JP2001163602A - Method of manufacturing for hydrogen-containing gas - Google Patents

Method of manufacturing for hydrogen-containing gas

Info

Publication number
JP2001163602A
JP2001163602A JP34653399A JP34653399A JP2001163602A JP 2001163602 A JP2001163602 A JP 2001163602A JP 34653399 A JP34653399 A JP 34653399A JP 34653399 A JP34653399 A JP 34653399A JP 2001163602 A JP2001163602 A JP 2001163602A
Authority
JP
Japan
Prior art keywords
zinc
catalyst
copper
hydrogen
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34653399A
Other languages
Japanese (ja)
Inventor
Yasushi Hiramatsu
靖史 平松
Mikio Yoneoka
幹男 米岡
Yasuhiro Kushida
泰宏 櫛田
Futoshi Ikoma
太志 生駒
Tetsuya Karita
哲也 刈田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP34653399A priority Critical patent/JP2001163602A/en
Publication of JP2001163602A publication Critical patent/JP2001163602A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a hydrogen-containing gas with a small sized device by providing a catalyst exhibiting high activity in the methanol steam reforming of the self heat supply type reaction. SOLUTION: In manufacturing the hydrogen-containing gas by the reaction of methanol and steam with air, a catalyst obtained by mixing an alumina precursor with a precursor mixture containing copper and zinc is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、メタノールと水蒸気及
び空気を反応させて水素含有ガス製造する方法に関す
る。水素ガスはアンモニア合成、各種有機化合物の水素
化、石油精製、脱硫等の化学工業用或いは半導体や冶金
の雰囲気ガス、ガラス製造等に広く使用されている。ま
た、最近は自動車等の動力源となる燃料電池用の原料と
しても注目され、今後も水素ガス需要の大幅な拡大が期
待されている。
The present invention relates to a method for producing a hydrogen-containing gas by reacting methanol with steam and air. Hydrogen gas is widely used for chemical industry such as ammonia synthesis, hydrogenation of various organic compounds, petroleum refining, desulfurization, etc., atmosphere gas for semiconductors and metallurgy, glass production and the like. In recent years, it has also attracted attention as a raw material for fuel cells as a power source for automobiles and the like, and a significant increase in demand for hydrogen gas is expected in the future.

【0002】[0002]

【従来の技術】水素ガスの製造法としては、例えば、ナ
フサ、天然ガスや石油液化ガス等の炭化水素類の水蒸気
改質法が知られている。この方法は原料の脱硫が必要な
こと、反応温度が800〜1000℃で非常に高いこと
等の欠点を有する。これに対してメタノールを原料とす
る方法は、脱硫が不要で反応温度が低い等の利点が有
り、近年注目され、小規模から大規模までの設備が多数
設置されている。
2. Description of the Related Art As a method for producing hydrogen gas, for example, a steam reforming method for hydrocarbons such as naphtha, natural gas, and petroleum liquefied gas is known. This method has disadvantages such as the necessity of desulfurization of the raw material and the fact that the reaction temperature is very high at 800 to 1000 ° C. On the other hand, the method using methanol as a raw material has advantages such as no need for desulfurization and a low reaction temperature, and has attracted attention in recent years, and many small- to large-scale facilities have been installed.

【0003】メタノール水蒸気改質反応は、(1)式で
示す主反応の他に(2)式の逆シフト反応により少量の
一酸化炭素が副生する。 CH3 OH + H2 O = 3H2 + CO2 + 49.5kJ/mol (1) CO2 + H2 = CO + H2 O+ 41.17kJ/mol (2) (2)で副生する一酸化炭素は高純度水素に精製する際に
除去しにくく、極力少ない方が好ましい。熱力学平衡か
ら、低温程、また水蒸気とメタノールのモル比(以下、
S/C比)が大きい程改質ガス中の一酸化炭素濃度を低
くすることができる。
[0003] In the methanol steam reforming reaction, a small amount of carbon monoxide is by-produced by the reverse shift reaction of formula (2) in addition to the main reaction represented by formula (1). CH 3 OH + H 2 O = 3H 2 + CO 2 + 49.5 kJ / mol (1) CO 2 + H 2 = CO + H 2 O + 41.17 kJ / mol (2) Carbon monoxide by-produced in (2) is It is difficult to remove it when purifying it into high-purity hydrogen, and it is preferable that the amount is as small as possible. From thermodynamic equilibrium, the lower the temperature and the molar ratio of water vapor to methanol (hereinafter,
The larger the (S / C ratio), the lower the concentration of carbon monoxide in the reformed gas.

【0004】(1)式のメタノール水蒸気改質反応の主反
応は吸熱反応であるら外部より熱を供給しなければなら
ず、熱供給設備が必要となり装置が煩雑になる欠点を有
する。これに対し、メタノールと水蒸気と共に空気を導
入してメタノールの一部を酸化し、その熱を利用して
(1)式の水蒸気改質反応を起こさせる自己熱供給型反応
がある。この方法はメタノールの一部を (3)式に示すよ
うに水素と二酸化炭素に酸化し、この熱を利用して(1)
式のメタノールの水蒸気改質反応を行うものである。 CH3 OH + 1/2 O2 = 2H2 + CO2 − 192.3kJ/mol (3) この方法によれば反応開始に必要な温度レベルにまで昇
温する熱以外は、反応が継続されると熱の供給を必要と
しない特徴を有する。
[0004] If the main reaction of the methanol steam reforming reaction of the formula (1) is an endothermic reaction, heat must be supplied from the outside, so that a heat supply facility is required and the apparatus becomes complicated. On the other hand, air is introduced together with methanol and water vapor to oxidize part of the methanol and use the heat to
There is a self-heat supply type reaction that causes the steam reforming reaction of the formula (1). In this method, a part of methanol is oxidized to hydrogen and carbon dioxide as shown in equation (3), and this heat is used (1)
The steam reforming reaction of methanol of the formula is performed. CH 3 OH + 1 / 2O 2 = 2H 2 + CO 2 −192.3 kJ / mol (3) According to this method, the reaction is continued except for the temperature that rises to a temperature level necessary for starting the reaction. It does not require heat supply.

【0005】メタノールの水蒸気改質に使用される触媒
としては、例えば銅、クロム及びマンガンの酸化物を含
有する触媒(特公昭54−11274号)、銅、亜鉛及
びアルミニウムを含有する触媒(特公平7−177
号)、銅、亜鉛及びバナジウムを含有する触媒(特開昭
60−96504号)、銅、亜鉛、アルミニウム及びア
ルカリ土類金属酸化物を含有する触媒(特開平1−11
1445号)、銅、亜鉛、アルミニウム及びトリウムの
各酸化物を含有する触媒(米国特許4,091,086
号)等が提案されている。
As a catalyst used for steam reforming of methanol, for example, a catalyst containing oxides of copper, chromium and manganese (Japanese Patent Publication No. 54-11274) and a catalyst containing copper, zinc and aluminum (Japanese Patent Publication No. 7-177
No. 1), a catalyst containing copper, zinc and vanadium (JP-A-60-96504), a catalyst containing copper, zinc, aluminum and an alkaline earth metal oxide (JP-A No. 1-11)
No. 1445), a catalyst containing copper, zinc, aluminum and thorium oxides (US Pat. No. 4,091,086).
No.) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】自動車等の動力源とな
る燃料電池用に水素を製造する場合には、外部からの熱
の供給を必要としないことから、上記の自己熱供給型反
応が有利である。しかしながら、メタノールと水蒸気及
び空気を反応させて水素含有ガスを製造する自己熱供給
型反応では、メタノールの一部を酸化させるために、反
応が起こっている近傍は水蒸気改質反応と比較してはる
かに高い温度となる。従って、自己熱供給型反応の触媒
には高い耐熱性が求められる。また自動車等の動力源と
なる燃料電池用に水素を製造する場合には、搭載容量等
に制限があるために、改質反応器を小型化することが必
要であり、より活性の高い触媒が求められる。
In the case of producing hydrogen for a fuel cell as a power source of an automobile or the like, since the supply of heat from the outside is not required, the above-mentioned self-heat supply type reaction is advantageous. It is. However, in a self-heating supply reaction in which methanol is reacted with steam and air to produce a hydrogen-containing gas, a portion of the methanol is oxidized, so that the vicinity of the reaction is far greater than in the steam reforming reaction. High temperature. Therefore, high heat resistance is required for the catalyst of the self-heat supply type reaction. In addition, when producing hydrogen for a fuel cell as a power source of an automobile or the like, it is necessary to reduce the size of the reforming reactor due to a limitation in a mounting capacity and the like, and a catalyst having higher activity is required. Desired.

【0007】前述のように、メタノールと水蒸気を原料
とするメタノールの水蒸気改質触媒として種々の触媒が
提案されている。しかしながら、従来知られているメタ
ノールの水蒸気改質触媒では耐熱性や活性が充分でなく
そのまま自己熱供給型反応に使用することができない。
たとえば、銅、亜鉛二成分を含有する触媒は自己熱供給
型反応のメタノール水蒸気改質反応に使用することがで
きるが、この場合は反応熱により触媒成分である銅、亜
鉛のシンタリングが起こり短期間で活性が低下する。耐
熱性を高めるために第三の成分を添加することが試みら
れ、アルミニウム酸化物を添加した銅、亜鉛、アルミニ
ウム系触媒が知られているが、この触媒も自己熱供給型
反応には充分ではない。本発明の目的は、自己熱供給型
反応のメタノール水蒸気改質において高活性を有する触
媒を開発し、小型装置で容易に水素含有ガスを製造する
方法を提供することである。
As described above, various catalysts have been proposed as steam reforming catalysts for methanol using methanol and steam as raw materials. However, the conventionally known steam reforming catalyst for methanol does not have sufficient heat resistance and activity, and cannot be used for the self-heat supply type reaction as it is.
For example, a catalyst containing two components of copper and zinc can be used for a methanol steam reforming reaction of a self-heat supply type reaction. Activity decreases between the two. Attempts have been made to add a third component to increase heat resistance, and copper, zinc, and aluminum-based catalysts to which aluminum oxide has been added are known, but these catalysts are also insufficient for the self-heat supply type reaction. Absent. An object of the present invention is to develop a catalyst having high activity in the steam reforming of methanol by a self-heat supply reaction, and to provide a method for easily producing a hydrogen-containing gas with a small apparatus.

【0008】[0008]

【発明を解決するための手段】本発明者らはメタノール
と水蒸気及び空気を反応させて水素含有ガスを製造する
方法における上記課題について鋭意研究した結果、特定
の方法で調製した酸化銅、酸化亜鉛、アルミニウムから
なる触媒が高活性を有することから、自己熱供給型反応
に好適であることを見い出し本発明に到達した。
The present inventors have conducted intensive studies on the above-mentioned problems in a method for producing a hydrogen-containing gas by reacting methanol, steam and air, and found that copper oxide and zinc oxide prepared by a specific method. Since the catalyst made of aluminum has high activity, it has been found that the catalyst is suitable for a self-heat supply type reaction, and has reached the present invention.

【0009】即ち本発明は、メタノールと水蒸気及び空
気を反応させて水素含有ガスを製造するに際し、銅と亜
鉛を含有する前駆体混合物にアルミナ前駆体を混合して
得た触媒を使用することを特徴とする水素含有ガスの製
造法である。この銅、亜鉛を含有する前駆体混合物は、
ホウ素化合物の共存下で、銅の無機酸塩水溶液とアルカ
リ沈澱剤、および酸化亜鉛と炭酸ガスを用いて調製され
たものであることが好ましい。
That is, the present invention uses a catalyst obtained by mixing an alumina precursor with a precursor mixture containing copper and zinc in producing a hydrogen-containing gas by reacting methanol with steam and air. This is a method for producing a hydrogen-containing gas. This precursor mixture containing copper and zinc is:
It is preferably prepared using an aqueous solution of an inorganic acid salt of copper and an alkaline precipitant, and zinc oxide and carbon dioxide in the presence of a boron compound.

【0010】[0010]

【発明の実施の形態】本発明に使用される触媒の原料の
銅化合物および亜鉛化合物には水溶性塩が用いられ、該
水溶液を沈殿剤で処理して得られた沈殿物を焼成したと
きに酸化物に変化し得る化合物が用いられる。銅化合物
の原料としては、例えば酢酸銅、硫酸銅、硝酸銅等の有
機酸、無機酸の水溶性の塩等が使用できる。亜鉛化合物
の原料としては、例えば酢酸亜鉛、硫酸亜鉛、硝酸亜鉛
等の有機酸、無機酸の水溶性の塩や酸化物等が使用でき
る。なお亜鉛の酸化物を使用させる際には、炭酸ガスを
共存させることが好ましい。アルミニウム化合物の原料
としては、例えば酢酸、硫酸、硝酸等の有機酸、無機酸
の水溶性の塩等が使用できる。ホウ素化合物の原料とし
ては、例えばホウ酸が好適に使用できる。沈殿剤には、
水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、
炭酸カリウム、炭酸水素ナトリウムなどの水溶性アルカ
リ化合物が用いられる。
DETAILED DESCRIPTION OF THE INVENTION Water-soluble salts are used for the copper compound and the zinc compound as the raw materials of the catalyst used in the present invention, and when the precipitate obtained by treating the aqueous solution with a precipitant is calcined. A compound that can be converted to an oxide is used. As a raw material of the copper compound, for example, water-soluble salts of organic acids and inorganic acids such as copper acetate, copper sulfate, and copper nitrate can be used. As a raw material of the zinc compound, for example, water-soluble salts and oxides of organic acids and inorganic acids such as zinc acetate, zinc sulfate and zinc nitrate can be used. When zinc oxide is used, it is preferable that carbon dioxide gas coexist. As a raw material of the aluminum compound, for example, water-soluble salts of organic acids such as acetic acid, sulfuric acid, and nitric acid, and inorganic acids can be used. As a raw material of the boron compound, for example, boric acid can be suitably used. Precipitants include:
Sodium hydroxide, potassium hydroxide, sodium carbonate,
Water-soluble alkali compounds such as potassium carbonate and sodium hydrogen carbonate are used.

【0011】沈澱調製時の金属塩水溶液の濃度は0.2
〜3モル/リットル、好ましくは0.5〜2モル/リッ
トルである。金属塩に対する沈澱剤の量は、化学等量の
1〜2倍、好ましくは1.1〜1.6倍である。また、
沈澱調製時の温度は20〜90℃、好ましくは35〜8
5℃である。本発明による触媒の組成は、銅/亜鉛の原
子比で0.2〜12、好ましくは0.5〜10である。
銅、亜鉛およびアルミニウムの金属としての組成は、銅
30〜80%、亜鉛15〜50%、アルミニウム1〜2
0%、好ましくはそれぞれ40〜70%、20〜40
%、4〜16%である。またホウ素は0.5〜3%であ
る。
The concentration of the aqueous metal salt solution at the time of preparing the precipitate is 0.2
33 mol / l, preferably 0.5-2 mol / l. The amount of the precipitant relative to the metal salt is 1-2 times, preferably 1.1-1.6 times, the chemical equivalent. Also,
The temperature at the time of preparing the precipitate is 20 to 90 ° C, preferably 35 to 8 ° C.
5 ° C. The composition of the catalyst according to the invention is in the atomic ratio copper / zinc between 0.2 and 12, preferably between 0.5 and 10.
The composition of copper, zinc and aluminum as metals is as follows: copper 30-80%, zinc 15-50%, aluminum 1-2.
0%, preferably 40-70%, respectively, 20-40
%, 4 to 16%. Boron is 0.5-3%.

【0012】本発明による触媒の銅、亜鉛を含有する前
駆体混合物スラリーは、共沈殿法で調製されたものが好
ましく、例えば銅及び亜鉛を含む水溶液と炭酸アルカリ
のような沈澱剤で沈澱させる方法、銅の沈澱スラリーに
酸化亜鉛を分散させ炭酸ガスにより炭酸化する方法等の
公知の調製方法で行うことができる。この銅、亜鉛を含
有する前駆体混合物は、触媒活性向上のためにホウ素化
合物の共存下で、銅の無機酸塩水溶液とアルカリ沈澱
剤、および酸化亜鉛と炭酸ガスを用いて調製されたもの
が好ましい。アルミナ前駆体は水に可溶のアルミニウム
塩と塩基性沈殿剤とから調製されたものが好ましく、例
えばアルミニウムを含む水溶液と水酸化アルカリ水溶液
等から調製することができる。ホウ素化合物は銅及び亜
鉛を含む水溶液、アルミニウムを含む水溶液に添加する
ことができる。本発明における触媒は、このようにして
調製された銅と亜鉛を含有する前駆体混合物スラリーと
アルミナ前駆体スラリーを混合して得られた混合スラリ
ーから製造される。
The slurry of the precursor mixture containing copper and zinc of the catalyst according to the present invention is preferably prepared by a co-precipitation method, for example, a method of precipitating with an aqueous solution containing copper and zinc and a precipitant such as alkali carbonate. A known preparation method such as a method in which zinc oxide is dispersed in a copper precipitation slurry and carbonation is performed with carbon dioxide gas. The precursor mixture containing copper and zinc was prepared using an aqueous solution of an inorganic acid salt of copper and an alkali precipitant, and zinc oxide and carbon dioxide in the presence of a boron compound to improve the catalytic activity. preferable. The alumina precursor is preferably prepared from an aluminum salt soluble in water and a basic precipitant. For example, it can be prepared from an aqueous solution containing aluminum and an aqueous alkali hydroxide solution. The boron compound can be added to an aqueous solution containing copper and zinc or an aqueous solution containing aluminum. The catalyst in the present invention is produced from a mixed slurry obtained by mixing the thus prepared precursor mixture slurry containing copper and zinc and an alumina precursor slurry.

【0013】本発明における触媒は、銅と亜鉛を含有す
る前駆体混合物とアルミナ前駆体を混合することにより
調製する。この調製方法により触媒成分が緊密に混合さ
れ優れた触媒性能を与える。銅と亜鉛を含有する前駆体
混合物とアルミナ前駆体を混合する方法としては、水溶
性の銅、亜鉛、アルミニウム塩の混合溶液と沈澱剤とか
ら同時に沈澱を調製する方法や、銅と亜鉛の沈澱をアル
ミナ前駆体の共存下で行う方法等がある。しかし、これ
らの方法では触媒成分の緊密な混合ができなく触媒性能
は低いものとなる。このようにして得られた混合スラリ
ーは通常純水などで洗浄する。原料に硫酸塩を使用した
場合には希薄アルカリ水溶液等で洗浄することが好まし
い。
The catalyst of the present invention is prepared by mixing a precursor mixture containing copper and zinc with an alumina precursor. By this preparation method, the catalyst components are intimately mixed to give excellent catalytic performance. As a method of mixing a precursor mixture containing copper and zinc and an alumina precursor, a method of simultaneously preparing a precipitate from a mixed solution of a water-soluble copper, zinc and aluminum salt and a precipitant, a method of preparing a precipitate of copper and zinc, In the presence of an alumina precursor. However, these methods do not allow intimate mixing of the catalyst components, resulting in poor catalytic performance. The mixed slurry thus obtained is usually washed with pure water or the like. When a sulfate is used as a raw material, it is preferable to wash with a diluted alkaline aqueous solution or the like.

【0014】以上の方法により調製して得られた洗浄後
の混合スラリーは、そのまま乾燥し、或いは乾燥・焼成
し、破砕して大きさを揃えて、或いは成型して使用され
る。また得られたスラリーに必要に応じてアルミナゾル
のようなバインダーを添加して、担体や担体構造物に担
持することができる。担持後、乾燥してそのまま、ある
いは焼成後使用することができる。また、洗浄後の混合
スラリーの乾燥品、或いは乾燥、焼成したものを粉砕
し、水に懸濁させ、必要に応じてアルミナゾルのような
バインダーを添加して、担体及び担体構造物に担持して
も使用することができる。この場合、担持後乾燥してそ
のまま、あるいは焼成後使用することができる。乾燥温
度は50〜150℃で、焼成は空気中180〜500
℃、好ましくは200〜450℃で行われる。
The washed mixed slurry prepared by the above method is dried as it is, or dried and calcined, crushed to uniform size, or used after shaping. If necessary, a binder such as alumina sol may be added to the obtained slurry to be supported on a carrier or a carrier structure. After loading, it can be used as it is after drying or after firing. Further, a dried product of the mixed slurry after washing, or a dried and calcined product is pulverized, suspended in water, and added with a binder such as alumina sol as necessary, and supported on a carrier and a carrier structure. Can also be used. In this case, it can be used after being supported and dried, or after firing. The drying temperature is 50-150 ° C, and the firing is 180-500 in air.
C., preferably at 200-450.degree.

【0015】メタノールと水蒸気及び空気を反応させる
自己熱供給型反応では、水蒸気改質の場合と同様に、例
えば水素、一酸化炭素含有ガスによって活性化処理を行
ってもよいし、活性化処理することなく反応に供するこ
ともできる。メタノールと水蒸気及び空気を反応させる
際の水蒸気/メタノール比(S/C)は1.0〜10.
0、好ましくは1.0〜5.0、空気/メタノール比は
0.3〜5.0、好ましくは0.5〜3.0であり、燃
焼反応による発熱とメタノール改質反応による吸熱がバ
ランスするような条件が選定される。反応温度は150
〜600℃、好ましくは200〜500℃で、圧力は常
圧〜0.5MPsである。単位触媒体積当たりの液空間
速度(LHSV)は、0.1〜50、好ましくは0.5
〜40(1/h)である。本発明による触媒は、メタノ
ールと水蒸気及び空気を反応させる自己熱供給型反応に
おいて耐熱性が高く、また高い活性が得られることか
ら、小型装置で容易に水素含有ガスを製造することがで
きる。
In the self-heat supply type reaction in which methanol reacts with steam and air, an activation treatment may be performed using, for example, a gas containing hydrogen or carbon monoxide, or an activation treatment may be performed, as in the case of steam reforming. It can also be used for the reaction without. The steam / methanol ratio (S / C) when reacting methanol with steam and air is 1.0 to 10.
0, preferably 1.0 to 5.0, and the air / methanol ratio is 0.3 to 5.0, preferably 0.5 to 3.0. The exothermicity of the combustion reaction and the endothermicity of the methanol reforming reaction are balanced. Is selected. Reaction temperature is 150
600600 ° C., preferably 200-500 ° C., and the pressure is normal pressure〜0.5 MPs. The liquid hourly space velocity (LHSV) per unit catalyst volume is 0.1-50, preferably 0.5
4040 (1 / h). The catalyst according to the present invention has high heat resistance and high activity in a self-heat supply reaction in which methanol reacts with steam and air, so that a hydrogen-containing gas can be easily produced with a small apparatus.

【0016】[0016]

【実施例】以下に実施例、比較例により本発明をさらに
詳しく説明するが、本発明はこれらの実施例により制限
されるものではない。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but the present invention is not limited by these Examples.

【0017】製造例1(触媒調製) 炭酸ナトリウム(無水)177gを1000mlのイオン
交換水とともに5リットルの丸底フラスコに入れ溶解
し、40℃とした。ここに硫酸銅(5水塩)314g、
ホウ酸19.7g及びイオン交換水800mlを溶解し4
0℃に調節した溶液を注加し、続いて酸化亜鉛68.2
gをイオン交換水300mlに分散したスラリーを加え、
直ちに炭酸ガスを6L/hの割合で吹き込んだ。1時間後
80℃に昇温し30分保持した。炭酸ガスは2時間で停
止し、60℃まで冷却した。ここに硫酸アルミニウムの
水溶液(アルミナとして8%)101.3ggを100
mlのイオン交換水溶解した溶液と、水酸化ナトリウム2
1.9gを160mlのイオン交換水に溶解した溶液とか
ら調製したアルミナ前駆体スラリーを加え20分攪拌混
合した。このようにして調製した混合スラリーを洗浄し
た。続いて80℃で乾燥し銅、亜鉛、アルミニウムを主
成分とする銅/亜鉛の原子比が1.5の触媒を得た。こ
の触媒をAとする。
Production Example 1 (Preparation of Catalyst) 177 g of sodium carbonate (anhydrous) was dissolved in a 5 liter round bottom flask together with 1000 ml of ion-exchanged water, and the temperature was adjusted to 40 ° C. Here, 314 g of copper sulfate (pentahydrate),
Dissolve 19.7 g of boric acid and 800 ml of ion-exchanged water and add 4
The solution adjusted to 0 ° C. is poured, followed by zinc oxide 68.2.
g in 300 ml of deionized water,
Immediately, carbon dioxide gas was blown at a rate of 6 L / h. After 1 hour, the temperature was raised to 80 ° C. and maintained for 30 minutes. Carbon dioxide was stopped in 2 hours and cooled to 60 ° C. Here, 101.3 g of an aqueous solution of aluminum sulfate (8% as alumina) was added to 100 parts.
ml of ion-exchanged water and sodium hydroxide 2
An alumina precursor slurry prepared from a solution of 1.9 g in 160 ml of ion-exchanged water was added and mixed with stirring for 20 minutes. The mixed slurry thus prepared was washed. Subsequently, the catalyst was dried at 80 ° C. to obtain a catalyst containing copper, zinc, and aluminum as main components and having an atomic ratio of copper / zinc of 1.5. This catalyst is designated as A.

【0018】製造例2〜5 製造例1と同じ手法で、酸化亜鉛のみ量を変えて銅/亜
鉛の原子比が0.8、1.0、2.0、6.0である
銅、亜鉛、アルミニウムを主成分とする触媒を調製し
た。これらの触媒をB、C、D、Eとする。
Production Examples 2 to 5 Copper and zinc having an atomic ratio of copper / zinc of 0.8, 1.0, 2.0, and 6.0 in the same manner as in Production Example 1 except that the amount of zinc oxide was changed. A catalyst containing aluminum as a main component was prepared. These catalysts are designated B, C, D and E.

【0019】製造比較例1 炭酸ナトリウム(無水)177gを1000mlのイオン
交換水と共に5リットルの丸底フラスコに溶解し、40
℃とした。ここに硫酸銅(5水塩)314gとホウ酸1
9.7gをイオン交換水800mlに溶解し40℃に調節
した溶液を注加し、続いて酸化亜鉛68.2gをイオン
交換水300mlに分散したスラリーを加え、直ちに炭酸
ガスを6L/hの割合で吹き込んだ。1時間後80℃に昇
温し30分保持した。炭酸ガスは2時間で停止した。次
いで60℃まで冷却後洗浄した。このスラリーを80℃
で乾燥し銅と亜鉛を主成分とする銅/亜鉛の原子比が
1.5の触媒を得た。この触媒をFとする。
Production Comparative Example 1 177 g of sodium carbonate (anhydrous) was dissolved in a 5-liter round bottom flask together with 1000 ml of ion-exchanged water.
° C. Here, 314 g of copper sulfate (pentahydrate) and boric acid 1
A solution prepared by dissolving 9.7 g in 800 ml of ion-exchanged water and adjusting the temperature to 40 ° C. was added thereto, and then a slurry in which 68.2 g of zinc oxide was dispersed in 300 ml of ion-exchanged water was added. I blew it. After 1 hour, the temperature was raised to 80 ° C. and maintained for 30 minutes. Carbon dioxide was stopped in 2 hours. Then, the substrate was cooled to 60 ° C. and washed. 80 ℃
To obtain a catalyst containing copper and zinc as main components and having an atomic ratio of copper / zinc of 1.5. This catalyst is designated as F.

【0020】製造例6 製造例1と同様の手法で調製した銅、亜鉛、アルミニウ
ムを主成分とする混合スラリーを洗浄し、80℃で乾燥
した。これを380℃で2時間空気中で焼成、成型し、
銅/亜鉛の原子比が1.3の銅、亜鉛、アルミニウムを
主成分とする触媒を得た。この触媒をGとする。
Production Example 6 A mixed slurry containing copper, zinc and aluminum as main components, prepared in the same manner as in Production Example 1, was washed and dried at 80 ° C. This is fired and molded in air at 380 ° C for 2 hours,
A catalyst containing copper, zinc, and aluminum as the main components and having a copper / zinc atomic ratio of 1.3 was obtained. This catalyst is designated G.

【0021】製造比較例2 製造例1と同様の手法で調製した銅/亜鉛の原子比が
1.3の銅と亜鉛を含有する前駆体混合物を調製した。
洗浄後濾別したケーキにアルミナゾル(日産化学工業製
#200)81gを加え混練した。次いで80℃で乾燥
し、380℃で焼成し銅、亜鉛、アルミニウムを主成分
とする銅/亜鉛の原子比が1.3の触媒を得た。この触
媒をHとする。
Production Comparative Example 2 A precursor mixture containing copper and zinc and having a copper / zinc atomic ratio of 1.3 prepared in the same manner as in Production Example 1 was prepared.
After washing and filtering the cake, 81 g of alumina sol (# 200 manufactured by Nissan Chemical Industries) was added and kneaded. Next, the catalyst was dried at 80 ° C. and calcined at 380 ° C. to obtain a catalyst containing copper, zinc, and aluminum as main components and having an atomic ratio of copper / zinc of 1.3. This catalyst is designated as H.

【0022】実施例1、比較例1(メタノールLHSV
による触媒の評価試験) 流通式反応装置の反応器に20〜30meshに破砕したA
触媒またはF触媒1mlを充填し、S/Cを1.5、触媒
層最高温度250℃、空気とメタノールのモル比0.6
7の条件で、メタノールLHSVを変えて自己熱供給型
反応で触媒の活性を評価した。反応成績は反応器出口の
ガスクロマトグラフで分析した値から求めた。評価結果
を表1に示す。
Example 1, Comparative Example 1 (Methanol LHSV
Evaluation test of catalyst by A) A crushed to 20 to 30 mesh in a reactor of a flow type reactor
1 ml of catalyst or F catalyst is charged, S / C is 1.5, catalyst layer maximum temperature is 250 ° C, molar ratio of air to methanol is 0.6
Under the conditions of 7, the activity of the catalyst was evaluated by a self-heat supply type reaction while changing the methanol LHSV. The reaction results were determined from values analyzed by gas chromatography at the reactor outlet. Table 1 shows the evaluation results.

【0023】 表1 メタノールLHSV(1/h) 10 15 20 触 媒 メタノール反応率(mol%) 実施例1 A 68.1 56.7 47.8 比較例1 F 56.3 44.9 44.2Table 1 Methanol LHSV (1 / h) 10 15 20 Catalyst Methanol reaction rate (mol%) Example 1 A 68.1 56.7 47.8 Comparative Example 1 F 56.3 44.9 44.2

【0024】実施例2、比較例2(メタノールLHSV
による触媒の評価試験) 流通式反応装置の反応器に20〜30meshに破砕したA
触媒またはF触媒1mlを充填し、S/Cが1.5、メタ
ノールLHSVが20(l/h) 、空気とメタノールのモル
比0.67〜0.72の条件で、触媒層温度を変えて自
己熱供給型反応で触媒の活性を評価した。反応成績は反
応器出口のガスクロマトグラフで分析した値から求め
た。評価結果を表2に示す。
Example 2, Comparative Example 2 (Methanol LHSV
Evaluation test of catalyst by A) A crushed to 20 to 30 mesh in a reactor of a flow type reactor
The catalyst layer temperature was changed under the conditions of 1 ml of catalyst or F catalyst, S / C of 1.5, methanol LHSV of 20 (l / h), and a molar ratio of air to methanol of 0.67 to 0.72. The activity of the catalyst was evaluated by a self-heating supply type reaction. The reaction results were determined from values analyzed by gas chromatography at the reactor outlet. Table 2 shows the evaluation results.

【0025】 表2 触媒層最高温度(℃) 250 275 300 触 媒 メタノール反応率(mol%) 実施例2 A 49.7 55.1 70.0 比較例2 F 40.8 52.2 67.9Table 2 Maximum temperature of catalyst layer (° C.) 250 275 300 Catalyst Methanol conversion (mol%) Example 2 A 49.7 55.1 70.0 Comparative Example 2 F 40.8 52.2 67.9

【0026】実施例3〜6(銅/亜鉛の原子比による触
媒の評価試験) 流通式反応装置の反応器に20〜30meshに破砕した亜
鉛/銅原子比が異なるB触媒、C触媒、D触媒、E触媒
1mlを充填し、水とメタノールモル比が2.0、メタノ
ールLHSVが20(l/h) 、空気とメタノールのモル比
が0.67、触媒層最高温度275℃の条件で自己熱供
給型反応で触媒の活性を評価した。反応成績は反応器出
口のガスクロマトグラフで分析した値から求めた。評価
結果を表3に示す。
Examples 3 to 6 (Evaluation test of catalyst by atomic ratio of copper / zinc) B catalyst, C catalyst and D catalyst having different zinc / copper atomic ratios crushed to 20 to 30 mesh in a reactor of a flow-type reactor , E catalyst, 1 ml, water-methanol molar ratio 2.0, methanol LHSV 20 (l / h), air-methanol molar ratio 0.67, maximum temperature of catalyst layer 275 ° C. The activity of the catalyst was evaluated in a feed-type reaction. The reaction results were determined from values analyzed by gas chromatography at the reactor outlet. Table 3 shows the evaluation results.

【0027】 表3 触媒 銅/亜鉛原子比 メタノール反応率(mol%) 実施例3 B 0.8 57.9 実施例4 C 1.0 58.8 実施例5 D 2.0 71.8 実施例6 E 6.0 63.1Table 3 Catalyst Copper / Zinc Atomic Ratio Methanol Reaction Rate (mol%) Example 3 B 0.8 57.9 Example 4 C 1.0 58.8 Example 5 D 2.0 71.8 Example 6E 6.0 63.1

【0028】実施例7、比較例3(メタノールLHSV
による触媒の評価試験) 流通式反応装置の反応器にG触媒またはH触媒を充填
し、水とメタノールモル比が2.0、空気とメタノール
のモル比が0.5〜0.7の条件で、最初触媒層出口温
度を250℃としてメタノールLHSVを変えて自己熱
供給型反応で触媒の活性を評価した。反応成績は反応器
出口のガスクロマトグラフで分析した値から求めた。各
メタノールLHSVに対する触媒銅当たりのメタノール
反応量を表4に示す。
Example 7, Comparative Example 3 (Methanol LHSV
Evaluation test of catalyst) The G catalyst or the H catalyst was charged into a reactor of a flow-through reactor, and the molar ratio of water to methanol was 2.0, and the molar ratio of air to methanol was 0.5 to 0.7. First, the catalyst layer outlet temperature was set to 250 ° C., and the methanol LHSV was changed to evaluate the activity of the catalyst by a self-heat supply type reaction. The reaction results were determined from values analyzed by gas chromatography at the reactor outlet. Table 4 shows the methanol reaction amount per catalytic copper for each methanol LHSV.

【0029】 表4 メタノールLHSV(1/h) 10 15 20 25 触媒 メタノール反応量(mol/h・g-Cu) 実施例7 G 0.600 0.760 0.830 0.860 比較例3 H 0.493 0.663 0.752 0.790Table 4 Methanol LHSV (1 / h) 10 15 20 25 catalyst Methanol reaction amount (mol / h · g-Cu) Example 7 G 0.600 0.760 0.830 0.860 Comparative Example 3 H 0 .493 0.663 0.752 0.790

【0030】[0030]

【発明の効果】以上の実施例からも明らかなように、本
発明に用いられる触媒は自己熱供給型反応のメタノール
水蒸気改質において高活性を有している。従って本発明
により小型の簡単な装置で水素含有ガスを製造すること
ができ、車載用燃料電池等に有利に用いることができ
る。
As is clear from the above examples, the catalyst used in the present invention has high activity in the steam reforming of methanol by the self-heat supply type reaction. Therefore, according to the present invention, a hydrogen-containing gas can be produced by a small and simple device, and can be advantageously used for a vehicle-mounted fuel cell or the like.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生駒 太志 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 (72)発明者 刈田 哲也 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 Fターム(参考) 4G040 EA02 EA06 EA07 EC01 4G069 AA05 AA15 BA01A BA01B BC16A BC16B BC16C BC31A BC31B BC35A BC35B BD03A BD03B BD03C CC25 CC32 FA01 FB09 FB15 FB30 FC03 5H027 BA01  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Taishi Ikoma 182 Niigata-shi Niigata Niigata City Niigata Research Laboratories Niigata Research Laboratories Mitsubishi Gas Chemical Co., Ltd. Address Mitsubishi Gas Chemical Co., Ltd. Niigata Research Laboratory F-term (reference) 4G040 EA02 EA06 EA07 EC01 4G069 AA05 AA15 BA01A BA01B BC16A BC16B BC16C BC31A BC31B BC35A BC35B BD03A BD03B BD03C CC25 CC32 FA01 FB09 5

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】メタノールと水蒸気及び空気を反応させて
水素含有ガスを製造するに際し、銅と亜鉛を含有する前
駆体混合物にアルミナ前駆体を混合して得た触媒を使用
することを特徴とする水素含有ガスの製造法。
In producing hydrogen-containing gas by reacting methanol, steam and air, a catalyst obtained by mixing an alumina precursor with a precursor mixture containing copper and zinc is used. Method for producing hydrogen-containing gas.
【請求項2】銅と亜鉛を含有する前駆体混合物が、ホウ
素化合物の共存下で、銅の無機酸塩水溶液とアルカリ沈
澱剤、および酸化亜鉛と炭酸ガスを用いて調製されたも
のである請求項1記載の水素含有ガスの製造法。
2. A precursor mixture containing copper and zinc, which is prepared using an aqueous solution of an inorganic acid salt of copper and an alkali precipitant, and zinc oxide and carbon dioxide in the presence of a boron compound. Item 2. The method for producing a hydrogen-containing gas according to Item 1.
【請求項3】焼成により酸化物に変化し得る銅と亜鉛を
含有する前駆体混合物にアルミナ前駆体を混合して得た
触媒を使用する請求項1に記載の水素含有ガスの製造
法。
3. The method for producing a hydrogen-containing gas according to claim 1, wherein a catalyst obtained by mixing an alumina precursor with a precursor mixture containing copper and zinc, which can be converted into an oxide by firing, is used.
【請求項4】銅と亜鉛を含有する前駆体混合物が共沈澱
法で調製されたスラリー状混合物である請求項1に記載
の水素含有ガスの製造法。
4. The method for producing a hydrogen-containing gas according to claim 1, wherein the precursor mixture containing copper and zinc is a slurry mixture prepared by a coprecipitation method.
【請求項5】アルミナ前駆体が水に可溶のアルミニウム
塩と塩基性沈澱剤とから調製されたスラリー状ある請求
項1に記載の水素含有ガスの製造法。
5. The method for producing a hydrogen-containing gas according to claim 1, wherein the alumina precursor is a slurry prepared from a water-soluble aluminum salt and a basic precipitant.
JP34653399A 1999-12-06 1999-12-06 Method of manufacturing for hydrogen-containing gas Pending JP2001163602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34653399A JP2001163602A (en) 1999-12-06 1999-12-06 Method of manufacturing for hydrogen-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34653399A JP2001163602A (en) 1999-12-06 1999-12-06 Method of manufacturing for hydrogen-containing gas

Publications (1)

Publication Number Publication Date
JP2001163602A true JP2001163602A (en) 2001-06-19

Family

ID=18384076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34653399A Pending JP2001163602A (en) 1999-12-06 1999-12-06 Method of manufacturing for hydrogen-containing gas

Country Status (1)

Country Link
JP (1) JP2001163602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038957A (en) * 2001-07-30 2003-02-12 Mitsubishi Gas Chem Co Inc Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270201A (en) * 1985-09-20 1987-03-31 Nippon Shokubai Kagaku Kogyo Co Ltd Production of hydrogen gas
JPH06122501A (en) * 1992-10-12 1994-05-06 Mitsubishi Gas Chem Co Inc Method for producing hydrogen and catalyst used therefor
JPH06256001A (en) * 1993-03-02 1994-09-13 Idemitsu Kosan Co Ltd Production of hydrogen-containing gas
JPH08299796A (en) * 1995-05-11 1996-11-19 Mitsubishi Gas Chem Co Inc Production of methanol synthesis catalyst
JPH09286612A (en) * 1996-04-23 1997-11-04 Mitsubishi Paper Mills Ltd Production of alumina hydrate dispersion
JPH10263406A (en) * 1997-03-28 1998-10-06 Sekiyu Sangyo Kasseika Center Fluid catalyst
JPH1119516A (en) * 1997-06-30 1999-01-26 Agency Of Ind Science & Technol Catalyst for synthesizing and reforming methanol
JPH1192102A (en) * 1997-07-23 1999-04-06 Toyota Motor Corp Reforming device of fuel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270201A (en) * 1985-09-20 1987-03-31 Nippon Shokubai Kagaku Kogyo Co Ltd Production of hydrogen gas
JPH06122501A (en) * 1992-10-12 1994-05-06 Mitsubishi Gas Chem Co Inc Method for producing hydrogen and catalyst used therefor
JPH06256001A (en) * 1993-03-02 1994-09-13 Idemitsu Kosan Co Ltd Production of hydrogen-containing gas
JPH08299796A (en) * 1995-05-11 1996-11-19 Mitsubishi Gas Chem Co Inc Production of methanol synthesis catalyst
JPH09286612A (en) * 1996-04-23 1997-11-04 Mitsubishi Paper Mills Ltd Production of alumina hydrate dispersion
JPH10263406A (en) * 1997-03-28 1998-10-06 Sekiyu Sangyo Kasseika Center Fluid catalyst
JPH1119516A (en) * 1997-06-30 1999-01-26 Agency Of Ind Science & Technol Catalyst for synthesizing and reforming methanol
JPH1192102A (en) * 1997-07-23 1999-04-06 Toyota Motor Corp Reforming device of fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003038957A (en) * 2001-07-30 2003-02-12 Mitsubishi Gas Chem Co Inc Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same
JP4724973B2 (en) * 2001-07-30 2011-07-13 三菱瓦斯化学株式会社 Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst

Similar Documents

Publication Publication Date Title
JP5421770B2 (en) Catalyst precursor material and catalyst using the same
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
JPWO2002038268A1 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming method using the same
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
JP2000288394A (en) Reforming catalyst and production of synthetic gas using the catalyst
CN113019383A (en) Nickel/lanthanum oxide catalyst and preparation method and application thereof
US6916458B2 (en) Process for producing hydrogen-containing gas
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP3328845B2 (en) Hydrogen production method and catalyst used for it
EP1312412A2 (en) Process for producing hydrogen-containing gas
US6548034B2 (en) Process for reducing concentration of carbon monoxide in hydrogen-containing gas
JP2001163602A (en) Method of manufacturing for hydrogen-containing gas
JPH0371174B2 (en)
JP4328941B2 (en) Method for producing hydrogen-containing gas
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPS6045537A (en) Production of oxygen-containing organic compound
JP4092538B2 (en) Method for producing hydrogen-containing gas
JP2004121924A (en) Catalyst for steam-reforming dimethyl ether and method of producing hydrogen-containing gas by using the catalyst
JPH0311813B2 (en)
JP2004330106A (en) Catalyst for modifying carbon monoxide and method for modifying carbon monoxide using it
JPS6246482B2 (en)
JPS61234939A (en) Catalyst for producing h2-enriched gas
JP2003160302A (en) Method for producing hydrogen-containing gas
JP4206813B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst
JP2004121925A (en) Catalyst for steam-reforming dimethyl ether and method of producing hydrogen-containing gas by using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100331