JPH0795449B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH0795449B2
JPH0795449B2 JP62063889A JP6388987A JPH0795449B2 JP H0795449 B2 JPH0795449 B2 JP H0795449B2 JP 62063889 A JP62063889 A JP 62063889A JP 6388987 A JP6388987 A JP 6388987A JP H0795449 B2 JPH0795449 B2 JP H0795449B2
Authority
JP
Japan
Prior art keywords
battery
fuel
cell
temperature
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62063889A
Other languages
Japanese (ja)
Other versions
JPS63232272A (en
Inventor
俊明 嶽本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62063889A priority Critical patent/JPH0795449B2/en
Publication of JPS63232272A publication Critical patent/JPS63232272A/en
Publication of JPH0795449B2 publication Critical patent/JPH0795449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池発電システムに係り、特に電池本体の
触媒のCO被毒防止に好適な温度制御装置を備えた発電シ
ステムに関する。
Description: TECHNICAL FIELD The present invention relates to a fuel cell power generation system, and more particularly to a power generation system equipped with a temperature control device suitable for preventing CO poisoning of a catalyst of a battery body.

〔従来の技術〕[Conventional technology]

燃料電池は、供給される燃料中の水素と酸化剤中の酸素
が電極触媒上で電気化学的に反応する際のエネルギー
を、直流電力及び熱として取り出し有効利用するもので
ある。第3図には一般的な燃料電池発電システムの従来
例が示されている。同図に示されているように、燃料電
池発電システムは、電池本体1、この電池本体1に反応
ガスを給排する反応ガス供給系統2すなわち燃料を給排
する燃料改質供給系統2aおよび空気を給排する空気供給
系統2b、電池本体1の温度を制御する電池冷却系統3等
より構成されている。そして、電池本体1は貴金属触媒
(白金または白金系合金)を有する一対のガス拡散電極
間に電解質を保持した単電池(いずれも図示せず)から
構成されている。なお、同図において4,5は気水分離
器、6は水処理装置、7は空気供給ライン、8は燃料供
給ライン、9は燃料改質器、10はシフトコンバータであ
る。一般にこの種の燃料電池発電システムの原燃料とし
て用いられるのは、炭化水素ガスが主成分として得られ
る化石燃料系統が用いられ、スチームと反応させて、改
質器9により燃料電池本体に適した水素リツチなガスに
改質して燃料として用いられる。この改質ガス中には不
純物としてCOが含まれており、このCOが単電池に用いら
れている貴金属触媒に吸着し、電池反応の活性の座を占
め、電池性能を低下させることが知られている。そのた
め、従来の燃料電池発電システムではシフトコンバータ
10を置いて、電池に無害な二酸化炭素に変成して、電池
本体に供給するようにしていた。しかし、従来例ではこ
の燃料改質供給系統の不具合、例えば、反応温度,スチ
ーム量等の異常又は、改質器9やシフトコンバータ10に
用いられている触媒の経年劣化等により、電池運転中に
CO濃度の高いガスが供給される恐れがある点については
配慮されておらず、単電池の貴金属触媒を劣化させ、電
池性能が低下する可能性があつた。
The fuel cell extracts and effectively uses energy when hydrogen in the supplied fuel and oxygen in the oxidant react electrochemically on the electrode catalyst as direct current power and heat. FIG. 3 shows a conventional example of a general fuel cell power generation system. As shown in the figure, the fuel cell power generation system includes a cell body 1, a reaction gas supply system 2 for supplying / discharging reaction gas to / from the cell body 1, that is, a fuel reforming supply system 2a for supplying / discharging fuel, and an air. It is composed of an air supply system 2b for supplying and discharging the battery, a battery cooling system 3 for controlling the temperature of the battery body 1, and the like. The battery body 1 is composed of a unit cell (none of which is shown) in which an electrolyte is held between a pair of gas diffusion electrodes having a noble metal catalyst (platinum or platinum-based alloy). In the figure, reference numerals 4 and 5 denote a steam separator, 6 a water treatment device, 7 an air supply line, 8 a fuel supply line, 9 a fuel reformer, and 10 a shift converter. Generally, a fossil fuel system obtained by using a hydrocarbon gas as a main component is used as a raw fuel of a fuel cell power generation system of this type, and it reacts with steam to be suitable for a fuel cell main body by a reformer 9. It is used as fuel after being reformed into hydrogen-rich gas. It is known that this reformed gas contains CO as an impurity, and that this CO is adsorbed by the noble metal catalyst used in the unit cell, occupies the active site of the cell reaction, and reduces the cell performance. ing. Therefore, in the conventional fuel cell power generation system, the shift converter
I placed 10 and converted it into carbon dioxide, which is harmless to the battery, and supplied it to the battery body. However, in the conventional example, the fuel reforming supply system malfunctions, for example, an abnormality in the reaction temperature, the steam amount, or the like, or aged deterioration of the catalyst used in the reformer 9 and the shift converter 10, etc.
No consideration was given to the possibility that a gas with a high CO concentration might be supplied, and the noble metal catalyst of the unit cell might deteriorate, resulting in the possibility that the cell performance would deteriorate.

尚、この種のシステムとして関連するものに例えば特開
昭59−194365号等が挙げられる。
A system related to this type is, for example, JP-A-59-194365.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、電池本体に高CO濃度の燃料が供給され
ることに対して、電池本体として何ら保護手段を有せ
ず、貴金属触媒を劣化させ、電池性能を低下させる問題
点があつた。
The above-mentioned conventional technology has a problem that the high-CO concentration fuel is supplied to the battery main body, but the battery main body does not have any protection means, deteriorates the precious metal catalyst, and deteriorates the battery performance.

本発明の目的は、燃料改質供給系統に異常が生じ、ある
程度CO濃度の高い燃料が電池本体に供給されても、貴金
属触媒のCO被毒を防止する電池本体としての保護手段を
有する燃料電池発電システムを提供することにある。
An object of the present invention is to provide a fuel cell having a protection means as a cell body for preventing CO poisoning of a noble metal catalyst even when a fuel having a high CO concentration is supplied to the cell body due to an abnormality in the fuel reforming supply system. To provide a power generation system.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、燃料改質供給系統から電池本体に燃料を供
給するラインにCO検出器を設け、CO濃度に応じて電池冷
却系統により電池温度を変化させることにより達成され
る。すなわち、電池性能に与えるCO濃度の影響は、電池
温度により異なり、一般に第4図に示すように電池温度
が高い程、許容し得るCO濃度が高くなる傾向を示す。一
方、電池温度が高いと、電池触媒の寿命が低下するの
で、この意味では電池温度が低いほうが望ましい。そこ
で、上記の特性に従い、通常運転温度に対して許容し得
るCOレベル以上に電池入口CO濃度が上昇した場合、その
濃度を許容し得る温度にまで電池冷却系統にて電池温度
を上げてやり、CO濃度が下降した場合、それに対応して
電池温度を下げるようにすれば、高温による電池寿命の
低下を可及的に避けつつ、貴金属触媒をCO被毒させない
状態で運転継続することが可能となる。従つて、上記の
ような構成により、燃料改質系統の不具合を検知し、電
池本体自身でCO被毒に対する保護手段を備えた燃料電池
発電システムが得られる。
The above object is achieved by providing a CO detector in a line for supplying fuel from the fuel reforming supply system to the cell body, and changing the cell temperature by the cell cooling system according to the CO concentration. That is, the influence of the CO concentration on the battery performance varies depending on the battery temperature, and generally, as shown in FIG. 4, the allowable CO concentration tends to increase as the battery temperature increases. On the other hand, when the battery temperature is high, the life of the battery catalyst is shortened, and in this sense, the lower battery temperature is desirable. Therefore, according to the above characteristics, if the CO concentration at the battery inlet rises above the CO level that is allowable with respect to the normal operating temperature, raise the battery temperature in the battery cooling system to a temperature that allows the concentration, When the CO concentration drops, by lowering the battery temperature accordingly, it is possible to continue the operation without poisoning the precious metal catalyst with CO, while avoiding the decrease in battery life due to high temperature as much as possible. Become. Therefore, with the above-mentioned configuration, a fuel cell power generation system is provided which detects a malfunction of the fuel reforming system and has a protection means against CO poisoning in the cell body itself.

〔作用〕[Action]

CO濃度の電池性能に与える影響は第4図に示すように電
池温度により異なる。電池温度が高い程、許容し得るCO
濃度が高くなる傾向を示す。従つて、この特性に従い、
通常運転温度t1に対して許容し得るCO濃度C1以上に電池
入口CO濃度が上昇したことを、電池入口手前に設けられ
たCO検出器で検出した場合、その検出濃度C2を許容する
温度t2まで、電池冷却系統にて電池温度を上げることに
より、電池本体の貴金属触媒をCO被毒させることなく、
運転継続が可能となる。一方、CO濃度が低下した場合に
も、それに対応して電部運転温度を低下させるようにす
ること、例えば前記検出濃度C2からC1以下に戻つた場
合、電池冷却系統にて電池温度を通常温度t1に戻すよう
にすることにより、電池運転温度の上場による電池寿命
への悪影響を可及的に避けることができる。
The effect of CO concentration on the battery performance depends on the battery temperature, as shown in FIG. The higher the battery temperature, the more acceptable CO
The concentration tends to increase. Therefore, according to this characteristic,
When the normal that a CO concentration C 1 or more cell inlet CO concentration acceptable to the driver temperature t 1 rises, and detected by the CO detector provided in cell inlet front, allowing the detected concentration C 2 By raising the battery temperature in the battery cooling system up to temperature t 2 , without poisoning the precious metal catalyst of the battery body with CO,
It is possible to continue operation. On the other hand, even when the CO concentration decreases, the operating temperature of the electric section should be reduced correspondingly, for example, when the detected concentration C 2 is returned to C 1 or less, the battery temperature is changed in the battery cooling system. By returning to the normal temperature t 1 , adverse effects on the battery life due to the listing of the battery operating temperature can be avoided as much as possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。電池
本体1に空気供給ランプ7から酸化剤である空気が送ら
れている。一方燃料供給ライン8の気水分離器5の出口
と、電池本体1との間にはCO検出器11が設けられてお
り、電部本体1に供給される燃料中のCO濃度を常に監視
している。一方CO濃度と適正運転温度の関係(第4図に
概念を示す)を予め記憶させた演算器12を設け、検出さ
れたCO濃度を許容出来る運転温度の値を電池冷却系統3
に伝達する。尚、図中破線は電気信号を表わす。電池冷
却系統では、その温度以上になるよう、冷却水温度を制
御して、電池運転温度をCO被毒の生じない適正なレベル
にする。電池冷却系統の一例を第2図に示す。電池冷却
系統は電池本体1内に積層されている冷却器13、冷却水
温度検出器14、冷却水温度制御装置15、冷却水流量調節
バルブ16、冷却水循環ポンプ17およびスチームセパレー
タ18等から構成されており、スチームセパレータ18で発
生する水蒸気を燃料の水蒸気改質に用いている。本実施
例ではこのように構成された電池冷却系統の冷却水温度
制御装置15に演算器12より入口CO濃度を許容し得る適正
温度レベルが伝達され、冷却水温度検出器14、冷却水流
量調節バルブ16によつて冷却水量を制御し、電池温度が
制御させる。尚、電池入口冷却水温度を可変とした電池
冷却系統の場合も同様に電池温度が制御させる。
An embodiment of the present invention will be described below with reference to FIG. Air serving as an oxidant is sent from the air supply lamp 7 to the battery body 1. On the other hand, a CO detector 11 is provided between the outlet of the steam separator 5 of the fuel supply line 8 and the cell body 1 to constantly monitor the CO concentration in the fuel supplied to the power unit body 1. ing. On the other hand, an arithmetic unit 12 that stores in advance the relationship between the CO concentration and the proper operating temperature (the concept is shown in FIG. 4) is provided, and the value of the operating temperature at which the detected CO concentration can be allowed is set as the battery cooling system 3
Communicate to. The broken lines in the figure represent electrical signals. In the battery cooling system, the temperature of the cooling water is controlled so as to be higher than that temperature, and the battery operating temperature is set to an appropriate level without causing CO poisoning. An example of the battery cooling system is shown in FIG. The battery cooling system is composed of a cooler 13, a cooling water temperature detector 14, a cooling water temperature control device 15, a cooling water flow rate control valve 16, a cooling water circulation pump 17 and a steam separator 18 which are stacked in the battery body 1. The steam generated in the steam separator 18 is used for steam reforming of the fuel. In this embodiment, an appropriate temperature level that allows the inlet CO concentration to be allowed is transmitted from the calculator 12 to the cooling water temperature control device 15 of the battery cooling system configured as described above, and the cooling water temperature detector 14 and the cooling water flow rate control are provided. The valve 16 controls the amount of cooling water to control the battery temperature. In the case of a battery cooling system in which the battery inlet cooling water temperature is variable, the battery temperature is controlled similarly.

このように、電池入口燃料中CO濃度が増加した場合、電
池温度を適正レベルまで上昇させ、一方、前記CO濃度が
減少した場合にも、それに対応して電池温度を許容範囲
まで低下させることで、電池温度上昇にともなう電池寿
命への悪影響を可及的に避けつつ、電池本体の貴金属触
媒のCO被毒を防止出来、電池性能を低下させることなし
に、運転継続が可能となる。
In this way, when the CO concentration in the fuel at the cell inlet increases, the cell temperature is raised to an appropriate level, and even when the CO concentration decreases, the cell temperature can be correspondingly lowered to the allowable range. , It is possible to prevent CO poisoning of the precious metal catalyst of the battery body while avoiding the adverse effect on the battery life due to the battery temperature rise as much as possible, and it is possible to continue the operation without lowering the battery performance.

〔発明の効果〕〔The invention's effect〕

本発明によれば、燃料改質供給系統に異常が生じ、ある
程度CO濃度の高い燃料が電池本体に供給されても、その
レベル応じた電池運転温度とするとで、電池本体の貴金
属触媒のCO被毒を防止する電池本体としての保護手段を
有する燃料電池発電システムが得られ、より信頼性の高
い、長寿命化が可能な発電プラントが得られる。
According to the present invention, even if an abnormality occurs in the fuel reforming supply system and fuel with a high CO concentration to some extent is supplied to the cell body, the CO operating of the noble metal catalyst of the cell body can be performed by setting the cell operating temperature according to the level. A fuel cell power generation system having a protection means as a battery main body for preventing poison can be obtained, and a more reliable power generation plant capable of extending the life can be obtained.

【図面の簡単な説明】 第1図は本発明の一実施例を示す燃料電池発電システム
の電池本体周辺のガス供給制御系統図、第2図は同電池
冷却制御系統図、第3図は従来例を示す燃料電池発電シ
ステムの系統図、第4図は一般的なCO濃度と運転温度の
関係を示す特性図及び本発明の実施例に対応した演算器
の入出力特性概念図をそれぞれ示している。 1……電池本体、2……電池冷却系統、3……燃料供給
ライン、11…CO検出器、12……演算器。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a gas supply control system diagram around the cell body of a fuel cell power generation system showing an embodiment of the present invention, FIG. 2 is the same cell cooling control system diagram, and FIG. FIG. 4 is a system diagram of a fuel cell power generation system showing an example, FIG. 4 is a characteristic diagram showing a general relationship between CO concentration and operating temperature, and a conceptual diagram of input / output characteristic of an arithmetic unit corresponding to the embodiment of the present invention. There is. 1 ... Battery body, 2 ... Battery cooling system, 3 ... Fuel supply line, 11 ... CO detector, 12 ... Calculator.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の単電池から構成される電池本体、こ
の電池本体に水素を主成分とする燃料を天然ガス等の化
石燃料から得る燃料改質器を主器とする燃料改質供給系
統、及び前記電池本体の温度を制御する電池冷却系統を
含む燃料電池発電システムにおいて、前記燃料改質系統
から電池本体に燃料を供給するラインに一酸化炭素(以
下COと表記)検出器を設け、CO濃度に応じて前記電池冷
却系統により電池温度を変化させる制御系統を設けたこ
とを特徴とする燃料電池発電システム。
1. A fuel reforming supply system mainly comprising a battery main body composed of a plurality of unit cells, and a fuel reformer for obtaining a fuel containing hydrogen as a main component from fossil fuel such as natural gas in the battery main body. , And a fuel cell power generation system including a cell cooling system for controlling the temperature of the cell body, a carbon monoxide (hereinafter referred to as CO) detector is provided in a line for supplying fuel from the fuel reforming system to the cell body, A fuel cell power generation system comprising a control system for changing the cell temperature by the cell cooling system according to the CO concentration.
【請求項2】前記制御系統が演算器及び前記電池冷却系
統の流量制御系統からなり、前記演算器の出力結果に基
づいて前記電池冷却系統の冷却水流量、又は電池入口冷
却水温度を制御して電池温度を変化させるものであるこ
とを特徴とする特許請求の範囲第1項記載の燃料電池発
電システム。
2. The control system comprises an arithmetic unit and a flow rate control system of the battery cooling system, and controls the cooling water flow rate of the battery cooling system or the battery inlet cooling water temperature based on the output result of the arithmetic unit. The fuel cell power generation system according to claim 1, wherein the fuel cell power generation system changes the battery temperature.
JP62063889A 1987-03-20 1987-03-20 Fuel cell power generation system Expired - Lifetime JPH0795449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62063889A JPH0795449B2 (en) 1987-03-20 1987-03-20 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063889A JPH0795449B2 (en) 1987-03-20 1987-03-20 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS63232272A JPS63232272A (en) 1988-09-28
JPH0795449B2 true JPH0795449B2 (en) 1995-10-11

Family

ID=13242310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063889A Expired - Lifetime JPH0795449B2 (en) 1987-03-20 1987-03-20 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0795449B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3564742B2 (en) 1994-07-13 2004-09-15 トヨタ自動車株式会社 Fuel cell power generator
JP3840677B2 (en) * 1994-11-02 2006-11-01 トヨタ自動車株式会社 Fuel cell power generator
DE19780491B4 (en) * 1996-04-22 2006-11-02 Imra Japan K.K. CO gas sensor and method for measuring the concentration of CO gas

Also Published As

Publication number Publication date
JPS63232272A (en) 1988-09-28

Similar Documents

Publication Publication Date Title
CA2205791C (en) Fuel cells-based generator system and method of the same
US8158289B2 (en) Integrated high temperature PEM fuel cell system
JPH0930802A (en) Device for reducing concentration of carbon monoxide and device for reducing concentration of methanol and fuel-reforming device
JP2501872B2 (en) Method for converting inert gas of fuel electrode when fuel cell is shut down
JPH11102719A (en) Carbon monoxide concentration reducing device, carbon monoxide concentration reducing method, and carbon monoxide selectively oxidizing catalyst
JPH09312167A (en) Fuel cell power generator and operation method thereof
JP5128072B2 (en) Fuel cell power generation system
EP1383192A2 (en) Chemical sensing in fuel cell systems
JP4147659B2 (en) Control device for reformer
US8277997B2 (en) Shared variable-based fuel cell system control
JP3536645B2 (en) Fuel cell operation control method
JP4870909B2 (en) Fuel cell power generator
JPS60177565A (en) Operation method of fuel cell power generating system
JP2002208428A (en) Fuel cell system
JPH0795449B2 (en) Fuel cell power generation system
US20100285379A1 (en) Transitioning an electrochemical cell stack between a power producing mode and a pumping mode
JP2000119001A (en) Hydrogen-generating apparatus
JP4381508B2 (en) Fuel cell system
JPH01304668A (en) Phosphoric acid type fuel cell power generating plant
JPH097620A (en) Solid high polymer type fuel cell power generator
JP2009134987A (en) Fuel cell system
JP4466049B2 (en) Water flow control method for reforming steam
JPH06223856A (en) Fuel cell generator
JPH06260197A (en) Solid polymer electrolytic fuel cell system
JP3905595B2 (en) Carbon monoxide removal equipment