BG109348A - Method for the processing of natural gas into fuels - Google Patents

Method for the processing of natural gas into fuels Download PDF

Info

Publication number
BG109348A
BG109348A BG109348A BG10934805A BG109348A BG 109348 A BG109348 A BG 109348A BG 109348 A BG109348 A BG 109348A BG 10934805 A BG10934805 A BG 10934805A BG 109348 A BG109348 A BG 109348A
Authority
BG
Bulgaria
Prior art keywords
catalyst
oxygen
mixture
natural gas
gas
Prior art date
Application number
BG109348A
Other languages
Bulgarian (bg)
Inventor
Original Assignee
АНГЕЛОВ Чавдар
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by АНГЕЛОВ Чавдар filed Critical АНГЕЛОВ Чавдар
Priority to BG109348A priority Critical patent/BG109348A/en
Priority to PCT/BG2006/000005 priority patent/WO2007056835A1/en
Priority to EP06701863A priority patent/EP1954627A1/en
Priority to UAA200600579A priority patent/UA81819C2/en
Publication of BG109348A publication Critical patent/BG109348A/en
Priority to EA200600432A priority patent/EA012595B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The method is applied in the catalytic processing of natural gas for the production of synthetic fuels and other chemical products. The method comprises a phase of the processing of natural gas into a mixture of carbon monoxide and hydrogen (synthesis gas) and phase of catalytic conversion of synthesis gas into motor fuels. The process of preparing the mixture of hydrogen and carbon oxide runs at a temperature ranging from 800 to 900 degrees C and pressure 0.1-1 MPa in the presence of catalyst sorbent saturated in advance with oxygen in result of its processing with an oxygen-containing gas. The catalyst sorbent is based on aluminium oxides and mixed oxides, including nickel, cerium, zirconium and iron, having the following composition, in wt. %: mixed oxide - not more than 20, and aluminium oxide - the remaining part of the composition. The catalyst sorbent is in the form of granules with surfaces from 100 to 200 m2/g. The regeneration of the catalyst sorbent is effected at temperatures from 500 to 600 degrees C in a flow of gases containing 1-5 vol.% oxygen, until its saturation with oxygen, which concludes by the discontinuation of the oxygen absorption by the catalyst.

Description

··»··· ··· ··· * · *· · · · · · · · ·

ОБЛАСТ НА ПРИЛОЖЕНИЕFIELD OF APPLICATION

Методът за преработване на природен газ в горива е приложим за каталитична преработка на природен газ при наличието на катализатор-сорбент до смес от водород и въглероден оксид (синтез газ) - суровина за получаване на синтетични горива и други химически продукти.The method of processing natural gas into fuels is applicable for catalytic processing of natural gas in the presence of a sorbent catalyst to a mixture of hydrogen and carbon monoxide (synthesis gas) - raw material for the production of synthetic fuels and other chemical products.

ПРЕДШЕСТВАЩО СЪСТОЯНИЕ НА ТЕХНИКАТАBACKGROUND OF THE INVENTION

Известно е, че сместа от водород и въглероден оксид (синтез газ) широко се използва при химически процеси, такива като синтез на метанол, висши алкохоли, алдехиди, при получаване на синтетични моторни горива (процес на Фишер-Тропш). За всеки от тези процеси е необходим синтез газ с определено съотношение на водород и въглероден оксид (Н2/СО). За получаване на сместа от водород и въглероден оксид с едно или друго съотношение на Н2/СО се използват реакции на каталитично и термично преобразуване на парафините. (Газохимия в XXI веке проблеми и перспективи, труди Московското семинара по газохимии 2000-2002 г, с. 138-141, М., 2003). Най-широко приложение има паровата конверсия на природен газ (метан), както каталитична, така и некаталитична, при която се образува синтез газ със съотношение Н2/СО > 3, което е подходящо единствено при процесите на синтез на амоняк. Освен това, недостатъци на този процес се явяват високата себестойност на необходимата прегрята пара и образуването на излишни количества въглероден диоксид.It is known that the mixture of hydrogen and carbon monoxide (synthesis gas) is widely used in chemical processes such as methanol synthesis, higher alcohols, aldehydes, in the preparation of synthetic motor fuels (Fischer-Tropsch process). For each of these processes, a synthesis gas with a certain ratio of hydrogen and carbon monoxide (H2 / CO) is required. Catalytic and thermal conversion reactions of paraffins are used to prepare the mixture of hydrogen and carbon monoxide with one or the other H2 / CO ratio. (Gas Chemistry in the 21st Century Problems and Prospects, Proceedings of the Moscow Seminar on Gas Chemistry 2000-2002, pp. 138-141, M., 2003). The most widely used is the steam conversion of natural gas (methane), both catalytic and non-catalytic, in which gas synthesis with H2 / CO> 3 ratio is formed, which is only suitable for ammonia synthesis processes. In addition, the disadvantages of this process are the high cost of the necessary superheated steam and the formation of excess amounts of carbon dioxide.

Условията, при които протича процеса на паровата конверсия са следните:The conditions under which the steam conversion process takes place are the following:

- При каталитична конверсия-1 ~ 850°С, р ~ 1 -4 МРа и катализатор Ni;- Catalytic conversion-1 ~ 850 ° C, p ~ 1 -4 MPa and Ni catalyst;

- При некаталитична конверсия -1 ~ 1000° - 1600°С, р < 0,5 МРа;- At non-catalytic conversion -1 ~ 1000 ° - 1600 ° C, p <0.5 MPa;

СН4+Н2О+2О6 кДж^СО+ЗН2 CH4 + H2O + 2O6 kJ ^ CO + CH 2

При въглеродно киселинната конверсия на метана се получава смес на водород и въглероден оксид в съотношение Н2/СО ~ 1, което се изисква при реакцията за получаване на формалдехид.Carbon dioxide conversion of methane yields a mixture of hydrogen and carbon monoxide in the H2 / CO ~ 1 ratio, which is required in the formaldehyde reaction.

СН4+ СОг+247 кДж2-^2С(НЗН2 • · 4 • · ··· ·*·CH4 + COg + 247 kJ2 - ^ 2C (NH3 2 • · 4 • · ··· · * ·

Условията за протичане на процеса на въглероднокиселинната конверсия са следните: t ~ 750° - 850°С, р ~ 2 МРа, катализатор Ni и съдържащи Ni съединения.The conditions for the process of carbonic acid conversion are as follows: t ~ 750 ° - 850 ° C, p ~ 2 MPa, Ni catalyst and Ni compounds.

ЗСН4+2Н2О+ СО2+659 кДж4—*2СО+8Н2 CH3 + 2H2O + CO 2 +659 kJ4 - * 2CO + 8H 2

Условията за протичане на процеса на парокислородната конверсия са следните: t 900° - 950°С, р ~ 2-4 МРа и катализатор NiThe conditions for the process of steam-oxygen conversion are as follows: t 900 ° - 950 ° C, p ~ 2-4 MPa and Ni catalyst

2СН4+ 1/2О2+ Н2О +169 кДж2—>2СО+5Н2 2CH4 + 1 / 2O 2 + H 2 About +169 kJ2—> 2CO + 5H 2

При парокислородната конверсия се получава синтез газ в съотношение Н2/СО=2,5.Steam oxygen conversion produces a synthesis gas of H2 / CO = 2.5.

Реакциите на паровата, парокислородната и въглероднокиселинната конверсия на метана са ендотермични и са съпроводени от процес на образуване на кокс, поради което изискват голям разход на енергия. Съществени капиталовложения се изискват и за необходимата за получаване на синтез газ апаратура и те съставляват от 30% до 70% от стойността на производствата, такива като производството на метанол и синтетични моторни горива (Oil and GazEurasia р. 85 № 9 2003).The reactions of vapor, vapor, oxygen and carbon dioxide conversion of methane are endothermic and are accompanied by a coke formation process and therefore require high energy consumption. Substantial investment is also required for the gas synthesis equipment required, and they account for between 30% and 70% of production value, such as the production of methanol and synthetic motor fuels (Oil and GazEurasia, p. 85 No. 9, 2003).

Известен е, също така, метод за получаване на синтез газ при съотношение Н2/СО ~ 2 чрез селективно каталитично окисляване на въглеводородите с кислород (S.C.Tsang, J. В. Claridge and M.L.H.Green, recent advances in the conversion of methane to synthesis gas, Catalysis Today, 1995, v. 23, 3-15). За разлика от паровата и въглероднокиселинната конверсия, селективното каталитично окисление на въглеводородите (СКО) протича с поголяма селективност, т.е се получават по-малко странични продукти. Така също процесът е екзотермичен и протича ефективно при малки времеви периоди на контакт, което позволява протичането му в автотермичен режим и позволява намаляване размерите на реактора, а това, от своя страна, намалява както разходите за енергия, така и капиталовите разходи (D.A. Hickman, L.D. Schmitd,Also known is a method of producing synthesis gas at H2 / CO ~ 2 ratio by selective catalytic oxidation of hydrocarbons with oxygen (SCTsang, J. B. Claridge and MLH Green, recent advances in the conversion of methane to synthesis gas , Catalysis Today, 1995, v. 23, 3-15). In contrast to steam and carbonic acid conversion, selective catalytic oxidation of hydrocarbons (CCS) proceeds with greater selectivity, ie less by-products are obtained. Also, the process is exothermic and runs efficiently over small contact periods, allowing it to flow in autothermal mode and reducing the size of the reactor, which in turn reduces both energy and capital costs (DA Hickman, LD Schmitd,

Synthesis gas formation by direct oxidation of mejji^e· in ^Catalytic. SelectiveSynthesis of gas formation by direct oxidation of boundaries ^ e · in ^ Catalytic. Selective

L.D. Schmidt, Comparison of monolith-supported metals for the direct oxidation of methane to syngas. J.Catal, 1994, v. 146, 1-10). Протичането едновременно на екзотермичната реакция на СКО и ендотермичната парова конверсия на природен газ с помощта на един и същ катализатор позволява осъществяването на процес за получаване на смес от водород и въглероден оксид, обогатена с водород в автотермичен режим. (J.W.Jenkins and E.Shutt, The Hot Spot ™ Reactor, Platinum Metals Review, 1989,33 3,118-127).L.D. Schmidt, Comparison of monolith-supported metals for direct oxidation of methane to syngas. J. Catal, 1994, v. 146, 1-10). The flow of both the exothermic reaction of the RMSE and the endothermic steam conversion of natural gas using the same catalyst allows a process to be produced for a mixture of hydrogen and carbon monoxide enriched in autothermal mode. (J.W. Jenkins and E.Shutt, The Hot Spot ™ Reactor, Platinum Metals Review, 1989,33 3,118-127).

Изучаването на процеса на СКО на метана в пилотна установка с блочен катализатор съдържащ Pt-Pd (L.K.Hoshmuth, catalytic partial oxidation of methane over monolith supported catalyst, Appl. Catal., B: Environmental, v.l 1992 89), показва, че при време за контакт ~ 0,02s в челния слой на блока протича пълно окисляване на метана, а в следващите слоеве - парова и въглероднокиселинна конверсия на метана. Поради това, за получаване на максимално количество синтез газ, катализаторът трябва да бъде активен едновременно в тези три реакции. В съответствие с това, за ефективно протичане на бавните реакции на конверсия на метана се изисква катализатор с голяма разгъната повърхност. Едновременно с това, поради големия градиент на температурата по дължината на блока, катализаторът трябва да има висока термична устойчивост.The study of the RMS of methane in a pilot unit with a block catalyst containing Pt-Pd (LKHoshmuth, catalytic partial oxidation of methane over monolith supported catalyst, Appl. Catal., B: Environmental, vl 1992 89) shows that over time for contact ~ 0.02s full oxidation of methane takes place in the front layer of the block, and in the subsequent layers - steam and carbonic acid conversion of methane. Therefore, in order to obtain the maximum amount of synthesis gas, the catalyst must be active simultaneously in these three reactions. Accordingly, a catalyst with a large unfolded surface is required to effectively effect slow methane conversion reactions. At the same time, due to the large temperature gradient along the block, the catalyst must have high thermal stability.

За протичането на процеса на СКО при малки времена за контакт — 10-2 s се използват мрежи от Pt-Rh или блочен носител, съдържащ 10% Rh, което е много скъпо и икономически неизгодно. (Synthesis gas formation by direct oxidation of methane in Catalytic Selective Oxidation, ACS Symposium series, 1993, p. 416-426; P.M. Tomiainen, X. Chu and L.D. Schmidt, Comparison of monolithsupported metals for the direct oxidation of methane to syngas. J.Catal, 1994, v. 146, 1-10).Pt-Rh networks or block media containing 10% Rh are used for the RMS process at low contact times - 10 -2 s, which is very expensive and economically unprofitable. (Synthesis of gas formation by direct oxidation of methane in Catalytic Selective Oxidation, ACS Symposium series, 1993, p. 416-426; PM Tomiainen, X. Chu and LD Schmidt, Comparison of monolithsupported metals for direct oxidation of methane to syngas. J .Catal, 1994, v. 146, 1-10).

Известен е, също така, метод за СКО на метана за получаване на водород и въглероден оксид (US5149464) при температура 650-900°С и обемна скорост 40 000 - 80 000h_1 (0,05-0,09s) при наличието на катализатор, представляващ преходен метал или негов оксид, нанесен на термостйбилрц о*ЙсиД на^^й^от ······* · · * · * · следните елементи (М): Md, В, Al, Ln, Ga, Si, Ti, Zr, ‘Hf й51И’*на перовскитоподобен смесен оксид с обща формула MxM'yOz със структура на пирохлор, където М1 е преходен метал, включително и на елементи от VIII група. Атомното отношение на елементите от VIII група към неблагородните елементи в тези съединения е 1:1 или 3:1, а съдържанието на благородни метали представлява 32,9 - 48% от масата. Конверсията на метана в присъствието на смесени оксиди Pr2Ru2O7, Eu2Ir2O7, La2MgPtO6 при обемна скорост 40 000 h _1 и t =777°С не надвишава 94%, а увеличаването на обемната скорост до 80 000 h _1 води до намаляване на конверсията на метана до 73% и селективност по CO и Н2 съответно до 82% и 90%.Also known is the RMS method of methane for the production of hydrogen and carbon monoxide (US5149464) at a temperature of 650-900 ° C and a volumetric rate of 40,000 - 80,000h _1 (0.05-0.09s) in the presence of a catalyst , which is a transition metal or oxide deposited on a thermo-Stabilizer o * YsD on ^^ f ^ by ······ * · · * · * · the following elements (M): Md, B, Al, Ln, Ga, Si , Ti, Zr, 'Hf J 51 I' * of a perovsk-like mixed oxide of the general formula MxM'yOz with a pyrochlorine structure, where M 1 is a transition metal, including elements of group VIII. The atomic ratio of the elements of group VIII to the base elements in these compounds is 1: 1 or 3: 1, and the content of precious metals is 32.9-48% by weight. Conversion of methane in the presence of mixed oxides Pr2Ru2O7, Eu2Ir2O7, La2MgPtO6 at a volumetric rate of 40,000 h _1 and t = 777 ° C does not exceed 94%, and an increase in volumetric velocity up to 80,000 h _1 results in a decrease in the conversion of methane to 73 % and CO and H2 selectivity up to 82% and 90% respectively.

Най-близък по техническата си същност и достигаем ефект до заявения метод е методът на СКО на въглеводородите за получаване на синтез газ в присъствието на катализатор, в чиято основа са смесени оксиди със структура на перовскити. (RU2204434).The closest in technical nature and achievable effect to the claimed method is the MSF method of hydrocarbons for the production of synthesis gas in the presence of a catalyst based on mixed oxides with a perovskite structure. (RU2204434).

Основен недостатък на всички посочени методи за получаване на синтез газ чрез окисляване на метана с въздух е присъствието на значително количество азот в синтез газа. Така например, в патента избран от нас за прототип, при използването на въздух като окислител при наличие в реагиращата смес на метан 27 об. %, концентрацията на синтез газ е 50 об. % (останалото е азот).A major disadvantage of all the above methods for producing synthesis gas by oxidizing methane with air is the presence of a significant amount of nitrogen in the synthesis gas. For example, in the patent chosen by us as a prototype, using air as an oxidant in the presence of the methane 27 vol. %, the concentration of synthesis gas is 50% vol. % (the rest is nitrogen).

Използването като окислител на кислород изисква скъпо струващи установки за разделяне на въздуха, което съществено оскъпява производството на синтез газ.The use of oxygen as an oxidant requires costly air separation units, which substantially increases the cost of producing synthesis gas.

Задачата на изобретението е да се създаде метод за преработване на природен газ в горива чрез създаване на термостабилен катализатор за получаване на смес на водород и CO, който е ефективен при малки времена за контакт както при реакциите на СКО на въглеводороди с кислород, така и при парова и въглероднокиселинна конверсия на въглеводородите, при това в присъствието на сяросъдържащи съединения, а също така и за протичането на процеса за получаване на сместа от водород и въглеродни оксид с’рзпйлзвадето ...... ··’· ··’· на този катализатор.It is an object of the invention to provide a method for the conversion of natural gas into fuels by creating a thermostable catalyst for the preparation of a mixture of hydrogen and CO, which is effective at low contact times for both the RMS reaction of hydrocarbons and oxygen vapor and carbonic acid conversion of hydrocarbons, in the presence of sulfur-containing compounds, as well as the process of producing a mixture of hydrogen and carbon monoxide with the hydrocarbon. this catalyst.

ТЕХНИЧЕСКА СЪЩНОСТ НА ИЗОБРЕТЕНИЕТОSUMMARY OF THE INVENTION

Тази задача се решава, като се създава метод за преработване на природен газ в горива, който включва фаза на преработване на природен газ в смес от въглероден моноксид и водород (синтез газ) и фаза на каталитично преобразуване на синтез газа в моторни горива. Процесът на получаване на сместа от водород и въглероден оксид протича при температура 800-900 °C, налягане 0,1-1 МРа в присъствието на катализатор-сорбент, предварително наситен с кислород в резултат на обработката му с кислородосъдържащ газ. Катализаторът-сорбентът е на основата на алуминиеви оксиди и смесени оксиди, включващи оксиди на никел, церий, цирконий и желязо и има следния състав в масови процентихмесен оксид - не повече от 20 мас.%; алуминиев оксид - останалата част от състава. Катализаторът-сорбентът е под формата на гранули с повърхност 100 - 200 M2/g. Регенерацията на катализатора-сорбент се провежда при температура 500-600 °C в поток от газове, съдържащи 1-5 об.% кислород до насищането му с кислород, което приключва с прекратяването на поглъщането на кислород от катализатора.This task is solved by creating a method for the conversion of natural gas into fuels, which includes a phase of conversion of natural gas into a mixture of carbon monoxide and hydrogen (synthesis gas) and a phase of catalytic conversion of gas synthesis into motor fuels. The process of preparing the mixture of hydrogen and carbon monoxide is carried out at a temperature of 800-900 ° C, a pressure of 0.1-1 MPa in the presence of a catalyst-sorbent pre-saturated with oxygen as a result of its treatment with oxygen-containing gas. The sorbent catalyst is based on aluminum oxides and mixed oxides, including nickel, cerium, zirconium, and iron oxides, and has the following composition in mass percent mixed oxide - not more than 20% by weight; aluminum oxide - the rest of the composition. The catalyst-sorbent is in the form of granules having a surface 100-200 M 2 / g. The regeneration of the sorbent catalyst is carried out at a temperature of 500-600 ° C in a stream of gases containing 1-5 vol.% Oxygen until it is saturated with oxygen, which ends with the termination of oxygen uptake by the catalyst.

Предимство на метода за преработване на природен газ в горива е че катализаторът е термостабилен за получаване на смес на водород и CO, който е ефективен при малки времена за контакт, както при реакциите на СКО на въглеводороди с кислород, така и при парова и въглероднокиселинна конверсия на въглеводородите, при това в присъствието на сяросъдържащи съединения.An advantage of the method of processing natural gas into fuels is that the catalyst is thermostable to produce a mixture of hydrogen and CO, which is effective at low contact times, both in the reaction of the hydrocarbons with oxygen and in the vapor and carbonic acid conversion of hydrocarbons, in the presence of sulfur-containing compounds.

ПРИМЕРНО ИЗПЪЛНЕНИЕ НА ИЗОБРЕТЕНИЕТОEXAMPLE IMPLEMENTATION OF THE INVENTION

Използването на катализатор, който е сложен композит, съдържащ смесени оксиди със структура на перовскит или флуорид и преходни и/или благородни метали и допълнителни компоненти с нисък коефициент на термично разширяване, води до това, че каталитичното преобразуване на сместа, съдържаща въглеводород или смес от въглеводороди и/или въздух, или • ·· ·♦ ф·· ····The use of a catalyst, which is a complex composite containing mixed oxides of perovskite or fluoride structure and transition and / or precious metals and low thermal expansion additives, results in the catalytic conversion of the mixture containing a hydrocarbon or mixture of hydrocarbons and / or air, • ·· · ♦ u ·· ····

С02, или пара или техни смеси, а също и - незадължиуелй© · с^н^с^ерийЬния, ****** ··· ··· *е · · се осъществява в присъствието на такъв катализатор. При този метод се наблюдава висока конверсия на метана и висока селективност, термостабилност на катализатора, като при това не се наблюдава образуването на кокс и замърсяване със сяросъдържащи съединениея.C02 or steam or mixtures thereof, and - nezadalzhiuely © · a ^ n ^ a ^ eriyYniya, ****** ··· ··· * s · is carried out in the presence of such a catalyst. In this method, high methane conversion and high selectivity, thermal stability of the catalyst are observed, without coke formation and contamination with sulfur-containing compounds.

Този технически резултат се постига с използването на катализатор, имащ следния състав в % от масата:This technical result is achieved by using a catalyst having the following composition in% by weight:

Преходен или благороден елемент - не повече от 10 % от масата;Transitional or noble element - not more than 10% by weight;

Смесен оксид - не повече от 1 %;Mixed oxide - not more than 1%;

Материал с ултра нисък коефициент на термично разширение (не повече от 8 * 10“ 6 °C _1) - не повече от 95%;Material with ultra-low coefficient of thermal expansion (not more than 8 * 10 “6 ° C _1 ) - not more than 95%;

AL2O3 - останалата част от масата;AL2O3 - the rest of the mass;

Смесеният оксид включва в себе си оксид със структура на перовскит ΜΈΙ-γΜγΟζ и/или оксид със структурата на флуорид Μ1χΜ21-χΟζ, където:The mixed oxide includes an oxide with a perovskite ΜΈΙ-γΜγΟζ structure and / or an oxide with the fluoride structure Μ 1 χΜ 2 1-χΟζ, where:

М - елемент от VIII група (Pt, Rh, Ir);M - element of group VIII (Pt, Rh, Ir);

Μ1 - редкоземни или алкалоземни елементи;Μ 1 - rare earth or alkaline earth elements;

М2 - елемент от IVb група от Периодичната таблица на химичните елементи;M 2 - element of IVb group of the Periodic Table of Chemical Elements;

В - преходен елемент -елементи от IV период от Периодичната таблица, с 3d електронна обвивка.B - transition element - elements from period IV of the Periodic Table, with 3d electronic shell.

Значенията на х и у са в следните интервали: 0,01<х<1; 0 < у < 1.The values of x and y are in the following ranges: 0.01 <x <1; 0 <y <1.

Значенията на х, у и z се определят от степента на окисляване на катийоните и тяхното стехеометрично съотношение.The values of x, y and z are determined by the degree of oxidation of the cations and their stoichiometric ratio.

Под термина „редкоземни елементи” се разбира елементи, отнасящи се към групата на редкоземните елементи, включваща елементи от група III b и елементи с 4f електронна обвивка, например La, Се, Nd.The term "rare earth elements" is understood to mean elements relating to the group of rare earth elements, including elements of group III b and elements with a 4f electron shell, for example La, Ce, Nd.

Под термина „алкалоземни елементи” разбираме елементи отнасящи се към група Па Периодичната таблица на химичните елементи, например Sr, Са.By the term "alkaline earth elements" we mean elements referring to group Pa The periodic table of chemical elements, for example Sr, Ca.

Включването в състава на високотемпературните катализатори на компоненти с нисък или отрицателен коефициент на термично разширение ·* · е * * · (КТР) позволява регулиране на коефициента им на термичцо ршгКйрерие ЗГПо ···♦··* · · · ί · · »-* · · · · ·+* * · · · този начин се получават катализатори с висока термоустоичивост. Като такива компоненти се използват кордиерит, мулит, сложни фосфати на циркония със структура ΝΖΡ, волфрамати (M2W3O12, MW2O8), молибдати, ванадати (MV2O7), алуминиев титанат. (И.Нарои-Сабо «Неорганическая кристаллография» изд. Мир , М., 1971).The inclusion in the composition of high-temperature catalysts of components with low or negative coefficient of thermal expansion · * · is * * · (CTE) allows to regulate their coefficient of thermal expansion. In this way, catalysts with high heat resistance are obtained. Such components include cordierite, mullite, complex zirconium phosphates структура, tungstates (M2W3O12, MW2O8), molybdates, vanadates (MV2O7), aluminum titanate. (I. Naroi-Sabo, Inorganic Crystallography, Mir, M., 1971).

Полученият сложен композит на катализатора има повърхност 2-200 M2/g и може да бъде под формата на таблетки, пръстени, сфери или блокчета с клетъчна структура.The resulting complex composite of the catalyst has a surface area of 2-200 M 2 / g and can be in the form of tablets, rings, spheres or blocks of cellular structure.

Процесите протичат посредством последователно пропускане на газова смес, съдържаща въглеводород или смес на въглеводороди и/или въздух, или пара, или тяхна смес с температура 200-500°С през неподвижен слой на катализатора.The processes are carried out by successively passing a gas mixture containing a hydrocarbon or a mixture of hydrocarbons and / or air or steam or a mixture thereof at a temperature of 200-500 ° C through a fixed bed of catalyst.

За получаване на необходимия състав на сместа от водород и въглероден оксид е необходимо да се променя състава на началната смес. Началната смес съдържа въглеводород или смес на въглеводороди и/или въздух, или пара, или СО2, или тяхна смес, както и, незадължително, серосъдържащи съединения, като процесът протича при температури 500°С - 1000°С. Като въглеводородна суровина се използват природен газ, метан, пропан-бутанова смес, смес от потежки въглеводороди, керосин и т.н. Като кислородосъдържащ газ се използва кислород, въздух, СО2 или водна пара.In order to obtain the required composition of the mixture of hydrogen and carbon monoxide, it is necessary to change the composition of the initial mixture. The starting mixture contains a hydrocarbon or a mixture of hydrocarbons and / or air or steam or CO2 or a mixture thereof and, optionally, sulfur-containing compounds, the process being carried out at temperatures of 500 ° C to 1000 ° C. Natural gas, methane, propane-butane mixture, mixture of heavy hydrocarbons, kerosene, etc. are used as the hydrocarbon feedstock. Oxygen, air, CO2 or water vapor is used as the oxygen-containing gas.

Предлаганите катализатори се приготвят посредством методите на смесване и просмукване с последващо изсушаване и нагорещяване. Процесът на получаване на смес на водород и въглероден оксид протича в проточен реактор при температури 550°С - 1000°С при различно време за контакт и състав на реагиращата смес. Съставът на началната реагираща смес и продуктите на реакцията се анализират хроматографично. Ефективността на работа на катализатора се определя от степента на преобразуване на метана, от селективността по CO и водород и от количеството получена смес на водород и въглероден оксид и тяхното съотношение.The proposed catalysts are prepared by blending and impregnation methods followed by drying and heating. The process of producing a mixture of hydrogen and carbon monoxide is carried out in a flow reactor at temperatures of 550 ° C - 1000 ° C at different contact times and composition of the reaction mixture. The composition of the initial reaction mixture and the reaction products were analyzed chromatographically. The efficiency of the catalyst operation is determined by the degree of conversion of methane, the selectivity for CO and hydrogen and the amount of mixture of hydrogen and carbon monoxide obtained and their ratio.

. : ·· ·· .· ····. : · · · · · · · · ·

Чрез настоящето изобретение се получава синтез Ьаз, крйт<? це; стСДцзжа ...... ··· ·;· баластни примеси на азот, при което като окислител се използва въздух, а впоследствие от синтез газа да се получат моторни горива. Използването за производство на моторни горива по реакцията на Фишер-Тропш на синтез газ, който не съдържа баластни примеси на азот, значително повишава ефективността на процеса на производство на горива като едновременно с това позволява да се намалят размерите на технологичното оборудване и да се намалят инвестиционните разходи. Поставената цел се достига чрез използването на твърд катализатор-сорбент, съдържащ кислород, вкаран при предварителната му обработка с въздух. Този подход позволява при използването на въздух като окислител, от природен газ да се получи синтез газ, несъдържащ баластен азот. Освен това, реализацията на предлагания метод не изисква подаване в реакционния апарат освен на метан, на други допълнителни компоненти като въздух, водна пара, СО2 или техни смеси, което позволява значително да се опрости процеса, да се намалят разходите за енергия и инвестиционните разходи.The present invention provides synthesis of Laz, crete <? this; stsjj ...... ...... ··· · ; · Ballast impurities of nitrogen, in which air is used as the oxidizing agent, and then motor fuels can be obtained from synthesis gas. The use of Fischer-Tropsch gasoline-free gas-fueled propellant production significantly increases the efficiency of the fuel production process while reducing the size of technological equipment and reducing investment costs. This objective is achieved by the use of a solid catalyst-sorbent containing oxygen introduced during its pre-treatment with air. This approach allows the synthesis of ballast nitrogen-free gas from the use of air as an oxidizer from natural gas. In addition, the implementation of the proposed method does not require the addition to the reaction apparatus other than methane of other additional components such as air, water vapor, CO2 or mixtures thereof, which significantly simplify the process, reduce energy costs and investment costs.

Пример 1. Ni, Се, Zr и Fe оксиди в прахообразно състояние се обработват с 10% разтвор на HNO3 при температури 40°С - 60°С. Получената маса се смесва с прах на γ-Α12Ο3 и се държи в продължение на 12h при температури 50°С, след което температурата се повишава до 100°С като при това се отделя физически свързаната вода и теглото на смесените оксиди достига до постоянно тегло. Получената смес се пресова във вид на таблетки с размер 3x5 mm. След това, таблетките се нагряват при температура 800°С в продължение на 5 h. Насипното тегло на катализатора е в рамките на 0,7 - 0,9g/cM3. Следва прекратяване на подаването на въздух и катализаторът се продухва с азот в продължение на 2h при 800°С, като впоследствие се вкарва метан. Конверсията на метана при обемно съотношение СН4/ катализатор = 150 е 94%, а съставът на получената смес в обемни проценти е както следва:Example 1. The powdered Ni, Ce, Zr and Fe oxides were treated with a 10% solution of HNO3 at 40 ° C - 60 ° C. The resulting mass was mixed with γ-Α12Ο3 powder and held for 12h at 50 ° C, after which the temperature was raised to 100 ° C, thereby separating physically bound water and the weight of the mixed oxides reached a constant weight. The resulting mixture was compressed into 3x5 mm tablets. The tablets were then heated at 800 ° C for 5 h. The bulk weight of the catalyst is in the range 0.7 - 0.9g / cM 3 . The air supply was terminated and the catalyst was purged with nitrogen for 2h at 800 ° C and methane was subsequently introduced. The conversion of methane to a CH4 / catalyst volume ratio of = 150 is 94%, and the composition of the resulting mixture in volume percentages is as follows:

Н2 - 60,0 об.%; CO- 30,0 об.% ; СН4 - 2,0 об.% ; СО2 - 5,0 об.%; Н2О- 3,0об.% ·· · * * w H2 is 60.0 vol%; CO- 30.0 vol%; CH4 - 2.0 vol%; CO2 - 5.0 vol%; H2O- 3.0vol.% ·· · * * w

Полученият синтез газ се охлажда, компримира ^Гнасо^ва’^ рйакздРза ······* · · ί ! · • · · · ф ж ® · синтез на въглеводороди при температура 300°С и налягане 30 at. Синтезът на течните въглеводороди протича в присъствието на полифункционален катализатор, съдържащ оксиди на желязо, цинк и бор в комбинация с носител алуминий и неговите оксиди. Получените моторни горива са 190g. на 1 шп3 синтез газ при конверсия на въглеродните оксиди - 98%. При други равни условия за синтез на течни въглеводороди, използването на синтез газ съдържащ 50 об. % азот води до намаляване на произведените моторни горива до 140g. на 1 nm3 синтез газ.The synthesis gas obtained is cooled, compressed, and compressed. · Synthesis of hydrocarbons at 300 ° C and a pressure of 30 at. The synthesis of liquid hydrocarbons takes place in the presence of a polyfunctional catalyst containing oxides of iron, zinc and boron in combination with a carrier aluminum and its oxides. The resulting motor fuels are 190g. of 1 nm 3 synthesis gas at 98% carbon monoxide conversion. Other things being equal for the synthesis of liquid hydrocarbons, the use of synthesis gas containing 50% vol. % nitrogen leads to a reduction in the production of motor fuels to 140g. at 1 nm 3 synthesis gas.

Пример 2. Катализатор-сорбент се изготвя по начина показан в Пример 1. Конверсията на метана протича при обемно съотношение СН4/ катализатор = 150 и температура 700°С. В този случай степента на преобразуване на метана е 60%, а съставът на получения синтез газ в обемни съотношения е както следва: Н2 - 22,8 об.%; CO - 13,6 об.% ; СН4 - 18,2об.%;СО2 - 13,6 об.% Н2О 31,8 об.%Example 2. The sorbent catalyst was prepared as shown in Example 1. The conversion of methane proceeded at a CH4 / catalyst volume ratio of = 150 and a temperature of 700 ° C. In this case, the conversion rate of methane is 60%, and the composition of the synthesis gas obtained in volume ratios is as follows: H2 - 22.8%; CO - 13,6% vol; CH4 - 18.2% vol; CO2 - 13.6 vol% H2O 31.8 vol%

Полученият синтез газ се охлажда, компримира и насочва в реактор за синтез на въглеводороди при температура 300°С и налягане 30at. Синтезът на течните въглеводороди протича в присъствието на полифункционален катализатор, съдържащ оксиди на желязо, цинк и молибден в комбинация с носител алуминий и неговите оксиди и фосфати. Получените моторни горива са 55g на 1 nm3 синтез газ при конверсия на въглеродните оксиди 90%.The synthesis gas obtained is cooled, compressed and directed into a hydrocarbon synthesis reactor at 300 ° C and 30at. The synthesis of liquid hydrocarbons takes place in the presence of a multifunctional catalyst containing oxides of iron, zinc and molybdenum in combination with a carrier aluminum and its oxides and phosphates. The resulting motor fuels are 55g per 1 nm 3 synthesis gas at 90% carbon monoxide conversion.

Пример 3. Катализатор-сорбент се изготвя и активира по начина показан в Пример 1. Конверсията на метана протича при обемно съотношение СН4/ катализатор = 150 и температура 900°С. В този случай степента на преобразуване на метана е 96%, а състава на получения синтез газ в обемни съотношения е както следва:Example 3. The sorbent catalyst was prepared and activated as shown in Example 1. The conversion of methane proceeded at a CH4 / catalyst volume ratio of = 150 and a temperature of 900 ° C. In this case, the conversion rate of methane is 96% and the composition of the synthesis gas obtained in volume ratios is as follows:

Н2 - 62,0 об.% ; CO - 30,5 об.% ; СН4 -1,5 об.%;H2 is 62.0 vol%; CO - 30.5 vol.%; CH 4 -1.5 vol%;

СО2 - 4,0 об.%; Н2О - 2,0 об.%CO2 - 4.0 vol%; H2O - 2.0 vol%

Полученият синтез газ се охлажда, компримира и насочва в реактор за синтез на въглеводороди при температура 300°С и налягане 30at. Синтезът на течните въглеводороди протича в присъствието» *йа. . подиф^нкййосщден ♦·· ··· ··· · · · катализатор съдържащ оксиди на желязо, цинк и молибден в комбйнаЦйя с носител алуминий и неговите оксиди и фосфати. Получените моторни горива саThe resulting synthesis gas is cooled, compressed and directed to a hydrocarbon synthesis reactor at 300 ° C and 30at pressure. The synthesis of liquid hydrocarbons takes place in the presence of »* ya. . subfluent catalyst containing oxides of iron, zinc and molybdenum in combination with a carrier aluminum and its oxides and phosphates. The resulting motor fuels are

55g на н/м3 синтез газ при конверсия на въглеродните оксиди 90%.55g per n / m 3 synthesis gas at 90% carbon monoxide conversion.

Пример 4. Процесът за получаване на синтез газ протича по начина описан в Пример 1. След това температурата на реактора се снижава до 500°С 600°С, реакторът се продухва с азот в течение на 2h, след което катализаторасорбент се подлага на окислителна регенерация в поток от газове, съдържащи 1-5 об.% кислород. Процесът на регенерация завършва при прекратяване поглъщането на кислород от катализатора-сорбент.EXAMPLE 4 The process for producing synthesis gas was carried out as described in Example 1. The reactor temperature was then lowered to 500 ° C and 600 ° C, the reactor was purged with nitrogen for 2h, after which the catalyst adsorbent was subjected to oxidative regeneration. in a stream of gases containing 1-5 vol.% oxygen. The regeneration process is terminated by the termination of oxygen uptake by the sorbent catalyst.

·· ·· • ·· · · ·

Claims (4)

• · · ПАТЕНТНИ ПРЕТЕНЦИИ • · • · ♦· ·• Patent Claims • • • · ♦ · · 1. Метод за преработване на природен газ в горива, включващ фаза на преработване на природен газ в смес от въглероден моноксид и водород (синтез газ) и фаза на каталитично преобразуване на синтез газа в моторни горива, характеризиращ се с това, че процесът на получаване на сместа от водород и въглероден оксид протича при температура 800-900 °C, налягане 0,1-1 МРа в присъствието на катализатор-сорбент, предварително наситен с кислород в резултат на обработката му с кислородосъдържащ газ.1. A method for the conversion of natural gas into fuels, comprising a phase of processing natural gas into a mixture of carbon monoxide and hydrogen (synthesis gas) and a phase of catalytic conversion of synthesis gas into motor fuels, characterized in that the production process of the mixture of hydrogen and carbon monoxide takes place at a temperature of 800-900 ° C, a pressure of 0.1-1 MPa in the presence of a catalyst-sorbent pre-saturated with oxygen as a result of its treatment with oxygen-containing gas. 2. Метод за преработване на природен газ в горива съгласно претенция 1, характеризиращ се с това, че катализаторът-сорбентът, който се използва за получаване на смес от водород и въглероден оксид чрез каталитично преобразуване на метана, е на основата на алуминиеви оксиди и смесени оксиди, включващи оксиди на никел, церий, цирконий и желязо и има следния състав в масови проценти:A method for the conversion of natural gas into fuels according to claim 1, characterized in that the sorbent catalyst used to prepare a mixture of hydrogen and carbon monoxide by catalytic conversion of methane is aluminum oxide and mixed oxides including nickel, cerium, zirconium and iron oxides and having the following composition by weight: - смесен оксид - не повече от 20 мас.%- mixed oxide - not more than 20% by weight - алуминиев оксид - останалата част от състава- alumina - the rest of the composition 3. Метод за преработване на природен газ в горива съгласно претенция 2, характеризиращ се с това, че катализаторът-сорбентът е под формата на гранули с повърхност 100 - 200 M2/g.3. The method of processing natural gas into fuels according to claim 2, characterized in that the sorbent catalyst is in the form of granules having a surface area of 100 - 200 M 2 / g. 4. Метод за преработване на природен газ в горива съгласно претенция 1, характеризиращ се с това, че регенерацията на катализатора-сорбент се провежда при температура 500-600 °C в поток от газове, съдържащи 1-5 об.% кислород до насищането му с кислород, което приключва с прекратяването на поглъщането на кислород от катализатора.4. The method of processing natural gas into fuels according to claim 1, characterized in that the regeneration of the sorbent catalyst is carried out at a temperature of 500-600 ° C in a stream of gases containing 1-5 vol.% Oxygen until saturated with oxygen, which ends with the termination of oxygen uptake by the catalyst.
BG109348A 2005-11-15 2005-11-15 Method for the processing of natural gas into fuels BG109348A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BG109348A BG109348A (en) 2005-11-15 2005-11-15 Method for the processing of natural gas into fuels
PCT/BG2006/000005 WO2007056835A1 (en) 2005-11-15 2006-01-17 A method of converting natural gas into fuels
EP06701863A EP1954627A1 (en) 2005-11-15 2006-01-17 A method of converting natural gas into fuels
UAA200600579A UA81819C2 (en) 2005-11-15 2006-02-09 Process and catalyst for processing of natural gas into motor fuel
EA200600432A EA012595B1 (en) 2005-11-15 2006-03-16 A method of converting natural gas into fuels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BG109348A BG109348A (en) 2005-11-15 2005-11-15 Method for the processing of natural gas into fuels

Publications (1)

Publication Number Publication Date
BG109348A true BG109348A (en) 2006-02-28

Family

ID=36609691

Family Applications (1)

Application Number Title Priority Date Filing Date
BG109348A BG109348A (en) 2005-11-15 2005-11-15 Method for the processing of natural gas into fuels

Country Status (5)

Country Link
EP (1) EP1954627A1 (en)
BG (1) BG109348A (en)
EA (1) EA012595B1 (en)
UA (1) UA81819C2 (en)
WO (1) WO2007056835A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924109B1 (en) * 2007-11-26 2010-11-26 Air Liquide PROCESS AND INSTALLATION FOR PRODUCING A COOLED AND COMPRESSED SYNTHESIS GAS
RU2475468C1 (en) * 2011-11-15 2013-02-20 Общество с ограниченной ответственностью "ФАСТ ИНЖИНИРИНГ" Method of producing liquid synthetic hydrocarbons from hydrocarbon gases
RU2651195C1 (en) * 2017-03-10 2018-04-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Synthetic gas production method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9028034D0 (en) * 1990-12-24 1991-02-13 Isis Innovation Improved processes for the conversion of methane to synthesis gas
RU2048909C1 (en) * 1993-07-13 1995-11-27 Научно-производственная фирма "Химтэк" Catalyst for vapor hydrocarbon conversion
US6379586B1 (en) * 1998-10-20 2002-04-30 The Boc Group, Inc. Hydrocarbon partial oxidation process
US6156809A (en) * 1999-04-21 2000-12-05 Reema International Corp. Multiple reactor system and method for fischer-tropsch synthesis
RU2198156C2 (en) * 2000-06-20 2003-02-10 Александров Николай Александрович Method for production of liquid hydrocarbons via catalytic processing of hydrocarbon gases and installation
RU2204434C2 (en) * 2001-05-08 2003-05-20 Институт катализа им. Г.К. Борескова СО РАН Catalyst and a method for production of hydrogen/carbon monoxide mixture
US20030096880A1 (en) * 2001-11-02 2003-05-22 Conoco Inc. Combustion deposited metal-metal oxide catalysts and process for producing synthesis gas
JP3999557B2 (en) * 2002-04-30 2007-10-31 株式会社日本触媒 Catalyst for partial oxidation of hydrocarbon and method for producing hydrogen-containing gas using the catalyst
US7316806B2 (en) * 2003-10-29 2008-01-08 Nippon Shokubai Co., Ltd. Modifying catalyst for partial oxidation and method for modification

Also Published As

Publication number Publication date
UA81819C2 (en) 2008-02-11
WO2007056835A1 (en) 2007-05-24
EP1954627A1 (en) 2008-08-13
EA200600432A1 (en) 2007-06-29
EA012595B1 (en) 2009-10-30

Similar Documents

Publication Publication Date Title
Hafizi et al. Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier
Tong et al. Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas
Pantu et al. Methane partial oxidation on Pt/CeO2–ZrO2 in the absence of gaseous oxygen
US8435920B2 (en) Cyclic catalytic upgrading of chemical species using metal oxide materials
Zhu et al. Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation
CN1982205B (en) Use of complex metal oxides in the autothermal generation of hydrogen
Hayakawa et al. Partial oxidation of methane to synthesis gas over some titanates based perovskite oxides
Han et al. Highly active and anticoke Ni/CeO2 with ultralow Ni loading in chemical looping dry reforming via the strong metal–support interaction
US10478807B2 (en) Catalytic effects of oxygen carrier based chemical-looping reforming of CH4 with CO2
CN109833877A (en) A kind of chemical chain partial oxidation methane catalyst for preparing synthetic gas and its preparation and application
CN118022775A (en) Catalyst for catalytic oxidative cracking of hydrogen sulfide and simultaneous production of hydrogen
JP2023541942A (en) Ammonia and urea production in reverse flow reactors
Luo et al. Hydrogen and syngas co-production by coupling of chemical looping water splitting and glycerol oxidation reforming using Ce–Ni modified Fe-based oxygen carriers
Lv et al. Chemical looping partial oxidation (CLPO) of toluene on LaFeO3 perovskites for tunable syngas production
RU2292237C1 (en) Catalyst, method for preparation thereof, and synthetic gas production process
US8974699B2 (en) Method for producing synthesis gases
Xiaoping et al. Effect of calcination temperature and reaction conditions on methane partial oxidation using lanthanum-based perovskite as oxygen donor
BG109348A (en) Method for the processing of natural gas into fuels
Zhao et al. Tungstate promoted CaMnO3-based core-shell redox catalysts for efficient chemical looping oxidative coupling of methane
KR20210149143A (en) Oxygen Combustion Using CO₂ Capture in Countercurrent Reactor
Du et al. Synthesis gas generation by chemical-looping selective oxidation of methane using Pr1− xZrxO2− δ oxygen carriers
Fangli et al. Influence of supports on catalytic performance and carbon deposition of palladium catalyst for methane partial oxidation
JP4799312B2 (en) Synthesis gas production catalyst
Lammer et al. Hydrogen production with fixed bed chemical looping systems
Xanthopoulou et al. SHS-produced catalysts for in-situ generation of syngas in combustion chambers of heat engines: A review