JPH01128362A - Operating method for fuel cell - Google Patents

Operating method for fuel cell

Info

Publication number
JPH01128362A
JPH01128362A JP62285388A JP28538887A JPH01128362A JP H01128362 A JPH01128362 A JP H01128362A JP 62285388 A JP62285388 A JP 62285388A JP 28538887 A JP28538887 A JP 28538887A JP H01128362 A JPH01128362 A JP H01128362A
Authority
JP
Japan
Prior art keywords
cell
gas
fuel cell
fuel
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62285388A
Other languages
Japanese (ja)
Other versions
JPH0690932B2 (en
Inventor
Atsushi Miki
幹 淳
Toshiaki Takemoto
嶽本 俊明
Shohei Uozumi
魚住 昇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62285388A priority Critical patent/JPH0690932B2/en
Publication of JPH01128362A publication Critical patent/JPH01128362A/en
Publication of JPH0690932B2 publication Critical patent/JPH0690932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent the deterioration of electrode from the electrolytic corrosion and to secure the safety of the plant by making the anode system fuel gas in a condition diluted by an inert gas and purging by the inert gas at only the cathode system side, at the time when the operation of a fuel cell is halted, for example, and, throwing in a resistor at the DC side and opening the resistor at the time when the voltage is reduced less than the e.m.f. of a concentration cell. CONSTITUTION:When the operation of a cell is stopped or at a waiting condition, an adequate amount of gas is let flow while a fuel gas cutoff valve 4 is kept in the open condition, a cathode system nitrogen blow valve 7 is turned from OFF to ON and an air cutoff valve 5 is OFF to blow an inert gas to the cathode system, and the voltage of the cell is reduced. Moreover, a switch 12 is turned on to make the cell input side short-circuited by a resistor 11. As a result, the cell voltage can be reduced rapidly less than the protective level, and the electrolytic corrosion deterioration of the cell can be prevented. Furthermore, at the time when the cell voltage is reduced less than the e.m.f. of a concentration cell which is determined by the H2 density and the like, the said resistor 11 is opened electrically. Consequently, the generation of H2 to the cathode system can be prevented, and the safety is secured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池の運転法に係り、特に、燃料電池の性
能を長期に亘って安定に保持すると同時に電池の運転を
安全に保つのに好適な燃料電池の運転法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of operating a fuel cell, and in particular, a method for maintaining stable performance of a fuel cell over a long period of time and at the same time maintaining safe operation of the cell. This invention relates to a preferred method of operating a fuel cell.

〔従来の技術〕[Conventional technology]

従来の燃料電池の運転では、発電状態から停止。 In conventional fuel cell operation, the system stops from generating electricity.

保管状態へ移行する際に、アノード、カソード系共反応
ガスを不活性ガスに置換し電位を低下させていた。また
、特開昭61−32362号に記載のように、不活性ガ
スパージ中に断続的に抵抗体を接続することにより電位
の低下に要する時間を短縮するようになっていた。
When transitioning to the storage state, the anode and cathode co-reactant gas was replaced with an inert gas to lower the potential. Furthermore, as described in Japanese Patent Laid-Open No. 61-32362, the time required for potential reduction has been shortened by intermittently connecting a resistor during inert gas purging.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、運転状態から停止する過程において、
アノード及びカソード系にそれぞれ不活性ガスをパージ
して反応ガスの直接混合を防止しながら、電池電圧を低
下させるものであるが、特に運転温度のような高温状態
では電極に使用される貴金属触媒の劣化が大きく、急速
に電池電圧を低下させなければならないにもかかわらず
電池保護レベルまでに低下するのに長期間要し、触媒劣
化のみならず、電池停止工程も長くなるという問題があ
った。さらに、不活性ガスによるパージのみではカソー
ドに吸着残存する02成分、あるいはアノード系へ漏洩
するO2成分などを完全に置換することは困難で、各電
極のポテンシャルを十分に低減できず触媒劣化を完全に
は防止できないという問題点があった。
In the above conventional technology, in the process of stopping from the operating state,
This method purges the anode and cathode systems with inert gas to prevent direct mixing of reactant gases while lowering the cell voltage. The deterioration is large, and even though the battery voltage must be rapidly lowered, it takes a long time to lower it to the battery protection level, which poses a problem that not only catalyst deterioration occurs but also the battery shutdown process becomes long. Furthermore, it is difficult to completely replace the O2 components that remain adsorbed on the cathode or the O2 components that leak to the anode system by only purging with inert gas, and the potential of each electrode cannot be sufficiently reduced, resulting in complete catalyst deterioration. The problem was that it could not be prevented.

特開昭61−32362号によれば電池出力側を抵抗体
により短絡し、この時に流れる短絡電流により急速に残
存02を消費させ、電池電圧の低下時間を大幅に短縮し
ようとするものであるが、燃料ガスも不活性ガスにより
置換されており、残存しているH十の多少により各セル
の電圧に不均衡が生じ、H÷がはやく消失したセルが電
食反応により劣化するという問題があった。
According to JP-A No. 61-32362, the battery output side is short-circuited with a resistor, and the short-circuit current that flows at this time rapidly consumes the remaining 02, thereby significantly shortening the time for the battery voltage to drop. The fuel gas is also replaced with an inert gas, and there is a problem that the voltage of each cell becomes unbalanced due to the amount of remaining H0, and cells whose H÷ disappears quickly deteriorate due to an electrolytic corrosion reaction. Ta.

特開昭59−75569号には常温で保管する場合にア
ノード及びカソード電極にHzを含むN2ガスを封入す
る方法が開示されているが、カソード系へもHzを混入
するため、残存する02と直接燃焼反応により02を消
費することになり、電極触媒層などに損傷を与えるとい
う開運があった。さらに、この公知例は常温での保管法
に関するもので、燃料電池の運転時にそのまま適用する
には高温となるだけさらに安全上の問題が生じる危険性
伴なわず、本質的に安全に電極電位を低下させ、電池停
止過程あるいは待機、保管時に発生する電池性能の低下
を極少となるように抑えることによって、あるいはさら
にカソードへのHzの生成を防止することによって燃料
電池プラントを安全かつ安定に保って運転効率を高める
燃料電池の運転法を提供するものである。
JP-A No. 59-75569 discloses a method of sealing N2 gas containing Hz into the anode and cathode electrodes when stored at room temperature, but since Hz is also mixed into the cathode system, residual 02 and Unfortunately, the direct combustion reaction consumed 02 and caused damage to the electrode catalyst layer. Furthermore, this known example relates to a storage method at room temperature, and if it is applied as it is during fuel cell operation, the temperature will be too high and there is no risk of further safety problems, and it is essentially safe to maintain the electrode potential. The fuel cell plant can be kept safe and stable by minimizing the deterioration in battery performance that occurs during the battery shutdown process, standby, and storage, or by further preventing the generation of Hz to the cathode. The present invention provides a fuel cell operating method that increases operating efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、燃料電池の直流出力側に開閉器を介して抵
抗器を設け、燃料電池の運転停止あるいは運転待機時に
アノード系燃料ガスを発電時と同様の、あるいは適量の
不活性ガスで希釈した状態とし、カソード系のみ不活性
ガスによりパージを行い、かつ燃料電池の直流出力側の
抵抗器を投入することによって(第1の発明)、あるい
は前記手段に加え、さらに電池電圧が前記の燃料ガス濃
度、圧力、温度などで定まる濃淡電池起電力より低下し
た時点で前記抵抗器を電気的に切り離すことにより(第
2の発明)、達成される。
The above purpose is to install a resistor on the DC output side of the fuel cell via a switch, and when the fuel cell is stopped or on standby, the anode fuel gas is diluted with the same or appropriate amount of inert gas as used during power generation. By purging only the cathode system with an inert gas and inserting a resistor on the DC output side of the fuel cell (first invention), or in addition to the above means, the cell voltage can be changed to This is achieved by electrically disconnecting the resistor when the electromotive force becomes lower than the concentration battery electromotive force determined by concentration, pressure, temperature, etc. (second invention).

〔作用〕[Effect]

すなわち、燃料電池の運転停止時あるいは電池温度、圧
力などは発電時と同じで一時的に負荷を開放して待機す
る際に、カソード系には不活性ガスをブローし酸化剤を
除去し、さらに電池直流出力側を適当な抵抗器により短
絡することにより残存起電力に従った電流を流し、この
電流によりカソード系に吸着、残存する。2あるいは系
外よりリークする02を電気化学的に消化し、カソード
電位を急速に低下させるようにする。この時、アノード
系には燃料ガスあるいは燃料ガスを一部含有する不活性
ガスを流しておくので、電解質中を移動する荷電体、例
えばリン酸型燃料電池ではH+が十分供給されているの
で、単に不活性ガスのみでブローする場合のように、多
数のセル間で残存外 しているH+の不均一性に前回するセルの電食反応によ
る劣化を完全に防止することができる。
In other words, when the fuel cell is stopped, or when the cell temperature and pressure are the same as during power generation, when the load is temporarily released and standby, the cathode system is blown with inert gas to remove the oxidizing agent, and then By short-circuiting the DC output side of the battery with a suitable resistor, a current according to the remaining electromotive force is caused to flow, and this current attracts and remains on the cathode system. 2 or 02 leaking from outside the system is electrochemically digested to rapidly lower the cathode potential. At this time, since fuel gas or an inert gas partially containing fuel gas is flowed through the anode system, a sufficient amount of charged bodies moving in the electrolyte, such as H+ in a phosphoric acid fuel cell, is supplied. As in the case of simply blowing with an inert gas, it is possible to completely prevent deterioration due to electrolytic corrosion reaction of cells due to non-uniformity of residual H+ among a large number of cells.

次に、上記状態は各セルに対して一種の濃淡電池の状態
を形成することになり、吸着あるいはリークなどにより
残存するOzが完全に消費された後も、アノード、カソ
ード各電極にはガス濃度の差などにより定まる起電力が
それぞれ発生し、この再起電力の差が電池電圧となって
現れ、電流が短絡抵抗を介して流れ続ける。この時5電
解質部ではH+がアノードからカソードに向かって流れ
、このH+の一部は前述の残留02やリーク02の消費
に使用され、残りは再結合してHzガスとしてカソード
側に生成される。この現象は、次に燃料電池を再起動す
る時などに酸化剤を導入する際に燃料電池の安全性を著
しく損なうものであり、燃料電池プラントに装備されて
いる種々の安全装置などの動作によりプラントの遮断な
どを併発し琢 安定なプラントの運転を損ない可動率の低下など燃料電
池発電プラントとして運転効率を著しく低下することに
なる。これに対し、本発明においてはガス濃度、圧力、
温度などによって定まる理論的な濃淡電池の起電力以下
では電池出力側の抵抗器を開閉器により電気的に切り離
すので、残存o2の消費後H+のカソードへの移動は遮
断され、カソード系へのH2の生成を完全に防止するこ
とができる。さらに、系外からの02のリークの増加あ
るいは何らかのトラブルによりカソード系にOxが増加
して電池電圧が濃淡電池の起電力を起した場合には再び
開閉器により抵抗器を投入することによって、o2を再
び消費しカソードポテンシャルを常に電池保護レベル以
下に保持することができる。
Next, the above state forms a kind of concentration battery state for each cell, and even after the remaining Oz is completely consumed due to adsorption or leakage, the gas concentration remains at the anode and cathode electrodes. An electromotive force determined by the difference between the two is generated, and the difference between the electromotive forces appears as the battery voltage, and the current continues to flow through the short-circuit resistor. At this time, in electrolyte section 5, H+ flows from the anode to the cathode, and part of this H+ is used to consume the residual 02 and leaked 02 mentioned above, and the rest is recombined and generated as Hz gas on the cathode side. . This phenomenon significantly impairs the safety of the fuel cell when introducing the oxidizing agent the next time the fuel cell is restarted. This will also lead to plant shutdowns, which will impair stable plant operation, and will significantly reduce the operational efficiency of a fuel cell power plant, such as a reduction in availability. In contrast, in the present invention, gas concentration, pressure,
When the electromotive force of the concentration battery is below the theoretical concentration battery electromotive force determined by temperature, etc., the resistor on the battery output side is electrically disconnected by a switch, so after the remaining O2 is consumed, the movement of H+ to the cathode is blocked, and the H2 to the cathode system is The generation of can be completely prevented. Furthermore, if Ox increases in the cathode system due to an increase in 02 leakage from outside the system or some kind of trouble, and the battery voltage causes an electromotive force of the concentration battery, the resistor can be turned on again using the switch. can be consumed again and the cathode potential can always be kept below the battery protection level.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第5図により説明す
る。1及び2は電池本体を簡略化して示しているが、そ
れぞれアノード部分、カソード部分で、通常の手段によ
って構成された単位電池が積層され、かつそれぞれのガ
ス給排装置を有し電池容器3内に収納されている。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. Reference numerals 1 and 2 show the battery bodies in a simplified manner, and the anode part and the cathode part are stacked with unit batteries constructed by ordinary means, and each has its own gas supply and exhaust device, and the interior of the battery container 3 is shown in FIG. It is stored in.

4.5,6.7はそれぞれ燃料ガス遮断弁、空気遮断弁
、窒素遮断弁、カソード系窒素ブロー弁であり、4,5
.6はそれぞれアノード部分1゜カソード部分2.電池
容器3に配管され、7はカソード部分2に窒素ガスを供
給するため窒素系配管とカソード系配管に接続された弁
である。
4.5 and 6.7 are a fuel gas cutoff valve, an air cutoff valve, a nitrogen cutoff valve, and a cathode nitrogen blow valve, respectively;
.. 6 are anode portion 1° and cathode portion 2. A valve 7 is connected to the nitrogen system piping and the cathode system piping in order to supply nitrogen gas to the cathode portion 2 .

8はアノード部分1と燃料ガス遮断弁の間に配設された
H2センサー、9は電池電圧を計測する電圧計、10は
判別器でありH2センサーの信号等により基準電圧を算
定し、電圧計9の出力と比較判別する機能を有する。
8 is an H2 sensor disposed between the anode part 1 and the fuel gas cutoff valve, 9 is a voltmeter that measures the battery voltage, and 10 is a discriminator that calculates a reference voltage based on the signal of the H2 sensor, etc. It has a function to compare and discriminate with the output of 9.

11は電池の直流出力側に配設された前記説明した抵抗
器、12は抵抗器11を開閉する開閉器、13は電池の
直流出力を交流に変換するインバータである。
Reference numeral 11 designates the above-described resistor disposed on the DC output side of the battery, 12 a switch for opening and closing the resistor 11, and 13 an inverter for converting the DC output of the battery into AC.

以上のような構成において、燃料電池の運転を停止ある
いは一時的に待機する場合、燃料ガス遮断弁4は開状態
のまま適量のガスを流し、カソード系窒素ブロー弁を閉
状態から開状態、空気遮断弁を閉状態としカソード系に
不活性ガスをブローし、電池電圧を低下させる。さらに
、開閉器12を○Nとして電池直流出力側を抵抗器11
により短絡する。このようにすると前述してきたように
カソード部分2などカソード系に残存する02が電気化
学反応により消費されカソード電位が速やかに低下し、
カソード電位を電池保護レベル以下に保持することがで
きる。
In the above configuration, when the operation of the fuel cell is stopped or temporarily on standby, the fuel gas cutoff valve 4 is left open to allow an appropriate amount of gas to flow, and the cathode nitrogen blow valve is changed from the closed state to the open state and the air Close the shutoff valve and blow inert gas into the cathode system to lower the battery voltage. Furthermore, the switch 12 is set to ○N, and the battery DC output side is connected to the resistor 11.
short circuit. In this case, as described above, the 02 remaining in the cathode system such as the cathode part 2 is consumed by electrochemical reaction, and the cathode potential quickly decreases.
The cathode potential can be kept below the battery protection level.

第2図は電池電圧の減衰特性を従来例と本実施例とにつ
いて比較した図である。従来例はアノード系もカソード
系も共に窒素ブローによって電池電圧を低下させる場合
であるが、電圧の減衰特性は指数関数的であり、この時
定数は通常の燃料電池プラントで適切と考えられる窒素
量に対しては、約30分から1時間のオーダーであるこ
とを確認している。一方、鎖線で示した特性は本実施例
の場合であり、抵抗器11の投入により急速に電池電圧
が低下し、即ち電池保護レベル以下とすることができる
。従来例と比較して保護レベル以下となる所要時間は1
・15から1/10以下と大幅に短縮することができ、
カソード電極に使用される基 貴金属触媒の凝集に寄因する性能低下を実用上問題にな
らない程度にまで低減することができた。
FIG. 2 is a diagram comparing the attenuation characteristics of battery voltage between the conventional example and this embodiment. In the conventional example, the cell voltage is lowered by nitrogen blowing for both the anode system and the cathode system, but the voltage attenuation characteristic is exponential, and this time constant is determined by the amount of nitrogen that is considered appropriate for a normal fuel cell plant. We have confirmed that it takes approximately 30 minutes to 1 hour. On the other hand, the characteristic shown by the chain line is the case of this embodiment, and the battery voltage can be rapidly reduced by turning on the resistor 11, that is, it can be made below the battery protection level. Compared to the conventional example, the time required to reach the protection level or lower is 1
・Can be significantly shortened from 15 to 1/10 or less,
It was possible to reduce the performance degradation caused by agglomeration of the noble metal catalyst used in the cathode electrode to a level that does not pose a practical problem.

第3図は保管時の電池電圧の経時変化を示した図である
が、実線で示した本実施例の場合は性能能 低下率は1000%当りO〜1mVとほぼ運用上問題と
ならない程度に抑えることが出来、従来例に比べて17
5〜1/10となることを実験的に確認している。
Figure 3 shows the change in battery voltage over time during storage, and in the case of this example shown by the solid line, the performance degradation rate is 0 to 1 mV per 1000%, which is almost no problem in operation. 17 compared to the conventional example.
It has been experimentally confirmed that the ratio is 5 to 1/10.

第4図は本実施例の電池電圧特性をさらにミクロに調べ
た結果であるが、電池保護レベル以下になった後もさら
に抵抗器11をONの状態にしておくと所定の電池電圧
に到達後一定の電圧を示すどによって定まる各電極の起
電力の差として定まる濃淡電池の起電力であり、電解質
がリン酸である場合には例えばHzが各電極に作用して
濃度差に基づく電気化学反応の差から電池に所定の起電
力がネルンストの定理に従って発生することになる。こ
の時、第4図に示した濃淡電池の起電力以下となる領域
■においてはすでに残存する02も完全に消費されてい
るため、アノードからカソードに向かって電解質中をH
+が移動し、カソード部分2にHzを生成することにな
る。このような状態は電池の再起動時に酸化剤を導入す
る時に極めて安全性を損なうものであり、本実施例に示
した抵抗器11を開閉器12により0FFL、H+の移
動を防止しなければならない。さらに系外からのり−ク
Q2の混入により電池電圧が濃淡電池の起電力を越した
場合には、再び抵抗器11をONして電気化学反応によ
り02を消費すればよい。
FIG. 4 shows the results of a further microscopic examination of the battery voltage characteristics of this example. If the resistor 11 is kept in the ON state even after the voltage drops below the battery protection level, the battery voltage will reach the predetermined voltage. The electromotive force of a concentration battery is determined as the difference in electromotive force between each electrode, which is determined by the fact that the electrolyte exhibits a constant voltage.If the electrolyte is phosphoric acid, for example, Hz acts on each electrode, causing an electrochemical reaction based on the concentration difference. A predetermined electromotive force is generated in the battery according to Nernst's theorem from the difference between the two. At this time, since the remaining 02 has already been completely consumed in the region (2) where the electromotive force of the concentration battery is lower than that shown in Fig. 4, H is passed through the electrolyte from the anode to the cathode.
+ will move and produce Hz in the cathode part 2. Such a state greatly impairs safety when introducing an oxidizing agent when restarting the battery, and the movement of 0FFL and H+ must be prevented by the resistor 11 and switch 12 shown in this embodiment. . Furthermore, if the battery voltage exceeds the electromotive force of the concentration battery due to the incorporation of glue Q2 from outside the system, the resistor 11 may be turned on again to consume 02 through an electrochemical reaction.

第5図は濃淡電池の起電力とH2濃度の関係を調べた結
果である。横軸を対数表示として整理すると濃淡電池の
起電力はアノード系に導入される燃料ガスのH2濃度に
対応しており、Hzセンサー8によりH2濃度を監視す
ることにより濃淡電池の起電力を定めることができ、そ
の電圧レベルを判別器10により電圧計9により測定さ
れる電池電圧と比較することにより、抵抗器11のON
FIG. 5 shows the results of investigating the relationship between the electromotive force of the concentration cell and the H2 concentration. If the horizontal axis is arranged as a logarithm, the electromotive force of the concentration cell corresponds to the H2 concentration of the fuel gas introduced into the anode system, and the electromotive force of the concentration cell can be determined by monitoring the H2 concentration with the Hz sensor 8. By comparing the voltage level with the battery voltage measured by the voltmeter 9 by the discriminator 10, the resistor 11 is turned on.
.

OFFを行い、カソードにHzの生成のない安全な運転
を保持することができる。
OFF, and safe operation without Hz generation at the cathode can be maintained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アノード系に燃料ガスを遮断すること
なく電池直流出力側に設けた抵抗器を投入してカソード
系に吸着残存する。2を電気化学的に消費して電池電圧
を保護レベル以下に急速に下げることができるので、カ
ソード高電位による貴金属触媒の凝集を防止し、かつH
+の欠乏による電池の電食劣化と同時に防止することが
でき、さらに、H2濃度により定まる濃淡電池の起電力
以下で抵抗器を開放するシステムとした場合、カソード
系へのHzの生成を防止でき極めて安全な燃料電池の運
転法を提供できる効果がある6
According to the present invention, the resistor provided on the DC output side of the battery is inserted into the anode system without cutting off the fuel gas, and the fuel gas is adsorbed and remains in the cathode system. 2 can be electrochemically consumed to rapidly lower the cell voltage below the protection level, thus preventing the agglomeration of the precious metal catalyst due to the high cathode potential, and
It is possible to simultaneously prevent electrolytic corrosion deterioration of the battery due to the lack of +.Furthermore, if the system is configured to open the resistor below the electromotive force of the concentration battery determined by the H2 concentration, the generation of Hz in the cathode system can be prevented. It has the effect of providing an extremely safe method of operating fuel cells.6

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す燃料電池本体部の配管
系統図、第2図は電池電圧の減衰特性の比較図、第3図
は保管による電池電圧の低下特性の比較図、第4図は濃
淡電池の起電力の特徴を示す図、第5図は濃淡電池の起
電力のH2濃度依存性を示す図である。 1・・・アノード部分、2・・・カソード部分、3・・
・電池容器、4・・・燃料ガス遮断弁、5・・・空気遮
断弁、6・・・窒素ガス遮断弁、7・・・カソード系窒
素ブロー弁。 8・・・H2センサー、9・・・電圧計、10・・・判
別器。
Fig. 1 is a piping system diagram of the main body of a fuel cell showing an embodiment of the present invention, Fig. 2 is a comparison diagram of battery voltage attenuation characteristics, Fig. 3 is a comparison diagram of battery voltage drop characteristics due to storage, FIG. 4 is a diagram showing the characteristics of the electromotive force of the concentration battery, and FIG. 5 is a diagram showing the dependence of the electromotive force of the concentration battery on H2 concentration. 1... Anode part, 2... Cathode part, 3...
-Battery container, 4...Fuel gas cutoff valve, 5...Air cutoff valve, 6...Nitrogen gas cutoff valve, 7...Cathode system nitrogen blow valve. 8... H2 sensor, 9... Voltmeter, 10... Discriminator.

Claims (1)

【特許請求の範囲】 1、一対のガス拡散電極及びこれらの電極間に挟持され
た電解質層及び各電極へ酸化剤ガス及び燃料ガスを給排
する給排装置を含み、電極間の電気化学反応によって電
気エネルギーを得る燃料電池において、燃料電池の運転
を停止あるいは一時的に負荷を開放し待機する際に、カ
ソード系酸化剤ガスのみ不活性ガスに切替えパージし、
アノード系は燃料ガスを発電時と同等のあるいは適当な
不活性ガスを混入した燃料ガスを流し、燃料電池の直流
出力側を適正な抵抗で短絡することによりカソード電位
を低下させることを特徴とした燃料電池の運転法。 2、一対のガス拡散電極及びこれらの電極間に挟持され
た電解質層及び各電極へ酸化剤ガス及び燃料ガスを給排
する給排装置を含み、電極間の電気化学反応によって電
気エネルギーを得る燃料電池において、燃料電池の運転
を停止あるいは一時的に負荷を開放し待機する際に、カ
ソード系酸化剤ガスのみ不活性ガスに切替えパージし、
アノード系は燃料ガスを発電時と同等のあるいは適当な
不活性ガスを混入した燃料ガスを流し、燃料電池の直流
出力側を適正な抵抗で短絡することによりカソード電位
を低下させ、次いでアノード系燃料ガス濃度、圧力、温
度などにより定まる濃淡電池起電力より、電池電圧が低
下した時点で燃料電池の直流出力側に設けられた抵抗器
を電気的に切り離すことを特徴とした燃料電池の運転法
。 3、H_2センサーでH_2濃度を監視することにより
濃淡電池の起電力を定めることを特徴とする特許請求の
範囲第2項記載の燃料電池の運転法。
[Claims] 1. A gas diffusion electrode including a pair of gas diffusion electrodes, an electrolyte layer sandwiched between these electrodes, and a supply/discharge device for supplying and discharging an oxidizing gas and a fuel gas to each electrode, and an electrochemical reaction between the electrodes. In a fuel cell that obtains electrical energy by
The anode system is characterized by flowing fuel gas equivalent to that used during power generation or mixed with an appropriate inert gas, and lowering the cathode potential by short-circuiting the DC output side of the fuel cell with an appropriate resistance. How to operate a fuel cell. 2. A fuel that includes a pair of gas diffusion electrodes, an electrolyte layer sandwiched between these electrodes, and a supply/discharge device for supplying and discharging oxidizing gas and fuel gas to each electrode, and obtains electrical energy through an electrochemical reaction between the electrodes. In batteries, when stopping fuel cell operation or temporarily removing the load and waiting, only the cathode oxidizing gas is switched to an inert gas and purged.
In the anode system, fuel gas equivalent to that used during power generation or mixed with an appropriate inert gas is flowed, and the cathode potential is lowered by short-circuiting the DC output side of the fuel cell with an appropriate resistance. A fuel cell operating method characterized by electrically disconnecting a resistor provided on the DC output side of the fuel cell when the cell voltage drops due to the concentration cell electromotive force determined by gas concentration, pressure, temperature, etc. 3. The method of operating a fuel cell according to claim 2, characterized in that the electromotive force of the concentration cell is determined by monitoring the H_2 concentration with an H_2 sensor.
JP62285388A 1987-11-13 1987-11-13 How to operate a fuel cell Expired - Fee Related JPH0690932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285388A JPH0690932B2 (en) 1987-11-13 1987-11-13 How to operate a fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285388A JPH0690932B2 (en) 1987-11-13 1987-11-13 How to operate a fuel cell

Publications (2)

Publication Number Publication Date
JPH01128362A true JPH01128362A (en) 1989-05-22
JPH0690932B2 JPH0690932B2 (en) 1994-11-14

Family

ID=17690894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285388A Expired - Fee Related JPH0690932B2 (en) 1987-11-13 1987-11-13 How to operate a fuel cell

Country Status (1)

Country Link
JP (1) JPH0690932B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044570A (en) * 1990-04-23 1992-01-09 Hitachi Ltd Method for operating fuel cell and its power generating system
JP2005228481A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Fuel cell
JP2006024546A (en) * 2004-06-08 2006-01-26 Mitsubishi Electric Corp Operation method of fuel cell
FR2873498A1 (en) * 2004-07-20 2006-01-27 Conception & Dev Michelin Sa STOPPING A FUEL CELL SUPPLIED WITH PURE OXYGEN
JP2006127795A (en) * 2004-10-26 2006-05-18 Nissan Motor Co Ltd Shutdown and storage method of fuel cell system
CN100344023C (en) * 2004-06-08 2007-10-17 三菱电机株式会社 Method of operating fuel cell
US8110311B2 (en) 2005-11-30 2012-02-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system
FR2969393A1 (en) * 2010-12-15 2012-06-22 Helion Method for inerting fuel cell electrically connected to electric load, involves injecting inert fluid into cathodic conduit of cell of fuel cell, and injecting reducer fluid into anodic conduit of cell
CN109962269A (en) * 2019-04-11 2019-07-02 北京亿华通科技股份有限公司 Fuel cell is lengthened the life system and method
CN112864424A (en) * 2021-03-29 2021-05-28 武汉理工大学 Method for quickly activating proton exchange membrane fuel cell
CN115000466A (en) * 2022-06-29 2022-09-02 北京亿华通科技股份有限公司 Long-time storage method of fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DESCRIPTION OF A GENERIC 11-MW FUEL CELL POWER PLANT FOR UTILITY APPLICATIONS=1983 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044570A (en) * 1990-04-23 1992-01-09 Hitachi Ltd Method for operating fuel cell and its power generating system
JP2005228481A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Fuel cell
CN100344023C (en) * 2004-06-08 2007-10-17 三菱电机株式会社 Method of operating fuel cell
JP2006024546A (en) * 2004-06-08 2006-01-26 Mitsubishi Electric Corp Operation method of fuel cell
US7749623B2 (en) 2004-06-08 2010-07-06 Mitsubishi Denki Kabushiki Kaisha Method of controlling fuel cell system
FR2873498A1 (en) * 2004-07-20 2006-01-27 Conception & Dev Michelin Sa STOPPING A FUEL CELL SUPPLIED WITH PURE OXYGEN
WO2006012954A1 (en) * 2004-07-20 2006-02-09 Conception Et Developpement Michelin S.A. Stopping a fuel cell supplied with pure oxygen
US7901821B2 (en) 2004-07-20 2011-03-08 Conception Et Developpement Michelin S.A. Stopping a fuel cell supplied with pure oxygen
JP2006127795A (en) * 2004-10-26 2006-05-18 Nissan Motor Co Ltd Shutdown and storage method of fuel cell system
US8110311B2 (en) 2005-11-30 2012-02-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system
FR2969393A1 (en) * 2010-12-15 2012-06-22 Helion Method for inerting fuel cell electrically connected to electric load, involves injecting inert fluid into cathodic conduit of cell of fuel cell, and injecting reducer fluid into anodic conduit of cell
CN109962269A (en) * 2019-04-11 2019-07-02 北京亿华通科技股份有限公司 Fuel cell is lengthened the life system and method
CN112864424A (en) * 2021-03-29 2021-05-28 武汉理工大学 Method for quickly activating proton exchange membrane fuel cell
CN115000466A (en) * 2022-06-29 2022-09-02 北京亿华通科技股份有限公司 Long-time storage method of fuel cell

Also Published As

Publication number Publication date
JPH0690932B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JP4907861B2 (en) Fuel cell power generation system, its stop storage method, stop storage program
JP4630064B2 (en) System and method for determining gas composition in a fuel cell power plant that has been shut down
JPH10144334A (en) Fuel cell system power plant, and starting and stopping method therefor
CN1522476A (en) Shut-down procedure for hydrogen-air fuel cell system
JP2006147550A (en) Fuel cell system, and its stopping, retaining and starting method, and stopping, retaining and starting program
JP2007323954A (en) Fuel cell system, and control method thereof
US7709119B2 (en) Method for operating fuel cell
JPH01128362A (en) Operating method for fuel cell
JPH1126003A (en) Power generation stopping method for fuel cell power generating system
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
JP2593195B2 (en) How to stop operation of fuel cell
JP2002324564A (en) Fuel cell device and control method therefor
JP4772470B2 (en) Fuel cell system
JP2011076818A (en) Fuel battery power generation system and method for operating the same
JP2007109529A (en) Method of controlling fuel cell power generation system
JPH05251102A (en) Phospholic acid type fuel cell power generating plant
JP2002050372A (en) Fuel cell purge device
JPH08222259A (en) Stopping method of fuel cell power generation plant
JP2005276669A (en) Fuel cell system
JPH01200567A (en) Power generation system of fuel cell
JP2542096B2 (en) How to stop the fuel cell
JPH07249424A (en) Phosphoric acid fuel cell power generating plant
JP2931372B2 (en) Operating method of fuel cell power generation system
JP2007265910A (en) Fuel cell system and its operation method
JP2001216990A (en) Method and device for operating generator for solid high polymer fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees