JPS6168867A - Fuel cell plant controller - Google Patents

Fuel cell plant controller

Info

Publication number
JPS6168867A
JPS6168867A JP59189752A JP18975284A JPS6168867A JP S6168867 A JPS6168867 A JP S6168867A JP 59189752 A JP59189752 A JP 59189752A JP 18975284 A JP18975284 A JP 18975284A JP S6168867 A JPS6168867 A JP S6168867A
Authority
JP
Japan
Prior art keywords
fuel
reforming
valve
reformer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59189752A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takada
博之 高田
Hiroyuki Narita
成田 寛行
Haruo Matsumuro
松室 春生
Hiroki Shibukawa
渋川 裕樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59189752A priority Critical patent/JPS6168867A/en
Publication of JPS6168867A publication Critical patent/JPS6168867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent temperature increase caused by remaining heat by putting out a burner of heat source of a reformer when operation stopped, and continuously supplying fuel and steam to a reforming line to utilize endothermic action of reformation. CONSTITUTION:A reformed fuel control valve 11 controls flow rate of reformed fuel. The reformed fuel is supplied to a hydrogen electrode of a fuel cell 5 and part of it is consumed to generate electric energy, and the rest is burned with a main burner 12 of a reformer 4. A heat controller of a controller 100 closes the valve 11 by receiving a stop signal to put out the burner, and opens a valve 20 to cool with nitrogen. When received a stop signal, a fuel stop controller opens a reforming steam valve 19 and a reforming fuel valve 10 only for a specified time by operation of a single shot timer to continue reformation, and temperature increase is prevented by the endothermic action.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池発電プラントにおいて、プランへ停止
時の改質器チューブ内の温度上昇を防止するようにした
燃料電池プラント制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell power generation plant control device that prevents a temperature rise in a reformer tube when the plant is stopped.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電力の発生は、通常発電機の蒸気タービン等の原動機で
回転させ、交流のまま需要側へ送る事が、電力の発生よ
り消費C;到るまで最も都合の良い方法として採用され
て居り、現在の電力系統は交流系統がほとんどを占めて
いる。
Electric power is normally generated by rotating it with a prime mover such as a steam turbine in a generator and sending it to the demand side as AC. Most of the electricity systems in Japan are AC systems.

一方、蒸気タービン等を駆動する蒸気は、ボイラ等にて
石油、ガス等の燃料を燃焼させた熱エネルギーとして取
り出し、蒸気エネルギーC:変換し、さらに電気エネル
ギーとして取り出す事は効率面で不利な事から、近年燃
料の化学的変化をさせ、この化学的変化の際1:発生す
る電子の流れより直接電気エネルギーを取り出そうとす
る燃料電池方式が省エネルギー発電の一つとして採用さ
れるようになって来た。
On the other hand, the steam that drives a steam turbine, etc. is extracted as thermal energy by burning fuel such as oil or gas in a boiler, etc., and it is disadvantageous in terms of efficiency to convert the steam energy C: and then extract it as electrical energy. In recent years, the fuel cell system has been adopted as an energy-saving power generation method, which involves chemically changing the fuel and extracting electrical energy directly from the flow of electrons generated during this chemical change. Ta.

この燃料電池は供給された燃料を化学変化させて電力を
発生するのであるが、その出力は直流出力であり、この
まま特定区域で消費する場合は直流で消費され、又省エ
ネルギー政策の一環として大量の電力をまかなう場合鑑
;は、直流交流変換器により交流に変換し電力系統と接
続している。
This fuel cell generates electricity by chemically changing the supplied fuel, but the output is direct current, and if it is consumed in a specific area, it will be consumed as direct current, and as part of energy conservation policy, large amounts of electricity will be generated. In the case where electric power is supplied, the AC is converted to AC using a DC/AC converter and connected to the power grid.

ところで、この燃料電池を用いたプラントにおいては、
プラントの起動からメインバーナ点火まではパイロット
バーナのみの熱源で改質反応を維持している。そして、
プラントの運転中はメインバーナを点火し、パイロット
バーナは火災が消えない程度に保たれ、メインバーナの
熱源で改質反応が維持される。なお、改質とは原燃料を
触媒の下で加熱し水素含有率の高い改質燃料とすること
をいう。
By the way, in a plant using this fuel cell,
From plant start-up to main burner ignition, the reforming reaction is maintained using only the pilot burner as the heat source. and,
While the plant is operating, the main burner is ignited, the pilot burner is kept at a level that will not extinguish the fire, and the reforming reaction is maintained using the heat source of the main burner. Note that reforming refers to heating raw fuel under a catalyst to produce reformed fuel with a high hydrogen content.

プラントの運転中からその停止を行う際(二は、改質反
応を行う改質器の窒素による冷却が必要である。この冷
却はプラント停止が起きた時点で、改質器の大口弁およ
び出口弁を閉じ、冷却用の窒素を改質器に流入して行う
。すなわち、改質器への入口弁としては原燃料制御弁、
改質用蒸気制御弁があり、一方、出口弁としては改質燃
料制御弁があるので、これらの制御弁を閉じ、冷却用窒
素制御弁を開いて窒素を流入させる。
When shutting down a plant while it is in operation (second), the reformer that performs the reforming reaction must be cooled with nitrogen. This is done by closing the valve and letting nitrogen for cooling flow into the reformer.In other words, the inlet valve to the reformer is the raw fuel control valve;
There is a reforming steam control valve and a reformed fuel control valve as an outlet valve, so these control valves are closed and the cooling nitrogen control valve is opened to allow nitrogen to flow in.

しかし、このような冷却方式では、第8図C二示すよう
に時刻t0でプラント停止があったとすると、原燃料の
改質による吸熱反応で低く保たれてぃた触媒層の温度が
原燃料をカットしたことにより一時的に上昇し、制限値
を越えてしまうことがある。
However, in such a cooling system, if the plant were to stop at time t0 as shown in Figure 8C-2, the temperature of the catalyst layer, which had been kept low due to the endothermic reaction caused by the reforming of the raw fuel, would exceed the raw fuel. Cutting may cause a temporary increase and exceed the limit value.

このようなこと(:なると触媒及びチューブの劣化が早
くなり、破損C:することが考えられる。
If something like this happens, the catalyst and tubes will deteriorate more quickly and may be damaged.

〔発明の目的〕[Purpose of the invention]

本発明の目的は燃料電池プラントにおいて燃料から水素
含有率の高い改質燃料を得るための主要な装置である改
質器の触媒及びチューブをプラント停止時において一定
降温率を維持しての冷却により保護することを可能とす
る燃料電池プラント制御装置を提供することにある。
The object of the present invention is to cool the catalyst and tubes of the reformer, which is the main device for obtaining reformed fuel with a high hydrogen content from fuel, by maintaining a constant temperature reduction rate when the plant is stopped. An object of the present invention is to provide a fuel cell plant control device that can protect a fuel cell plant.

〔発明の概要〕[Summary of the invention]

本発明はプラント停止時(二、改質器の熱源であるバー
ナを消火して改質ラインにNGとスチームを継続して流
入させ、その改質1:よる吸熱作用をもって、余゛熱に
よる触媒層の温度上昇を防止するようにしたものである
In the present invention, when the plant is stopped (2. The burner, which is the heat source of the reformer, is extinguished and NG and steam are continuously flowed into the reforming line, the reforming 1. This is to prevent the temperature of the layer from rising.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の燃料電池プラント制御装置100を燃
料電池プラントに適用したブロック図である。原燃料は
、改質用燃料制御弁101;より流量が制御され改質器
4に入り、触媒の下で加熱され水素含有率の高い改質材
料となる。これにて改質された燃料は次に高温変成器8
そして低温変成器9を経て一酸化炭素が除去される。改
質燃料は改質燃料制御弁11により流量が制御され、燃
料電池5の水素極5人に流入し電気エネルギーとして一
部消費され、残りは改質器4のメインバーナエ2で燃焼
する。改質器4の加熱用高温ガスは燃料電池5の酸素極
5Bからの排ガスと合流し燃焼器7を経てターボコンプ
レッサのタービン2に流入して、これに連結したフンブ
レツナ3を駆動する。
FIG. 1 is a block diagram in which a fuel cell plant control device 100 of the present invention is applied to a fuel cell plant. The raw fuel enters the reformer 4 with its flow rate controlled by a reforming fuel control valve 101, where it is heated under a catalyst and becomes a reforming material with a high hydrogen content. The reformed fuel is then transferred to the high temperature shift converter 8.
Carbon monoxide is then removed through the low temperature shift converter 9. The reformed fuel has a flow rate controlled by a reformed fuel control valve 11, flows into the five hydrogen electrodes of the fuel cell 5, and is partially consumed as electrical energy, and the rest is burned in the main burner 2 of the reformer 4. The high-temperature gas for heating in the reformer 4 joins the exhaust gas from the oxygen electrode 5B of the fuel cell 5, flows through the combustor 7 into the turbine 2 of the turbo compressor, and drives the humbretsner 3 connected thereto.

コンプレッサ3の吐出空気は空気制御弁131;より流
量制御され、燃料電池5の酸素極5引二流入する。七う
すると酸素の一部は水素極5Aの水素と反応し消費され
、残りは酸素極5Bから排出される。
The air discharged from the compressor 3 is controlled in flow rate by an air control valve 131, and flows into the oxygen electrode 5 of the fuel cell 5. After seven days, part of the oxygen reacts with hydrogen at the hydrogen electrode 5A and is consumed, and the rest is exhausted from the oxygen electrode 5B.

そして改質器4のメインバーナ12からの排ガスと合流
し、燃焼器7を経由してターボコンプレッサのタービン
2を駆動する為に利用される。
Then, it joins with the exhaust gas from the main burner 12 of the reformer 4, and is used to drive the turbine 2 of the turbo compressor via the combustor 7.

燃料゛4池5は水素極5Aの水素と酸素極5Bの酸素と
の触媒反応によって酸素極5Bが正極、水素極5Aが負
極となるようにその電気エネルギーを発生し、その両極
間に接続された電気的負荷にその電気エネルギーを供給
する。
The fuel cell 5 generates electrical energy through a catalytic reaction between hydrogen in the hydrogen electrode 5A and oxygen in the oxygen electrode 5B, so that the oxygen electrode 5B becomes a positive electrode and the hydrogen electrode 5A becomes a negative electrode, and is connected between the two electrodes. supply that electrical energy to an electrical load.

燃料電池プラントでは、この燃料電池5の直流出力は変
換器6に供給されて交流に変更され、電力系統に交流゛
電力として送り出される。
In the fuel cell plant, the DC output of the fuel cell 5 is supplied to a converter 6, where it is converted into AC power, and sent to the power grid as AC power.

次に燃料電池プラン)1で燃料取り込み口より改質用蒸
気制御弁10.改質器4の内部のチューブ14.高温変
成器8.低温変成器9.改質燃料制御弁11.そして燃
料電池5の水素極5A入口まで(以降撚料改質系と記す
)のラインの主たる構成要素である改質器4を触媒を充
填した2重管構造のチューブ14を外部からメインバー
ナ12又はパイロットバーf15により加熱し、改質反
応に必要な熱を供給する。
Next, in the fuel cell plan) 1, the reforming steam control valve 10. Tube 14 inside the reformer 4. High temperature transformer8. Low temperature transformer9. Reformed fuel control valve 11. Then, the reformer 4, which is the main component of the line up to the hydrogen electrode 5A inlet of the fuel cell 5 (hereinafter referred to as the twisted material reforming system), is connected to the main burner 12 from the outside through a double-tube structure tube 14 filled with catalyst. Alternatively, it is heated by a pilot bar f15 to supply the heat necessary for the reforming reaction.

第2図は、プラント停止動作が始ってから、あらかじめ
設定された一定の時間改質器の改質ラインに原燃料と、
蒸気を導入し、改質を継続させ、その吸熱作用により降
温を計ることを目的とする制御装置の制御図である。第
3図はその制御が働いた時の各パルプの動作および触媒
温度の特性図である。第2図で囚と示した破線で囲まれ
た部分が加熱制御部で、停止信号を受けるとパルプ11
を全閉にし、バーナを消火して加熱を止め、パルプ20
を全開にして窒素;二よる冷却を行う。(B)と示した
破線で囲まれた部分が、原燃料停止制御部で停止信号を
受けるとシングルショットタイマの動作シ;より設定さ
れた時間だけパルプ19とパルプ10を全開(−シ改質
を継続させる。温度か充分下がるまでの時間が一定で、
既知であるなら、この方法によって簡単:二目的を達成
することができる。
Figure 2 shows that raw fuel is supplied to the reforming line of the reformer for a preset period of time after the plant shuts down.
FIG. 2 is a control diagram of a control device whose purpose is to introduce steam, continue reforming, and measure temperature drop by its endothermic action. FIG. 3 is a characteristic diagram of the operation of each pulp and catalyst temperature when the control is activated. The part surrounded by the dashed line marked as ``in'' in Figure 2 is the heating control section, and when it receives a stop signal, the pulp 11
Fully close the burner, extinguish the burner, stop heating, and reduce the pulp to 20
Fully open the tank and cool with nitrogen. The part surrounded by the broken line shown in (B) shows the operation of the single shot timer when the raw fuel stop control unit receives a stop signal; pulp 19 and pulp 10 are fully opened for the set time (- The time it takes for the temperature to drop sufficiently is constant,
If known, this method can easily accomplish two purposes:

第4図はプラント停止動作が始ってから、触媒層温度が
あらかじめ設定された温度より高い間は、改質器の改質
ラインに原燃料と蒸気を導入し、改質を継続させその吸
熱作用により降温を計ることを目的とする制御装置の制
御図である。プラントンステム構成は、第1図と同・じ
でよい。第5図は、第4図の制御が働いた時の各パルプ
の動作図である。第4図で(4)と書かれた波線で囲ま
れた部分が加熱制御部で制御の構成及びパルプの動作は
第2図のものと同様である。(B)と奮かれた波線で囲
まれた部分が、原燃料停止制御部である。停止信号を受
けると、比較器の動作により、触媒層温度が設定された
温度より高い間だけパルプ19とパルプ10を全開にし
、改質を継続させる。
Figure 4 shows that after the plant shuts down, and while the catalyst layer temperature is higher than the preset temperature, raw fuel and steam are introduced into the reforming line of the reformer to continue reforming and absorb heat. FIG. 2 is a control diagram of a control device whose purpose is to measure temperature drop through action. The planton stem configuration may be the same as in FIG. FIG. 5 is a diagram showing the operation of each pulp when the control shown in FIG. 4 is activated. In FIG. 4, the part surrounded by the wavy line labeled (4) is a heating control section, and the control configuration and pulp operation are the same as those in FIG. 2. The part surrounded by the wavy line (B) is the raw fuel stop control section. When the stop signal is received, the comparator operates to fully open the pulp 19 and the pulp 10 only while the catalyst bed temperature is higher than the set temperature to continue reforming.

停止時、プラントにさまざまな状態があり、望まれる温
度までの降温にかかる時間が一定でない時など、この方
法1二より目的を達成することができる。
This method 12 can achieve the objective when the plant is in various states during shutdown and the time required to lower the temperature to the desired temperature is not constant.

第6図は、プラント停止動作が始ってから、改質器の改
質ラインに導入する原燃料と、蒸気の量を、触媒層の温
度がその改質による吸熱作用によって降下して行くに従
い漸減させるようにした制御装置の制御図である。プラ
ントシステム構成は第1図と同じでよいが、パルプ19
とパルプ1oは開度調節のできる調選弁であることが必
要である。
Figure 6 shows the amount of raw fuel and steam introduced into the reforming line of the reformer after the plant shuts down as the temperature of the catalyst bed decreases due to the endothermic effect of reforming. FIG. 3 is a control diagram of a control device that gradually decreases the amount of water. The plant system configuration may be the same as in Figure 1, but the pulp 19
It is necessary for the pulp 1o and the pulp 1o to be control valves that can adjust the opening degree.

第7図は、第6図の制御が働いた時の各パルプの動作図
である。第6図で(4)と書かれた波線で囲まれた部分
が加熱制御部で制御の構成及びパルプの動作は第2図と
同様である。(B)と書かれた波線で囲まれた部分が原
燃料停止制御部で停止信号を受けると関数発生器の動作
書:より、触媒層の温度降下に従って温度と改質量との
関係からあらかじめ設定された割合でパルプ10が閉じ
てゆき降温のためl;必要なだけの改質を行うための原
燃料が改質器の改質ラインに流入する。現状流れている
原燃料に対して必要なだけの蒸気を流すように、パルプ
10の開度に応じて、パルプ19の開度が決められる。
FIG. 7 is a diagram showing the operation of each pulp when the control shown in FIG. 6 is activated. In FIG. 6, the part surrounded by the wavy line labeled (4) is the heating control section, and the control configuration and pulp operation are the same as in FIG. 2. When the part surrounded by the wavy line labeled (B) receives a stop signal from the raw fuel stop control unit, the function generator's operation manual is set in advance based on the relationship between temperature and reformed amount according to the temperature drop in the catalyst layer. As the pulp 10 closes at the same rate, the temperature decreases, and raw fuel for carrying out the necessary amount of reforming flows into the reforming line of the reformer. The opening degree of the pulp 19 is determined according to the opening degree of the pulp 10 so that the necessary amount of steam flows for the raw fuel currently flowing.

こうして、触媒層の温度が下がるとともに改質器の改質
ラインに流入する原燃料と蒸気は減らされてゆき、あら
かじめ設定された温度C二おいて、・改質ラインの流入
が止められるようI:なっている。
In this way, as the temperature of the catalyst layer decreases, the raw fuel and steam flowing into the reforming line of the reformer are reduced, and at a preset temperature C2, the inflow into the reforming line is stopped. : It has become.

この方法によれば原燃料の消費を必要最小限に抑えるこ
とができる。
According to this method, consumption of raw fuel can be suppressed to the necessary minimum.

〔発明の効果〕〔Effect of the invention〕

本発明の制御方式を適用することにより触媒層のプラン
ト停止時における温度上昇を抑制することが出来る。
By applying the control method of the present invention, it is possible to suppress the temperature rise of the catalyst bed when the plant is stopped.

このように、原燃料による吸熱反応により、改質器内部
の触媒層温度制御を行なえば、温度上昇1;よるチュー
ブ14の、劣化及び破損がなくなりさらC二冷却時間を
短縮することが出来る。
In this way, if the temperature of the catalyst layer inside the reformer is controlled by the endothermic reaction of the raw fuel, deterioration and damage of the tube 14 due to temperature rise can be eliminated, and the cooling time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の制御装置を燃料電池発電プラント≦二
速用したシステム構成図、第2図は本発明の一実施例を
示すブロック図、第3図はその動作説明図、第4図は他
の一実施例を示すブロック図、第5図はその動作説明図
、第6図は別の他の一実施例を示すブロック図、第7図
はその動作説明図、第8因は従来例における動作説明図
である。 1・・・燃料電池プラント 2・・・タービン3・・・
コンプレツサ   4・・・改質器5・・・燃料電池 
    5A・・・水素極5B・・・酸素極     
6・・・変換器7・−燃焼器      8・・・高温
変成器9・・・低温変成器 10・・・改質用原燃料制御弁11・・・改質燃料制御
弁12・・・メイン・バーナ  13・・・空気制御弁
14・−チューブ15・・・パイロットパーナ16・・
・パイロットバーナ燃料制卸弁17・−・パイロットバ
ーナ空気制御弁18・・・メインバーナ空気制御弁 19・・・改質用蒸気制御弁 加・・・冷却用N2制御
弁21・・・触媒層温度検出器 (7317)代理人 弁理士 則 近 恵 佑(ほか1
名) 第  7 図 第8図
Fig. 1 is a system configuration diagram in which the control device of the present invention is used in a fuel cell power generation plant≦2 speed, Fig. 2 is a block diagram showing an embodiment of the present invention, Fig. 3 is an explanatory diagram of its operation, and Fig. 4 is a block diagram showing another embodiment, FIG. 5 is a diagram explaining its operation, FIG. 6 is a block diagram showing another embodiment, FIG. 7 is a diagram explaining its operation, and the eighth factor is the conventional one. It is an explanatory diagram of operation in an example. 1... Fuel cell plant 2... Turbine 3...
Compressor 4...Reformer 5...Fuel cell
5A... Hydrogen electrode 5B... Oxygen electrode
6... Converter 7 - Combustor 8... High temperature shift converter 9... Low temperature shift converter 10... Raw fuel control valve for reforming 11... Reformed fuel control valve 12... Main・Burner 13...Air control valve 14...Tube 15...Pilot parner 16...
- Pilot burner fuel control valve 17 - Pilot burner air control valve 18 - Main burner air control valve 19 - Reforming steam control valve Addition - Cooling N2 control valve 21 - Catalyst layer Temperature Detector (7317) Agent Patent Attorney Nori Kei Chika (and 1 others)
Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 原燃料を触媒の下で加熱し水素含有率の高い改質燃料を
得て該改質燃料を基に発電する燃料電池プラントにおい
て、前記改質燃料を得るために原燃料を加熱する加熱制
御部と、プラント停止時に上記加熱制御部が加熱を停止
した後、原燃料の一部又は全ての供給を継続させた後に
停止させる原燃料停止制御部とからなる燃料電池プラン
ト制御装置。
In a fuel cell plant that heats raw fuel under a catalyst to obtain reformed fuel with a high hydrogen content and generates electricity based on the reformed fuel, a heating control unit that heats the raw fuel to obtain the reformed fuel. and a raw fuel stop control unit that continues supplying some or all of the raw fuel and then stops the heating after the heating control unit stops heating when the plant is stopped.
JP59189752A 1984-09-12 1984-09-12 Fuel cell plant controller Pending JPS6168867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59189752A JPS6168867A (en) 1984-09-12 1984-09-12 Fuel cell plant controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59189752A JPS6168867A (en) 1984-09-12 1984-09-12 Fuel cell plant controller

Publications (1)

Publication Number Publication Date
JPS6168867A true JPS6168867A (en) 1986-04-09

Family

ID=16246584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59189752A Pending JPS6168867A (en) 1984-09-12 1984-09-12 Fuel cell plant controller

Country Status (1)

Country Link
JP (1) JPS6168867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196893A (en) * 2009-06-12 2009-09-03 Panasonic Corp Method for driving hydrogen generating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196893A (en) * 2009-06-12 2009-09-03 Panasonic Corp Method for driving hydrogen generating device

Similar Documents

Publication Publication Date Title
JP2511866B2 (en) Fuel cell power generation system and method of starting the same
JP2003197243A (en) Unified fuel processing equipment for rapid starting and operation control
JP2003226507A (en) Staged lean combustion for rapid start of fuel processor
JPH07220745A (en) Fuel cell system
JP2791130B2 (en) Fuel cell power plant
JPS6168867A (en) Fuel cell plant controller
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JP2741580B2 (en) Molten carbonate fuel cell system
JP2001015134A (en) Combined power generating device of fuel cell with gas turbine
JPH0896822A (en) Fuel cell power generating system
JPH0878030A (en) Fuel cell power generating device
JPH05303971A (en) Molten carbonate fuel cell generating system
JP2665547B2 (en) Molten carbonate fuel cell system and its control method
JPH03108270A (en) Power generating system for fuel cell
JPH0824054B2 (en) Fuel cell power plant and control method thereof
JPH05326003A (en) Temperature controlling method for reformer of fuel cell power generating facilities
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JPS6177273A (en) Control system for fuel cell power generation plant
JP2807635B2 (en) Temperature control method for fuel cell power generation equipment
JPS60167275A (en) Temperature controller of fuel cell plant reformer
JPH10223236A (en) Fuel cell electricity-generating apparatus
JPH03245468A (en) Fuel cell generating system
JPH07153475A (en) Outlet temperature control method for reformer
JPH05343088A (en) Fuel cell temperature control method