JPS6270201A - Production of hydrogen gas - Google Patents

Production of hydrogen gas

Info

Publication number
JPS6270201A
JPS6270201A JP20660785A JP20660785A JPS6270201A JP S6270201 A JPS6270201 A JP S6270201A JP 20660785 A JP20660785 A JP 20660785A JP 20660785 A JP20660785 A JP 20660785A JP S6270201 A JPS6270201 A JP S6270201A
Authority
JP
Japan
Prior art keywords
reaction
methanol
gas
catalyst
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20660785A
Other languages
Japanese (ja)
Inventor
Yukio Aoki
幸雄 青木
Yasushi Fujii
靖士 藤井
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP20660785A priority Critical patent/JPS6270201A/en
Publication of JPS6270201A publication Critical patent/JPS6270201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To effectively carry out reaction at a low temperature and efficiently produce hydrogen gas for a long period, by the coexistence of oxygen in a reaction gas on catalytically reacting methanol with steam in the presence of a catalyst. CONSTITUTION:A raw material gas containing methanol, steam and further coexisting oxygen is passed through a catalyst layer in the presence of a previously reduced catalyst, e.g. copper-zinc-aluminum oxide, and catalytically reacted to produce hydrogen gas. The reaction conditions are about 150-400 deg.C reaction temperature, about 1-5mol, based on 1mol methanol, water and about 0.3-5.0hr<-1> liquid hourly space velocity (LHSV) of liquid methanol. The reaction gas composition is about 70-99.5mol% water-methanol mixed gas, about 0.5-3vol% oxygen and the remainder of an inert gas, e.g. nitrogen or helium. Thereby, the hydrogen gas can be effectively produced at a low temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、触媒を用いてメタノールと水蒸気とを接触反
応させ、水素ガスを有効に製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for effectively producing hydrogen gas by causing a catalytic reaction between methanol and steam using a catalyst.

従来技術 水素は多くの分野で使用されており、たとえばアンモニ
ア合成、石油精製、水素化脱硫など化学工業用のみなら
ず、冶金工業用、半導体工業用にも、その用途は広がっ
てきている。
BACKGROUND OF THE INVENTION Hydrogen is used in many fields, and its uses are expanding not only to the chemical industry, such as ammonia synthesis, petroleum refining, and hydrodesulfurization, but also to the metallurgical industry and the semiconductor industry.

また、最近では燃料電池などの新しいエネルギー源とし
ても注目されており、水素の需要はますます増大する傾
向にある。
Recently, hydrogen has also been attracting attention as a new energy source such as fuel cells, and the demand for hydrogen is increasing.

水素ガスの製造法として、従来広く行なわれてきた方法
の一つに、ナフサあるいは液化天然ガス(LNG)など
の炭化水素類を水蒸気改質し、得られた水素、−酸化炭
素、二酸化炭素を含む混合ガスから、−)W化炭素およ
び二酸化炭素を除去して、水素ガスを製造する方法があ
る。
One of the conventionally widely used methods for producing hydrogen gas is to steam reform hydrocarbons such as naphtha or liquefied natural gas (LNG), and convert the resulting hydrogen, carbon oxide, and carbon dioxide into There is a method of producing hydrogen gas by removing -) tungsten carbon and carbon dioxide from a mixed gas containing hydrogen.

この方法は、 1)反応温度が900℃前後と非常に高い。This method is 1) The reaction temperature is extremely high, around 900°C.

2)炭化水素類の価格が不安定であり、またその供給も
不安定である。
2) The price of hydrocarbons is unstable, and the supply thereof is also unstable.

といった理由のため、中規模あるいは小規模の水素ガス
製造には適さないと言われてきた。
For these reasons, it has been said that it is not suitable for medium-scale or small-scale hydrogen gas production.

それに対し、メタノールを水蒸気改質して水素ガスを製
造する方法は、炭化水素類の水蒸気改質に比べ反応温度
が300℃前後と低く、運転が容易であるために、メタ
ノールが低価格で安定して供給されるならば、水素製造
方法としてその重要性が高まると考えられる。
On the other hand, the method of steam reforming methanol to produce hydrogen gas has a lower reaction temperature of around 300°C than steam reforming of hydrocarbons, and is easy to operate, resulting in stable methanol at a low price. If it is supplied as a hydrogen production method, it is thought that its importance as a hydrogen production method will increase.

発明が解決しようとする問題点 メタノール水蒸気改質反応用触媒に要求される条件とし
て 1)低温で活性が高いこと。
Problems to be Solved by the Invention The conditions required for a catalyst for methanol steam reforming reaction are: 1) high activity at low temperatures;

2)活性劣化が小さいこと。2) Activity deterioration is small.

が挙げられる。can be mentioned.

この反応は吸熱反応であるために反応が進行するにつれ
てガス温度および触媒層の温度が低下し、反応速度が小
さくなり、触媒mを増しても所定の転化率が得られない
といった問題点を有している。
Since this reaction is an endothermic reaction, as the reaction progresses, the gas temperature and the temperature of the catalyst layer decrease, the reaction rate decreases, and there are problems in that even if the amount of catalyst m is increased, the desired conversion rate cannot be obtained. are doing.

従って、これを解決するためには、第1に外部からの熱
供給を効率よく行なうと同時に触媒の低温活性性能を上
げることが必要である。
Therefore, in order to solve this problem, it is first necessary to efficiently supply heat from the outside and at the same time to improve the low-temperature activation performance of the catalyst.

次の問題は活性劣化である。連続反応を行なっていくと
徐々に活性が低下する傾向にある。この原因については
メタノール中の不純物、例えばエタノールが反応中に触
媒上に蓄積するためであると言われており、本発明者ら
もこの事実を確認している。従って、活性劣化を抑える
には、不純物の蓄積の抑制、あるいは触媒表面のクリー
ニングが必要と考えられる。
The next problem is activation deterioration. When the reaction is continued, the activity tends to gradually decrease. The cause of this is said to be that impurities in methanol, such as ethanol, accumulate on the catalyst during the reaction, and the present inventors have also confirmed this fact. Therefore, in order to suppress activity deterioration, it is considered necessary to suppress the accumulation of impurities or to clean the catalyst surface.

発明の構成 本発明は、触媒を用いてメタノールと水蒸気から水素を
製造する場合において、低温においても有効に触媒を作
用させる方法を提供しようとするものである。
Structure of the Invention The present invention aims to provide a method for producing hydrogen from methanol and steam using a catalyst, in which the catalyst can be used effectively even at low temperatures.

すなわち、本発明はメタノールおよび水蒸気の反応ガス
中に酸素を共存させることにより、低温においても反応
を有効に行なわせ、長期に亘り効率よく水素ガスを製造
する方法に関するものである。
That is, the present invention relates to a method for efficiently producing hydrogen gas over a long period of time by allowing oxygen to coexist in the reaction gases of methanol and water vapor, thereby allowing the reaction to occur effectively even at low temperatures.

予め還元した触媒の存在下、酸素を共存させた原料ガス
を触媒層に流すと、酸素を共存させない場合に比べ触媒
層の温度が上昇し、メタノール転化活性は大幅に向上す
る。この現象は、1)還元された触媒の一部再酸化 2)一部メタノールの完全酸化 3)触媒表面に蓄積した一部不純物の完全酸化等いくつ
かの要因によると考えられるが、いずれにせよ反応ガス
温度が低い場合でも、この方法に従うことによって実質
的にメタノールの転化率を上げることができ、水素を有
効に製造することが出来る。
When a raw material gas containing oxygen is passed through the catalyst layer in the presence of a previously reduced catalyst, the temperature of the catalyst layer increases compared to the case where oxygen is not present, and the methanol conversion activity is significantly improved. This phenomenon is thought to be due to several factors, including 1) partial reoxidation of the reduced catalyst, 2) complete oxidation of some methanol, and 3) complete oxidation of some impurities accumulated on the catalyst surface, but in any case, Even when the reaction gas temperature is low, by following this method, the conversion rate of methanol can be substantially increased and hydrogen can be effectively produced.

一方、活性劣化の問題に関しては、酸素が共存した場合
は共存しない場合に比較して活性劣゛化が小さくなる傾
向にあり、触媒表面に蓄積した不純物のクリーニングが
一部生じているものと推察される。
On the other hand, regarding the problem of activity deterioration, when oxygen coexists, the activity deterioration tends to be smaller than when oxygen does not coexist, and it is inferred that some cleaning of impurities accumulated on the catalyst surface occurs. be done.

一般に、−m化炭素シフト反応用触媒の如く還元雰囲気
で用いる触媒の場合には、触媒の酸化−還元のくり返し
により、触媒がもろくなり粉化を起こすことが触媒劣化
あるいは反応器閉塞の大きな原因の1つであると言われ
ている。しかし、本反応の場合、反応ガス中にたとえ酸
素を共存せしめてもそのような触媒の粉化は認められず
、後記の実施例で示したように300時間の連続反応を
行なっても反応の前後における触媒の圧壊強度の変化は
見られなかった。すなわち、本発明はメタノールの水蒸
気改質反応において酸素を共存せしめることによって長
期間にわたって高活性で水素ガスを製造しうろことを見
い出し完成されたものである。
In general, in the case of catalysts used in a reducing atmosphere, such as catalysts for -m carbon shift reactions, repeated oxidation and reduction of the catalyst causes the catalyst to become brittle and powder, which is a major cause of catalyst deterioration or reactor blockage. It is said to be one of the However, in the case of this reaction, such pulverization of the catalyst was not observed even if oxygen was allowed to coexist in the reaction gas, and as shown in the example below, the reaction did not proceed even after 300 hours of continuous reaction. No change in the crushing strength of the catalyst before and after was observed. That is, the present invention was completed by discovering that hydrogen gas can be produced with high activity over a long period of time by allowing oxygen to coexist in the steam reforming reaction of methanol.

反応ガスに共存せしめる酸素の邑は反応ガス中の0.5
〜3容量%、好ましくは1〜2容惜%である。
The amount of oxygen coexisting in the reaction gas is 0.5% in the reaction gas.
~3% by volume, preferably 1-2% by volume.

用いる触媒としては、すでにメタノールの水蒸気改質反
応用触媒として公知である、銅−亜鉛−アルミニウム酸
化物触媒、銅−亜鉛−アルミニウムークロム酸化物触媒
等が好適である。
Suitable catalysts to be used include copper-zinc-aluminum oxide catalysts and copper-zinc-aluminum-chromium oxide catalysts, which are already known as catalysts for steam reforming reactions of methanol.

触媒の調製法としては、従来の共沈法、含浸法、粉体混
合法等いずれの方法も採用することができる。
As a method for preparing the catalyst, any conventional method such as a coprecipitation method, an impregnation method, a powder mixing method, etc. can be employed.

なお、本発明による水素ガス製造方法の反応条件として
は、反応温度150〜400℃、メタノールに対する水
の比率は、メタノール1モルに対して水1〜5モル、液
体メタノールの空間速度(LH8V)は0.3〜5.0
 h r−1Fある。
The reaction conditions for the hydrogen gas production method according to the present invention include a reaction temperature of 150 to 400°C, a ratio of water to methanol of 1 to 5 mol of water to 1 mol of methanol, and a space velocity (LH8V) of liquid methanol of 0.3-5.0
There is a h r-1F.

反応ガス組成は特定されないが水−メタノール混合ガス
が70〜99.5容量%、好ましくは85〜99.5容
量%、酸素0.5〜3容量%、好ましくは1〜2容量%
、その他残部は窒素、ヘリウムなどの不活性ガスよりな
る混合ガスを原料とする。
Although the reaction gas composition is not specified, the water-methanol mixed gas is 70 to 99.5% by volume, preferably 85 to 99.5% by volume, and oxygen is 0.5 to 3% by volume, preferably 1 to 2% by volume.
, and the remainder is made from a mixed gas consisting of inert gases such as nitrogen and helium.

なお、本発明方法においては反応中、反応ガス組成中酸
素濃度を上記の範囲で自由に変えることができる。すな
わち、間欠的に酸素濃度を2〜3容山%に上昇させ定常
時は0.5〜1.5容量%の範囲に維持して反応を遂行
しても好結果がえられる。
In the method of the present invention, the oxygen concentration in the reaction gas composition can be freely changed within the above range during the reaction. That is, good results can be obtained even if the reaction is carried out by increasing the oxygen concentration intermittently to 2 to 3 volume % and maintaining it in the range of 0.5 to 1.5 volume % during steady state.

実施例 1 硝酸銅、硝酸亜鉛、硝酸アルミニウムの混合水溶液を7
0℃に加温し、炭酸ナトリウム水溶液(70℃)中に撹
拌下、滴下し、銅、亜鉛、アルミニウムの水酸化物を中
和、共沈せしめた。得られたスラリー中のナトリウムを
充分に洗浄、除去し、フィルタープレスで脱水した後、
乾燥、焼成して触媒組成物を得た。触媒組成物は、銅、
亜鉛、アルミニウムの酸化物から成り、その組成はff
1ffi比”i”cuo : zno :Aノ203=
5:3:2:であった。
Example 1 A mixed aqueous solution of copper nitrate, zinc nitrate, and aluminum nitrate was
The mixture was heated to 0°C and added dropwise to an aqueous sodium carbonate solution (70°C) with stirring to neutralize and coprecipitate the hydroxides of copper, zinc, and aluminum. After thoroughly washing and removing the sodium in the obtained slurry and dehydrating it with a filter press,
A catalyst composition was obtained by drying and firing. The catalyst composition includes copper,
It consists of oxides of zinc and aluminum, and its composition is ff.
1ffi ratio "i" cuo: zno:Aノ203=
The ratio was 5:3:2.

この触媒組成物を粉砕後、3#Iφに成型して触媒とし
た後メタノールの水蒸気改質反応を行なった。反応条件
は以下の通りである。
This catalyst composition was pulverized and molded into a 3#Iφ to form a catalyst, and then subjected to a steam reforming reaction of methanol. The reaction conditions are as follows.

ガス入口温度   250℃ 反応ガス組成;水/メタノール 90容量%窒素   
   8容量% 酸素      2容量% LH8V (メタノール換算)  1.0hr−1水/
メタノール  1.5(モル1モル)ここにおいて、L
l−1sVとは液体メタノール流量(cc/ hr)を
触媒容fil (CC)で除したものである。
Gas inlet temperature 250℃ Reaction gas composition: Water/methanol 90% nitrogen by volume
8% by volume Oxygen 2% by volume LH8V (methanol equivalent) 1.0hr-1 water/
Methanol 1.5 (mol 1 mol) where L
l-1sV is the liquid methanol flow rate (cc/hr) divided by the catalyst volume fil (CC).

なお、触媒は反応前に水素−窒素混合ガスを用いて25
0℃で予備還元を行なった。反応開始後1時間経過した
時点でサンプリングし、活性値を求めたところ96%で
あった。
In addition, the catalyst was prepared using a hydrogen-nitrogen mixed gas before the reaction.
Pre-reduction was carried out at 0°C. Samples were taken one hour after the start of the reaction, and the activity value was determined to be 96%.

実施例 2 反応ガス中の窒素および酸素をそれぞれ9容量%および
1容量%としたほかは実施例1におけると同じ条件にて
反応を行なったところ、メタノールの転化率は93%で
あった。
Example 2 A reaction was carried out under the same conditions as in Example 1 except that nitrogen and oxygen in the reaction gas were 9% by volume and 1% by volume, respectively, and the conversion rate of methanol was 93%.

比較例 実施例1において、W累を共存させない場合、すなわち
窒素10容量%とした場合には、メタノール転化率は8
6%であった。
In Comparative Example Example 1, when W accumulation is not allowed to coexist, that is, when nitrogen is 10% by volume, the methanol conversion rate is 8.
It was 6%.

実施例 3 実施例1と同じ条件にて300時間の連続反応を行ない
、その活性劣化傾向を調べた。その結果は以下に示す通
りである。なお、比較のために酸素を含まない場合につ
いても同様の連続反応を行なったのでその結果もあわせ
て以下の表に示す。
Example 3 A continuous reaction was carried out for 300 hours under the same conditions as in Example 1, and the tendency of activity deterioration was investigated. The results are shown below. For comparison, the same continuous reaction was carried out without oxygen, and the results are also shown in the table below.

Claims (1)

【特許請求の範囲】[Claims] (1)触媒の存在下、メタノールと水蒸気とを接触反応
させ水素を製造するに際して、反応ガス中に酸素を共存
させることを特徴とする水素ガスの製造方法。
(1) A method for producing hydrogen gas, which comprises allowing oxygen to coexist in the reaction gas when producing hydrogen through a catalytic reaction between methanol and steam in the presence of a catalyst.
JP20660785A 1985-09-20 1985-09-20 Production of hydrogen gas Pending JPS6270201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20660785A JPS6270201A (en) 1985-09-20 1985-09-20 Production of hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20660785A JPS6270201A (en) 1985-09-20 1985-09-20 Production of hydrogen gas

Publications (1)

Publication Number Publication Date
JPS6270201A true JPS6270201A (en) 1987-03-31

Family

ID=16526188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20660785A Pending JPS6270201A (en) 1985-09-20 1985-09-20 Production of hydrogen gas

Country Status (1)

Country Link
JP (1) JPS6270201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163602A (en) * 1999-12-06 2001-06-19 Mitsubishi Gas Chem Co Inc Method of manufacturing for hydrogen-containing gas
JP2009196893A (en) * 2009-06-12 2009-09-03 Panasonic Corp Method for driving hydrogen generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163602A (en) * 1999-12-06 2001-06-19 Mitsubishi Gas Chem Co Inc Method of manufacturing for hydrogen-containing gas
JP2009196893A (en) * 2009-06-12 2009-09-03 Panasonic Corp Method for driving hydrogen generating device

Similar Documents

Publication Publication Date Title
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
US7871957B2 (en) Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making
CN110876941B (en) Load type iron-tungsten bimetal composite oxide and preparation method and application thereof
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
US4215998A (en) Catalyst and process for production of methane-containing gases
KR20190067146A (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JPS6270201A (en) Production of hydrogen gas
JP2000342968A (en) Catalyst and producing method
JPH04331704A (en) Production of synthetic gas containing both carbon monoxide and hydrogen
JP2002126528A (en) Method for preparing reforming catalyst
JPH08176034A (en) Synthesis of methanol
JPH0371174B2 (en)
JP4328941B2 (en) Method for producing hydrogen-containing gas
JP3276679B2 (en) Steam reforming catalyst and hydrogen production method
BG109348A (en) Method for the processing of natural gas into fuels
JPS6021680B2 (en) Method for producing methane-rich gas
JPH06256001A (en) Production of hydrogen-containing gas
JPS6150640A (en) Catalyst for preparing methane-containing gas
JP2002173303A (en) Method of producing synthetic gas
JPS6236001A (en) Reforming method for methanol
JPS60122038A (en) Catalyst for reforming methanol
JP3773967B2 (en) Method for producing hydrogen-containing gas for fuel cell
WO2001078892A1 (en) Method for preparing catalyst for reforming methanol
JP2004275833A (en) Catalyst for aqueous gas shift reaction, hydrogen production apparatus, and fuel cell system
JP2007237066A (en) Reforming catalyst of hydrocarbon