JPH0690932B2 - How to operate a fuel cell - Google Patents

How to operate a fuel cell

Info

Publication number
JPH0690932B2
JPH0690932B2 JP62285388A JP28538887A JPH0690932B2 JP H0690932 B2 JPH0690932 B2 JP H0690932B2 JP 62285388 A JP62285388 A JP 62285388A JP 28538887 A JP28538887 A JP 28538887A JP H0690932 B2 JPH0690932 B2 JP H0690932B2
Authority
JP
Japan
Prior art keywords
gas
fuel cell
cathode
fuel
resistor circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62285388A
Other languages
Japanese (ja)
Other versions
JPH01128362A (en
Inventor
淳 幹
俊明 嶽本
昇平 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62285388A priority Critical patent/JPH0690932B2/en
Publication of JPH01128362A publication Critical patent/JPH01128362A/en
Publication of JPH0690932B2 publication Critical patent/JPH0690932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池の運転法に係り、特に、燃料電池の性
能を長期に亘って安定に保持すると同時に電池の運転を
安全に保つのに好適な燃料電池の運転法に関する。
Description: TECHNICAL FIELD The present invention relates to a method of operating a fuel cell, and more particularly, to keeping the performance of the fuel cell stable for a long time and at the same time keeping the operation of the cell safe. The present invention relates to a preferable fuel cell operation method.

〔従来の技術〕[Conventional technology]

従来の燃料電池の運転では、発電状態から停止,保管状
態へ移行する際に、アノード,カソード系共反応ガスを
不活性ガスに置換し電位を低下させていた。また、特開
昭61-32362号に記載のように、不活性ガスパージ中に継
続的に抵抗体を接続することにより電位の低下に要する
時間を短縮するようになっていた。
In the operation of a conventional fuel cell, the anode / cathode system co-reactive gas is replaced with an inert gas to reduce the potential when the power generation state is stopped and the storage state is changed. Further, as described in JP-A-61-32362, by continuously connecting the resistor during the inert gas purge, the time required for lowering the potential has been shortened.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、運転状態から停止する過程において、
アノード及びカソード系にそれぞれ不活性ガスをパージ
して反応ガスの直接混合を防止しながら、電池電圧を低
下させるものであるが、特に運転温度のような高温状態
では電極に使用される貴金属触媒の劣化が大きく、急速
に電池電圧を低下させなければならないにもかかわらず
電池保護レベルまでに低下するのに長期間要し、触媒劣
化のみならず、電池停止工程も長くなるという問題があ
った。さらに、不活性ガスによるパージのみではカソー
ドに吸着残存するO2成分、あるいはアノード系へ漏洩す
るO2成分などを完全に置換することは困難で、各電極の
ポテンシャルを十分に低減できず触媒劣化を完全には防
止できないという問題点があった。
The above-mentioned conventional technology, in the process of stopping from the operating state,
The anode and cathode systems are each purged with an inert gas to prevent the reaction gas from being directly mixed, while lowering the battery voltage. In particular, at high temperatures such as operating temperature, the noble metal catalyst used in the electrode There is a problem that it takes a long time to fall to the battery protection level even though the battery is greatly deteriorated and the battery voltage has to be rapidly lowered, and not only the catalyst deterioration but also the battery stopping step becomes long. Furthermore, the only purging with an inert gas it is difficult to completely replace such as O 2 component that leaks O 2 component adsorbed remaining in the cathode or to the anode system, the catalyst deterioration can not be sufficiently reduced the potential of each electrode There is a problem in that it cannot be completely prevented.

特開昭61-32362号によれば電池出力側を抵抗体により短
絡し、この時に流れる短絡電流により急速に残存O2を消
費させ、電池電圧の低下時間を大幅に短縮しようとする
ものであるが、燃料ガスも不活性ガスにより置換されて
おり、残存しているH+ の多少により各セルの電圧に
不均衡が生じ、H+ がはやく消失したセルが電食反応
により劣化するという問題があった。
According to Japanese Patent Laid-Open No. 61-32362, the battery output side is short-circuited by a resistor, and the short-circuit current flowing at this time rapidly consumes the residual O 2 to significantly reduce the battery voltage drop time. However, the fuel gas is also replaced by an inert gas, and the voltage of each cell becomes unbalanced depending on the amount of remaining H +, and there was a problem that the cell in which H + disappeared quickly deteriorates due to the electrolytic corrosion reaction. .

特開昭59-75569号には常温で保管する場合にアノード及
びカソード電極にH2を含むN2ガスを封入する方法が開示
されているが、カソード系へもH2を混入するため、残存
するO2と直接燃焼反応によりO2を消費することになり、
電極触媒層などに損傷を与えるという問題があった。さ
らに、この公知例は常温での保管法に関するもので、燃
料電池の運転時にそのまま適用するには高温となるだけ
さらに安全上の問題が生じる危険性が大きかった。
Japanese Unexamined Patent Publication No. 59-75569 discloses a method of enclosing N 2 gas containing H 2 in the anode and cathode electrodes when it is stored at room temperature, but since H 2 is mixed in the cathode system, it remains. will consume O 2 by direct combustion reacts with O 2 to,
There is a problem that the electrode catalyst layer and the like are damaged. Further, this known example relates to a storage method at room temperature, and if it is applied as it is when the fuel cell is operating, there is a great risk that a safety problem will occur as the temperature becomes higher.

本発明の目的は短時間でかつ電極の電食劣化を伴なわ
ず、本質的に安全に電極電位を低下させ、電池停止過程
あるいは待機,保管時に発生する電池性能の低下を極少
となるように抑えることによって、あるいはさらにカソ
ードへのH2の生成を防止することによって燃料電池プラ
ントを安全かつ安定に保って運転効率を高める燃料電池
の運転法を提供するものである。
An object of the present invention is to reduce the electrode potential in an essentially safe manner in a short time and without deterioration of electrolytic corrosion of the electrode, and to minimize the deterioration of the battery performance that occurs during the battery shutdown process or standby, storage. A method of operating a fuel cell is provided that keeps the fuel cell plant safe and stable to improve the operating efficiency by suppressing or further preventing the generation of H 2 at the cathode.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、燃料電池の直流出力側に開閉器を介して抵
抗器回路を設け、燃料電池の運転停止あるいは運転待機
時にアノード系燃料ガスを発電時と同量の、あるいは適
量の不活性ガスで希釈した状態とし、カノード系のみ不
活性ガスによりパージを行い、かつ燃料電池の直流出力
側の抵抗器回路を投入することによって(第1の発
明)、あるいは前記手段に加え、さらに電池電圧が濃淡
電池作用によりカソード側に水素ガスを発生させる起電
力レベルよりも低くなった時点で前記抵抗器回路を電気
的に切り離すことにより(第2の発明)、達成される。
The purpose of the above is to provide a resistor circuit on the DC output side of the fuel cell through a switch so that when the fuel cell is stopped or in standby, the amount of the anode fuel gas is the same as that during power generation, or an appropriate amount of inert gas. In the diluted state, purging only the cathode system with an inert gas, and turning on the resistor circuit on the DC output side of the fuel cell (first invention), or in addition to the above means, the cell voltage This is achieved by electrically disconnecting the resistor circuit (second invention) when the voltage becomes lower than the electromotive force level for generating hydrogen gas on the cathode side due to the cell action.

〔作用〕[Action]

すなわち、燃料電池の運転停止時あるいは電池温度,圧
力などは発電時と同じで一時的に負荷を開放して待機す
る際に、カソード系には不活性ガスをブローし酸化剤を
除去し、さらに電池直流出力側を適当な抵抗器回路によ
り短絡することにより残存起電力に従った電流を流し、
この電流によりカソード系に吸着,残存するO2あるいは
系外よりリークするO2を電気化学的に消化し、カソード
電位を急速に低下させるようにする。この時、アノード
系には燃料ガスあるいは燃料ガスを一部含有する不活性
ガスを流しておくので、電解質中を移動する荷電体、例
えばリン酸型燃料電池ではH+ が十分供給されている
ので、単に不活性ガスのみでブローする場合のように、
多数のセル間で残存しているH+ の不均一性に基因す
るセルの電食反応による劣化を完全に防止することがで
きる。
That is, when the fuel cell is stopped or the temperature and pressure of the fuel cell are the same as those during power generation, the cathode system is blown with an inert gas to remove the oxidizer when the load is temporarily released and waiting. By short-circuiting the DC output side of the battery with an appropriate resistor circuit, flow a current according to the residual electromotive force,
Adsorbed by the current to the cathode system, the O 2 to leak from the O 2 or outside the system remaining electrochemically digested, so as rapidly to lower the cathode potential. At this time, a fuel gas or an inert gas containing a part of the fuel gas is allowed to flow in the anode system, so that a charged body moving in the electrolyte, for example, a phosphoric acid fuel cell, is sufficiently supplied with H +. As in the case of blowing only with an inert gas,
It is possible to completely prevent the deterioration of the cells due to the electrolytic corrosion reaction due to the nonuniformity of H + remaining among a large number of cells.

次に、上記状態は各セルに対して一種の濃淡電池の状態
を形成することにより、吸着あるいはリークなどにより
残存するO2が完全に消費された後も、アノード,カソー
ド各電極にはガス濃度の差などにより定まる起電力がそ
れぞれ発生し、この両起電力の差が電池電圧となって現
れ、電流が短絡抵抗を介して流れ続ける。この時、電解
質部ではH+ がアノードからカソードに向かって流
れ、このH+ の一部は前述の残留O2やリークO2の消費
に使用され、残りは再結合してH2ガスとしてカソード側
に生成される。この現象は、次に燃料電池を再起動する
時などに酸化剤を導入する際に燃料電池の安全性を著し
く損なうものであり、燃料電池プラントに装備されてい
る種々の安全装置などの動作によりプラントの遮断など
を併発し安定なプラントの運転を損ない稼動率の低下な
ど燃料電池発電プラントとして運転効率を著しく低下す
ることになる。これに対し、本発明においてはガス濃
度,圧力,温度などによって定まる理論的な濃淡電池の
起電力以下では電池出力側の抵抗器回路を開閉器により
電気的に切り離すので、残存O2の消費後H+ のカソー
ドへの移動は遮断され、カソード系へのH2の生成を完全
に防止することができる。さらに、系外からのO2のリー
クの増加あるいは何らかのトラブルによりカソード系に
O2が増加して電池電圧が濃淡電池の起電力を越した場合
には再び開閉器により抵抗器を投入することによって、
O2を再び消費しカソードポテンシヤルを常に電池保護レ
ベル以下に保持することができる。
Next, in the above state, by forming a kind of concentration cell state for each cell, even if the residual O 2 is completely consumed due to adsorption or leakage, the gas concentration at the anode and cathode electrodes is increased. An electromotive force that is determined by the difference between the two is generated, and the difference between the two electromotive forces appears as a battery voltage, and the current continues to flow through the short-circuit resistance. At this time, in the electrolyte part, H + flows from the anode to the cathode, a part of this H + is used for consumption of the above-mentioned residual O 2 and leak O 2 , and the rest is recombined to the cathode side as H 2 gas. Is generated. This phenomenon significantly impairs the safety of the fuel cell when the oxidant is introduced when the fuel cell is restarted next time, and is caused by the operation of various safety devices equipped in the fuel cell plant. The operation efficiency of the fuel cell power generation plant will be significantly reduced, such as the interruption of the plant, the impaired stable operation of the plant, and the lowered operation rate. On the other hand, in the present invention, since the resistor circuit on the battery output side is electrically disconnected by the switch below the theoretical concentration battery electromotive force determined by the gas concentration, pressure, temperature, etc., after consumption of residual O 2 The transfer of H + to the cathode is blocked, and H 2 generation in the cathode system can be completely prevented. Furthermore, due to an increase in O 2 leakage from the outside of the system or some trouble,
When O 2 increases and the battery voltage exceeds the electromotive force of the concentration battery, by turning on the resistor with the switch again,
O 2 can be consumed again to keep the cathode potential below the cell protection level at all times.

〔実施例〕 以下、本発明の一実施例を第1図〜第5図により説明す
る。1及び2は電池本体を簡略化して示しているが、そ
れぞれアノード部分,カソード部分で、通常の手段によ
って構成された単位電池が積層され、かつそれぞれのガ
ス給排装置を有し電池容器3内に収納されている。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. 1 and 2 show the battery main body in a simplified manner, but the anode part and the cathode part are respectively laminated with unit batteries constituted by a normal means, and each has a gas supply / discharge device and inside the battery container 3. It is stored in.

4,5,6,7はそれぞれ燃料ガス遮断弁,空気遮断弁,窒素
遮断弁,カソード系窒素ブロー弁であり、4,5,6はそれ
ぞれアノード部分1,カソート部分2,電池容器3に配管さ
れ、7はカソード部分2に窒素ガス供給するため窒素系
配管とカソード系配管に接続された弁である。
4, 5, 6 and 7 are a fuel gas cutoff valve, an air cutoff valve, a nitrogen cutoff valve, and a cathode nitrogen blow valve, respectively, and 4, 5 and 6 are respectively connected to the anode part 1, the caustic part 2 and the battery container 3. Reference numeral 7 is a valve connected to the nitrogen system pipe and the cathode system pipe for supplying nitrogen gas to the cathode portion 2.

8はアノード部分1と燃料ガス遮断弁の間に配設された
H2センサー、9は電池電圧を計測する電圧計、10は判別
器でありH2センサーの信号等により基準電圧を算定し、
電圧計9の出力と比較判別する機能を有する。
8 is disposed between the anode part 1 and the fuel gas cutoff valve
H 2 sensor, 9 is a voltmeter that measures the battery voltage, 10 is a discriminator, which calculates the reference voltage from the signal of the H 2 sensor,
It has a function of comparing with the output of the voltmeter 9.

11は電池の直流出力側に配設された前記説明した抵抗器
回路、12は抵抗器回路11を開閉する開閉器、13は電池の
直流出力を交流に変換するインバータである。
Reference numeral 11 is the above-described resistor circuit arranged on the DC output side of the battery, 12 is a switch for opening and closing the resistor circuit 11, and 13 is an inverter for converting the DC output of the battery into AC.

以上のような構成において、燃料電池の運転を停止ある
いは一時的に待機する場合、燃料ガス遮断弁4は開状態
のまま適量のガスを流し、カソード系窒素ブロー弁を閉
状態から開状態、空気遮断弁を閉状態としカソード系に
不活性ガスをブローし、電池電圧を低下させる。さら
に、開閉器12をONとして電池直流出力側を抵抗器回路11
により短絡する。このようにすると前述してきたように
カソード部分2などカソード系に残存するO2が電気化学
反応により消費されカソード電位が速やかに低下し、カ
ソード電位を電池保護レベル以下に保持することができ
る。
In the above configuration, when the operation of the fuel cell is stopped or temporarily stands by, the fuel gas cutoff valve 4 is allowed to flow an appropriate amount of gas while being in the open state, and the cathode nitrogen blow valve is in the open state to the open state. The shut-off valve is closed and the cathode system is blown with an inert gas to lower the battery voltage. Further, the switch 12 is turned on and the battery DC output side is connected to the resistor circuit 11
Short circuit. By doing so, as described above, the O 2 remaining in the cathode system such as the cathode portion 2 is consumed by the electrochemical reaction, the cathode potential is rapidly lowered, and the cathode potential can be kept below the battery protection level.

第2図は電池電圧の減衰特性を従来例と本実施例とにつ
いて比較した図である。従来例はアノード系もカソード
系も共に窒素ブローによって電池電圧を低下させる場合
であるが、電圧の減衰特性は指数関数的であり、この時
定数は通常の燃料電池プラントで適切と考えられる窒素
量に対しては、約30分から1時間のオーダーであること
を確認している。一方、鎖線で示した特性は本実施例の
場合であり、抵抗器回路11の投入により急速に電池電圧
が低下し、即ち電池保護レベル以下とすることができ
る。従来例と比較して保護レベル以下となる所要時間は
1/5から1/10以下と大幅に短縮することができ、カソー
ド電極に使用される貴金属触媒の凝集に基因する性能低
下を実用上問題にならない程度にまで低減することがで
きた。
FIG. 2 is a diagram comparing the attenuation characteristics of the battery voltage between the conventional example and the present embodiment. The conventional example is a case where both the anode system and the cathode system lower the cell voltage by nitrogen blowing, but the voltage decay characteristic is exponential, and this time constant is the nitrogen amount considered to be appropriate in a normal fuel cell plant. We have confirmed that the order is about 30 minutes to 1 hour. On the other hand, the characteristic indicated by the chain line is the case of this embodiment, and the battery voltage can be rapidly lowered by turning on the resistor circuit 11, that is, the battery protection level or less. Compared with the conventional example, the time required to be below the protection level is
It was able to be greatly shortened from 1/5 to 1/10 or less, and the performance deterioration due to the aggregation of the noble metal catalyst used for the cathode electrode could be reduced to such an extent that it would not be a practical problem.

第3図は保管時の電池電圧の経時変化を示した図である
が、実線で示した本実施例の場合は性能低下率は1000ha
当り0〜1mVとほぼ運用上問題とならない程度に抑える
ことが出来、従来例に比べて1/5〜1/10となることを実
験的に確認している。
FIG. 3 is a diagram showing the change with time of the battery voltage during storage. In the case of this example shown by the solid line, the performance deterioration rate is 1000 ha.
It has been experimentally confirmed that it can be suppressed to a level of 0 to 1 mV per operation, which is not a problem in operation, and is 1/5 to 1/10 that of the conventional example.

第4図は本実施例の電池電圧特性をさらにミクロに調べ
た結果であるが、電池保護レベル以下になった後もさら
に抵抗器回路11をONの状態にしておくと所定の電池電圧
に到達後一定の電圧を示すようになる。この電圧レベル
がアノード部分1及びカソード部分2における流入ガス
成分,濃度などによって定まる各電極の起電力の差とし
て定まる濃淡電池の起電力であり、電解質がリン酸であ
る場合には例えばH2が各電極に作用して濃度差に基づく
電気化学反応の差から電池に所定の起電力がネルンスト
の定理に従って発生することになる。この時、第4図に
示した濃淡電池の起電力以下となる領域IIにおいてはす
でに残存するO2も完全に消費されているため、アノード
からカソードに向かって電解質中をH+ が移動し、カ
ソード部分2にH2を生成することになる。このような状
態は電池の再起動時に酸化剤を導入する時に極めて安全
性を損なうものであり、本実施例に示した抵抗器回路11
を開閉器12によりOFFし、H+ の移動を防止しなけれ
ばならない。さらに系外からのリークO2の混入により電
池電圧が濃淡電池の起電力を越した場合には、再び抵抗
器回路11をONして電気化学反応によりO2を消費すればよ
い。
FIG. 4 shows the result of further microscopic examination of the battery voltage characteristic of this embodiment. When the resistor circuit 11 is kept in the ON state even after the battery protection level is reached, the predetermined battery voltage is reached. After that, a constant voltage is shown. This voltage level is the electromotive force of the concentration battery which is determined as the difference in the electromotive force of each electrode determined by the inflowing gas component and concentration in the anode part 1 and the cathode part 2, and when the electrolyte is phosphoric acid, for example, H 2 is A predetermined electromotive force is generated in the battery according to Nernst's theorem from the difference in the electrochemical reaction acting on each electrode based on the concentration difference. At this time, in the region II below the electromotive force of the concentration battery shown in FIG. 4, the remaining O 2 is completely consumed, so that H + moves in the electrolyte from the anode to the cathode, H 2 will be generated in part 2. Such a state extremely impairs safety when introducing an oxidizer when the battery is restarted, and the resistor circuit 11 shown in this embodiment is used.
Switch 12 must be turned off to prevent H + from moving. Furthermore, when the battery voltage exceeds the electromotive force of the concentration battery due to leakage O 2 from the outside of the system, the resistor circuit 11 may be turned on again to consume O 2 by an electrochemical reaction.

第5図は濃淡電池の起電力とH2濃度の関係を調べた結果
である。横軸を対数表示として整理すると濃淡電池の起
電力はアノード系に導入される燃料ガスのH2濃度に対応
しており、H2センサ−8によりH2濃度を監視することに
より濃淡電池の起電力を定めることができ、その電圧レ
ベルを判別器10にり電圧計9により測定される電池電圧
と比較することにより、抵抗器回路11のON,OFFを行い、
カソードにH2の生成のない安全な運転を保持することが
できる。
Fig. 5 shows the results of examining the relationship between the electromotive force of the concentration cell and the H 2 concentration. To summarize the horizontal axis as logarithmic electromotive force of the concentration cell corresponds in H 2 concentration of the fuel gas introduced into the anode system, cause concentration cell by monitoring the concentration of H 2 with H 2 sensor -8 The power can be determined, and the resistor circuit 11 is turned on and off by comparing the voltage level with the battery voltage measured by the discriminator 10 and the voltmeter 9.
It is possible to maintain safe operation without H 2 production at the cathode.

〔発明の効果〕〔The invention's effect〕

本発明によれば、アノード系に燃料ガスを遮断すること
なく電池直流出力側に設けた抵抗器回路を投入してカソ
ード系に吸着残存するO2を電気化学的に消費して電池電
圧を保護レベル以下に急速に下げることができるので、
カソード高電位による貴金属触媒の凝集を防止し、かつ
H+ の欠乏による電池の電食劣化と同時に防止するこ
とができ、さらに、H2濃度により定まる濃淡電池の起電
力以下で抵抗器回路を開放するシステムとした場合、カ
ソード系へのH2の生成を防止でき極めて安全な燃料電池
の運転法を提供できる効果がある。
According to the present invention, a resistor circuit provided on the DC output side of a cell is turned on without shutting off fuel gas to the anode system to electrochemically consume O 2 remaining adsorbed on the cathode system to protect the cell voltage. You can quickly drop below the level,
It is possible to prevent the aggregation of the noble metal catalyst due to the high potential of the cathode, and to prevent it at the same time as the electrolytic corrosion deterioration of the battery due to the deficiency of H +. Furthermore, open the resistor circuit below the electromotive force of the concentration battery determined by the H 2 concentration. When used as a system, it is possible to prevent the generation of H 2 in the cathode system and to provide an extremely safe fuel cell operation method.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す燃料電池本体部の配管
系統図、第2図は電池電圧の減衰特性の比較図、第3図
は保管による電池電圧の低下特性の比較図、第4図は濃
淡電池の起電力の特徴を示す図、第5図は濃淡電池の起
電力のH2濃度依存性を示す図である。 1……アノード部分、2……カソード部分、3……電池
容器、4……燃料ガス遮断弁、5……空気遮断弁、6…
…窒素ガス遮断弁、7……カソード系窒素ブロー弁、8
……H2センサー、9……電圧計、10……判別器、11……
抵抗器、12……開閉器、13……インバータ。
FIG. 1 is a piping system diagram of a fuel cell body showing an embodiment of the present invention, FIG. 2 is a comparison diagram of attenuation characteristics of cell voltage, FIG. 3 is a comparison diagram of reduction characteristics of cell voltage due to storage, FIG. FIG. 4 is a diagram showing the characteristics of the electromotive force of the concentration cell, and FIG. 5 is a diagram showing the H 2 concentration dependence of the electromotive force of the concentration cell. 1 ... Anode part, 2 ... Cathode part, 3 ... Battery container, 4 ... Fuel gas shutoff valve, 5 ... Air shutoff valve, 6 ...
… Nitrogen gas shutoff valve, 7 …… Cathode nitrogen blow valve, 8
...... H 2 sensor, 9 ...... voltmeter, 10 ...... discriminator, 11 ......
Resistor, 12 ... Switch, 13 ... Inverter.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一対のガス拡散電極及びこれらの電極間に
挟持された電解質層及び各電極へ酸化剤ガス及び燃料ガ
スを給排する給排装置を含み、電極間の電気化学反応に
よって電気エネルギーを得る燃料電池の直流出力側に、
開閉器を備した抵抗器回路を並列に接続した構成を有す
る燃料電池を運転する方法において、燃料電池の運転を
停止あるいは一時的に負荷を開放し待機する際に、カソ
ード系酸化剤ガスのみを不活性ガスに切り換えパージ
し、アノード系は燃料ガスを発電時と同量のあるいは適
当な不活性ガスを混入した燃料ガスを流し、前記抵抗器
回路の開閉器を投入することによりカソード電位を低下
させることを特徴とした燃料電池の運転法。
1. A pair of gas diffusion electrodes, an electrolyte layer sandwiched between these electrodes, and a supply / discharge device for supplying / discharging an oxidant gas and a fuel gas to / from each electrode, and electric energy is generated by an electrochemical reaction between the electrodes. On the DC output side of the fuel cell,
In a method of operating a fuel cell having a configuration in which a resistor circuit equipped with a switch is connected in parallel, when the operation of the fuel cell is stopped or the load is temporarily released and waiting, only the cathode oxidant gas is supplied. After switching to an inert gas and purging, the anode system is made to flow the same amount of fuel gas as when generating power, or a fuel gas mixed with an appropriate inert gas is made to flow, and the cathode potential is lowered by turning on the switch of the resistor circuit. A method of operating a fuel cell characterized by:
【請求項2】一対のガス拡散電極及びこれらの電極間に
挟持された電解質層及び各電極へ酸化剤ガス及び燃料ガ
スを給排する給排装置を含み、電極間の電気化学反応に
よって電気エネルギーを得る燃料電池の直流出力側に、
開閉器を備した抵抗器回路を並列に接続した構成を有す
る燃料電池を運転する方法において、燃料電池の運転を
停止あるいは一時的に負荷を開放し待機する際に、カソ
ード系酸化剤ガスのみを不活性ガスに切り換えパージ
し、アノード系は燃料ガスを発電時と同量のあるいは適
当な不活性ガスを混入した燃料ガスを流し、前記抵抗器
回路の開閉器を投入することによりカソード電位を低下
させ、次いで濃淡電池作用によりカソード側に水素ガス
を発生させる起電力レベルよりも電池電圧が低くなった
時点で燃料電池の直流出力側に設けられた抵抗器回路を
電気的に切り離すことを特徴とした燃料電池の運転法。
2. A pair of gas diffusion electrodes, an electrolyte layer sandwiched between these electrodes, and a supply / discharge device for supplying / discharging an oxidant gas and a fuel gas to / from each electrode, wherein electric energy is generated by an electrochemical reaction between the electrodes. On the DC output side of the fuel cell,
In a method of operating a fuel cell having a configuration in which a resistor circuit equipped with a switch is connected in parallel, when the operation of the fuel cell is stopped or the load is temporarily released and waiting, only the cathode oxidant gas is supplied. After switching to an inert gas and purging, the anode system is made to flow the same amount of fuel gas as when generating power, or a fuel gas mixed with an appropriate inert gas is made to flow, and the cathode potential is lowered by turning on the switch of the resistor circuit. And then electrically disconnecting the resistor circuit provided on the DC output side of the fuel cell when the cell voltage becomes lower than the electromotive force level for generating hydrogen gas on the cathode side due to the action of the concentration cell. Fuel cell operation method
JP62285388A 1987-11-13 1987-11-13 How to operate a fuel cell Expired - Fee Related JPH0690932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285388A JPH0690932B2 (en) 1987-11-13 1987-11-13 How to operate a fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285388A JPH0690932B2 (en) 1987-11-13 1987-11-13 How to operate a fuel cell

Publications (2)

Publication Number Publication Date
JPH01128362A JPH01128362A (en) 1989-05-22
JPH0690932B2 true JPH0690932B2 (en) 1994-11-14

Family

ID=17690894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285388A Expired - Fee Related JPH0690932B2 (en) 1987-11-13 1987-11-13 How to operate a fuel cell

Country Status (1)

Country Link
JP (1) JPH0690932B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828230B2 (en) * 1990-04-23 1996-03-21 株式会社日立製作所 Fuel cell operating method and power generation system thereof
JP2005228481A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Fuel cell
CN100344023C (en) * 2004-06-08 2007-10-17 三菱电机株式会社 Method of operating fuel cell
JP2006024546A (en) 2004-06-08 2006-01-26 Mitsubishi Electric Corp Operation method of fuel cell
FR2873498B1 (en) 2004-07-20 2007-08-10 Conception & Dev Michelin Sa STOPPING A FUEL CELL SUPPLIED WITH PURE OXYGEN
JP4839596B2 (en) * 2004-10-26 2011-12-21 日産自動車株式会社 Stopping storage method of fuel cell system
JP2007149574A (en) 2005-11-30 2007-06-14 Toyota Motor Corp Fuel cell system
FR2969393B1 (en) * 2010-12-15 2013-07-26 Helion METHOD FOR INERTING A COMBUSTIBLE FUEL CELL
CN109962269A (en) * 2019-04-11 2019-07-02 北京亿华通科技股份有限公司 Fuel cell is lengthened the life system and method
CN112864424A (en) * 2021-03-29 2021-05-28 武汉理工大学 Method for quickly activating proton exchange membrane fuel cell
CN115000466B (en) * 2022-06-29 2023-07-14 北京亿华通科技股份有限公司 Long-term storage method of fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DESCRIPTION OF A GENERIC 11-MW FUEL CELL POWER PLANT FOR UTILITY APPLICATIONS=1983 *

Also Published As

Publication number Publication date
JPH01128362A (en) 1989-05-22

Similar Documents

Publication Publication Date Title
JP4907861B2 (en) Fuel cell power generation system, its stop storage method, stop storage program
KR102219191B1 (en) Redox flow battery system, monitoring method for redox flow battery and control method for redox flow battery
JPH06333586A (en) Method for stopping fuel cell
JPWO2005078844A1 (en) Fuel cell system and method for removing residual fuel gas
JPH10144334A (en) Fuel cell system power plant, and starting and stopping method therefor
JPH0690932B2 (en) How to operate a fuel cell
JP4742444B2 (en) Fuel cell device
US20090263679A1 (en) Shutdown operations for an unsealed cathode fuel cell system
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
JP5158398B2 (en) Operation method of fuel cell
JP2007109529A (en) Method of controlling fuel cell power generation system
JP2007141758A (en) Fuel cell system
JPH05251102A (en) Phospholic acid type fuel cell power generating plant
JPH01200567A (en) Power generation system of fuel cell
JPS6398710A (en) Voltage control circuit for fuel cell
JP2931372B2 (en) Operating method of fuel cell power generation system
JPH0837014A (en) Phosphoric acid type fuel cell power plant and method of maintaining the same
JPH07249424A (en) Phosphoric acid fuel cell power generating plant
JP6445096B2 (en) Fuel cell system and operation method thereof
JPH05335026A (en) Phosphoric acid fuel cell and method for stopping its operation
JPS6132362A (en) Fuel cell power generation system
JPH08190929A (en) Fuel cell power generating plant
WO2021166424A1 (en) Method for controlling fuel cell device
JP2007048503A (en) Fuel cell system
JPH0282459A (en) Service control device for fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees