en) Method for operating hydrogen-containing gas-producing apparatus
JP2021505515A (en) Methods and equipment for reforming hydrocarbon gases
DK2686270T3 (en) Procedure for commissioning autothermal reforming reactors
JP4380836B2 (en) Operation method of hydrogen generator
JP2021017389A (en) Reforming system
JP2006008458A (en) Hydrogen production apparatus and fuel cell system
JP5731202B2 (en) Syngas production method and apparatus
JP2002319416A (en) Heat and power combination plant and its operating method
JP2002008701A (en) Method for starting and stopping solid polymer fuel cell
JP2007210835A (en) Apparatus for producing hydrogen and fuel battery system
JP5289199B2 (en) Operation method of hydrogen generator
JP7223925B2 (en) Hydrogen generator and its operation method
JP4847759B2 (en) Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus
JP4490717B2 (en) Reformer
JP2008074657A (en) Method for starting self-heating reforming reaction at a low temperature
JP2006306665A (en) Operation method of hydrogen manufacturing device
JP3916485B2 (en) Pretreatment method for hydrogen-containing gas generator
JP7108832B2 (en) Hydrogen generator, fuel cell system using the same, and method of operating the same
JP2006286472A (en) Fuel treating device, fuel cell generator, and its starting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

LAPS Cancellation because of no payment of annual fees