JPH01304668A - Phosphoric acid type fuel cell power generating plant - Google Patents

Phosphoric acid type fuel cell power generating plant

Info

Publication number
JPH01304668A
JPH01304668A JP63132816A JP13281688A JPH01304668A JP H01304668 A JPH01304668 A JP H01304668A JP 63132816 A JP63132816 A JP 63132816A JP 13281688 A JP13281688 A JP 13281688A JP H01304668 A JPH01304668 A JP H01304668A
Authority
JP
Japan
Prior art keywords
supply valve
cathode electrode
fuel cell
phosphoric acid
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63132816A
Other languages
Japanese (ja)
Other versions
JP2752987B2 (en
Inventor
Tsutomu Aoki
努 青木
Toshihiko Takeu
竹生 俊彦
Toshiaki Seki
関 敏昭
Takeshi Kuwabara
武 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63132816A priority Critical patent/JP2752987B2/en
Publication of JPH01304668A publication Critical patent/JPH01304668A/en
Application granted granted Critical
Publication of JP2752987B2 publication Critical patent/JP2752987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enable a safe stand-by state to be maintained by providing an oxidizer supply line which supplies oxidizer at the tie of a stand-by state and an oxidizer supply valve which opens and closes the oxidizer supply line. CONSTITUTION:In a stand-by state, an anode gas supply valve 20 is closed, and a cathode air supply valve 21 is closed after supplying inert gas to a cathode electrode 3. An air supply valve 24 and a hydrogen supply valve 26 are open. With this arrangement, hydrogen rich gas is supplied to an anode electrode 2 from a hydrogen supply line 25 through the hydrogen supply valve 26. On the other hand, air is supplied to the cathode electrode 3 from an air supply line 23 through the air supply valve 24. Therefore, the hydrogen rich gas supplied to the anode electrode 2 and the air supplied to the cathode electrode 3 react to each other so as to get a little electric power. Accordingly, the excessive rise of the fuel concentration in the cathode electrode can be prevented so that a safe stand-by state can be maintained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は待機状態を改良したリン酸型燃料電池発電プラ
ントに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a phosphoric acid fuel cell power plant with improved standby conditions.

(従来の技術) 従来のリン酸型燃料電池発電プラントの概略構成を第3
図を参照して説明する。
(Conventional technology) The schematic configuration of a conventional phosphoric acid fuel cell power plant is shown in the third example.
This will be explained with reference to the figures.

即ち、燃料電池本体1は背面に水素等の燃料を接触させ
たアノード電極2と、背面に酸素等の酸化剤を接触させ
たカソード電極3とを電解質を含浸したマトリックスを
挟んで両側に配置して構成されている。また、アノード
電極2には天然ガス8と水蒸気9との混合ガスが改質装
置10において水蒸気改質反応により水素リッチガスと
なり供給される。他方、カソード電極3には圧縮空気1
1が供給される。そして、アノード電極2に供給された
水素リッチガスはカソード電極3に供給された圧縮空気
11と電気化学的に反応して電気、水及び熱となる。さ
らに、アノード電極2を出たガスはアノード出口リン酸
吸着器12、アノード出口凝縮器13及び改質器バーナ
14を介して大気15に放出される。一方、カソード電
極3を出たガスはカソード出ロリン酸吸着器16及びカ
ソード出口凝縮器エフを介して大気に放出される。また
、アノード電極2及びカソード電極3内ガスはアノード
リサイクルブロワ18及びカソードサイクルブロワ19
により夫々循環される。尚、20.21及び22は夫々
アノードガス供給弁、カソード空気供給弁及び大気遮断
弁である。
That is, the fuel cell main body 1 has an anode electrode 2 whose back surface is in contact with a fuel such as hydrogen, and a cathode electrode 3 whose back surface is in contact with an oxidizing agent such as oxygen, which are arranged on both sides with an electrolyte-impregnated matrix in between. It is composed of Further, a mixed gas of natural gas 8 and steam 9 is supplied to the anode electrode 2 as a hydrogen-rich gas through a steam reforming reaction in a reformer 10 . On the other hand, compressed air 1 is supplied to the cathode electrode 3.
1 is supplied. The hydrogen-rich gas supplied to the anode electrode 2 reacts electrochemically with the compressed air 11 supplied to the cathode electrode 3 to become electricity, water, and heat. Furthermore, the gas exiting the anode electrode 2 is discharged into the atmosphere 15 via the anode outlet phosphoric acid adsorber 12, the anode outlet condenser 13, and the reformer burner 14. On the other hand, the gas exiting the cathode electrode 3 is released into the atmosphere via the cathode phosphoric acid adsorber 16 and the cathode exit condenser F. Further, the gas inside the anode electrode 2 and the cathode electrode 3 is transferred to an anode recycle blower 18 and a cathode cycle blower 19.
are circulated respectively. Note that 20, 21 and 22 are an anode gas supply valve, a cathode air supply valve, and an atmosphere cutoff valve, respectively.

ところで、リン酸型燃料電池発電プラントの運転にあた
り、速やかに発電に移行できる待機状態を維持すること
は、発電プラントの高効率運転に大きく依存する。即ち
、運転指令に伴ない所定の起電力を短時間に得ることが
望まれている。そして、待機状態とは1発電状況、電極
2,3間差圧の制御性及び経済も考慮されたもので、電
池としては出力のない状態もしくは極力抑えられた状態
であり、かつ画電極2,3に使用されている。触媒のシ
ンタリングを防止できる起電圧以下に抑えた状態である
。さらに、この待機状態から発電に移行するとき、また
はその逆において、電極2゜3間差圧が生じないことが
好ましい。
By the way, when operating a phosphoric acid fuel cell power generation plant, maintaining a standby state that allows a prompt transition to power generation depends largely on the highly efficient operation of the power generation plant. That is, it is desired to obtain a predetermined electromotive force in a short time in accordance with an operation command. The standby state is one in which the power generation situation, controllability of the differential pressure between the electrodes 2 and 3, and economy are taken into consideration.The battery is in a state where there is no output or the output is suppressed as much as possible, and the picture electrode 2, It is used in 3. This is a state in which the electromotive force is kept below the level that prevents sintering of the catalyst. Furthermore, it is preferable that no differential pressure occurs between the electrodes 2 and 3 when transitioning from this standby state to power generation or vice versa.

そして、従来のリン酸型燃料電池発電プラントにおいて
は、アノード電極2へ燃料を供給しカソード電極3へN
2ガス等の不活性ガスを供給し続けて待機状態を維持す
る方法を採用している。これにより、発電移行時にカソ
ード電極3へ空気を供給することで速やかにかつ転極に
なく負荷を得ることができるとともに、電極2,3間差
圧を容易に抑えることができる。
In the conventional phosphoric acid fuel cell power generation plant, fuel is supplied to the anode electrode 2 and N is supplied to the cathode electrode 3.
A method is adopted in which the standby state is maintained by continuously supplying an inert gas such as 2 gas. Thereby, by supplying air to the cathode electrode 3 during the transition to power generation, a load can be obtained quickly and without polarity change, and the differential pressure between the electrodes 2 and 3 can be easily suppressed.

(発明が解決しようとする課題) ところで、アノード電極2とカソード電極3間に従来の
プラントの如く水素の濃度勾配が存在すると、水素はマ
トリックス内で拡散してアノード電極2からカソード電
極3へ移動する性質を有する。そして、この水素の拡散
速度は濃度勾配が大きい程速く、不活性ガスの流れがな
い場合には数分でカソード電極3に不活性ガスを供給す
るカソードホールド容積の数%に至る。
(Problem to be Solved by the Invention) By the way, if a hydrogen concentration gradient exists between the anode electrode 2 and the cathode electrode 3 as in conventional plants, hydrogen diffuses within the matrix and moves from the anode electrode 2 to the cathode electrode 3. It has the property of The diffusion rate of this hydrogen increases as the concentration gradient increases, and in the absence of a flow of inert gas, the diffusion rate of hydrogen reaches several percent of the cathode hold volume that supplies inert gas to the cathode electrode 3 in several minutes.

この拡散した水素の対策として、カソード電極3に不活
性ガスを供給し続けることは有効な手段であるけれども
、経済性に不利となる欠点がある。
Although it is an effective means to continuously supply an inert gas to the cathode electrode 3 as a countermeasure against the diffused hydrogen, it has the disadvantage of being disadvantageous in terms of economic efficiency.

そこで、不活性ガスをカソードリサイクルブロワ19に
よって@環させることにより経済性を高めることが考え
られる。そして、循環する不活性ガスと空気を徐々に置
換することにより、発電への速やかな移行が実現し得る
と考えられる。
Therefore, it is conceivable to increase the economical efficiency by circulating the inert gas with the cathode recycle blower 19. It is thought that by gradually replacing the circulating inert gas and air, a rapid transition to power generation can be realized.

しかしながら、同一不活性ガスをカソード電極3内へ長
時間循環させると、アノード電極2から拡散した水素が
不活性ガス内に蓄積される。この現象は電池の総面積が
大きい程顕著となる。そして、拡散した水素が爆発下限
界を超える濃度に至っているカソード電極3(カソード
マニホールド)へ空気を供給すると、ここで爆発する危
険性がある。
However, if the same inert gas is circulated into the cathode electrode 3 for a long time, hydrogen diffused from the anode electrode 2 will accumulate in the inert gas. This phenomenon becomes more pronounced as the total area of the battery increases. If air is supplied to the cathode electrode 3 (cathode manifold) where the diffused hydrogen has reached a concentration exceeding the lower explosive limit, there is a risk of an explosion.

本発明は上記問題点を除去するために成されたもので・
好適な待機状態を維持することができるリン酸型燃料電
池発電プラントを提供することを目的とする。
The present invention was made to eliminate the above problems.
An object of the present invention is to provide a phosphoric acid fuel cell power generation plant that can maintain a suitable standby state.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記問題点を除去するために本発明においては、カソー
ド電極入口に接続し待機状態時酸化剤をカソード電極に
供給する酸化剤供給ラインと、この酸化剤供給ラインを
開閉する酸化剤供給弁と、燃料電圧の電池電圧を測定す
る電圧計と、この電圧計に接続し電圧計の出力値に応じ
て酸化剤供給弁の弁開度を制御し待機状態において電池
電圧を所定値に設定する制御装置とを設けている。
(Means for Solving the Problems) In order to eliminate the above problems, the present invention provides an oxidizing agent supply line that is connected to the cathode electrode inlet and supplies an oxidizing agent to the cathode electrode in a standby state, and this oxidizing agent supply line. An oxidizer supply valve that opens and closes, a voltmeter that measures the battery voltage of the fuel voltage, and a voltmeter that is connected to this voltmeter and controls the opening degree of the oxidizer supply valve according to the output value of the voltmeter. A control device for setting the voltage to a predetermined value is provided.

(作  用) このように構成することにより、アノード電極からカソ
ード電極に拡散した燃料はカソード電極に供給された酸
化剤との電気化学的反応によりその都度徐々に消費され
、カソード電極内の燃料濃度は爆発下限界を超えること
なく、待機状態から運転状態への移行が確実なリン酸型
燃料電池発電プラントを提供することができる。
(Function) With this configuration, the fuel diffused from the anode electrode to the cathode electrode is gradually consumed each time by an electrochemical reaction with the oxidizing agent supplied to the cathode electrode, and the fuel concentration in the cathode electrode is reduced. can provide a phosphoric acid fuel cell power generation plant that can reliably transition from a standby state to an operating state without exceeding the lower explosion limit.

(実 施 例) 以下本発明の一実施例を第1図及び第2図を参照して説
明する。尚、第3図に示す同等部分については同一符号
を付して説明する6つまり、第1図に示す如く燃料電池
本体1はアノード電極2とカソード電極3とをマトリッ
クスを挟んで両側に配置した単位セルを複数個積層して
構成する。そして、アノード電極2には、燃料となる天
然ガス8と水蒸気9との混合ガスを改質装置10で水蒸
気改質反応により水素リッチガスにして供給する6また
、改質装置10とアノード電極2間には燃料の制御を行
なうアノードガス供給弁20を配設する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Note that the same parts shown in FIG. 3 will be described with the same reference numerals.6 In other words, as shown in FIG. 1, the fuel cell body 1 has an anode electrode 2 and a cathode electrode 3 arranged on both sides with a matrix in between. It is constructed by stacking multiple unit cells. Then, a mixed gas of natural gas 8 and steam 9 as a fuel is supplied to the anode electrode 2 by converting it into hydrogen-rich gas through a steam reforming reaction in a reformer 10 6 Also, between the reformer 10 and the anode electrode 2 An anode gas supply valve 20 for controlling fuel is disposed in the anode gas supply valve 20 .

さらに、アノード電極2のガス出口側にはアノード出口
リン酸吸着器12、アノード出口凝縮器13及び改質器
バーナ14を接続する。そして、改質バーナ14を出た
ガスは大気遮断弁20を介して大気15へ放出する。ま
たアノード電極2内ガスはアノードサイクルブロワ18
により循環する。
Furthermore, an anode outlet phosphoric acid adsorber 12 , an anode outlet condenser 13 , and a reformer burner 14 are connected to the gas outlet side of the anode electrode 2 . The gas exiting the reforming burner 14 is then released to the atmosphere 15 via the atmosphere cutoff valve 20. In addition, the gas inside the anode electrode 2 is supplied to the anode cycle blower 18.
circulates.

さらに、アノード電極2人口には水素供給弁26を有す
る水素供給ライン26を接続する。また、水素供給弁2
6はリン酸型燃料電池発電プラントの運転時は閉じてい
る。そして、水素供給ライン26からは水素リッチガス
が供給される。さらに、アノード電極2出口には水素濃
度検出器27を接続する。
Furthermore, a hydrogen supply line 26 having a hydrogen supply valve 26 is connected to the anode electrode 2 . In addition, hydrogen supply valve 2
6 is closed when the phosphoric acid fuel cell power generation plant is in operation. Then, hydrogen rich gas is supplied from the hydrogen supply line 26. Furthermore, a hydrogen concentration detector 27 is connected to the anode electrode 2 outlet.

他方、カソード電極3には酸化剤としての圧縮空気11
をカソード空気供給弁21を介して供給する6また、カ
ソード電極3のガス出口側にはカソード出ロリン酸吸着
器16及びカソード出口凝縮器17を接続する。さらに
、カソード出口凝縮器17を出たガスは、改質器バーナ
14と大気遮断弁22間に導かれされ、燃料ガス側と一
緒に大気15へ放出される。
On the other hand, compressed air 11 as an oxidizing agent is supplied to the cathode electrode 3.
6 is supplied through a cathode air supply valve 21 . Furthermore, a cathode phosphoric acid adsorber 16 and a cathode outlet condenser 17 are connected to the gas outlet side of the cathode electrode 3 . Further, the gas exiting the cathode outlet condenser 17 is led between the reformer burner 14 and the atmosphere cutoff valve 22, and is discharged to the atmosphere 15 together with the fuel gas side.

そして、カソード電極3内ガスはカソードサイクルブロ
ワ19により循環する。
Then, the gas inside the cathode electrode 3 is circulated by a cathode cycle blower 19.

また、カソード電極3人口には空気供給弁24を有する
空気供給ライン23を接続する。
Further, an air supply line 23 having an air supply valve 24 is connected to the cathode electrode 3 .

そして、第2図に示す如く、燃料電池本体1には電気抵
抗切換装置30により入切または抵抗値を変える電気抵
抗29を直列に接続する。また、燃料電池本体1の両出
力端には電池電圧を測定する電圧計31を接続し、さら
に、この電圧計31には電圧計31の出力値に応じて電
気抵抗切換装置30を制御する制御装置28を接続する
。しかも、この制御装置28は第1図に示す空気供給弁
24の弁開度も制御するとともに、水素供給弁26の弁
開度も制御する。
As shown in FIG. 2, an electrical resistor 29 is connected in series to the fuel cell main body 1 to turn on/off or change the resistance value by an electrical resistance switching device 30. Further, a voltmeter 31 for measuring the battery voltage is connected to both output terminals of the fuel cell main body 1, and a control device for controlling the electrical resistance switching device 30 according to the output value of the voltmeter 31 is connected to the voltmeter 31. Connect device 28. Furthermore, this control device 28 also controls the valve opening degree of the air supply valve 24 shown in FIG. 1, and also controls the valve opening degree of the hydrogen supply valve 26.

次に、本実施例の構成における作用を状態毎に説明する
Next, the operation of the configuration of this embodiment will be explained for each state.

始めに、リン酸型燃料電池発電プラントの運転状態にお
いては、空気供給弁24及び水素供給弁26が閉じてい
る。そして、アノードガス供給弁20゜カソード空気供
給弁21及び大気遮断弁22が開いている。これにより
、アノード電極2には天然ガス8と水蒸気9との混合ガ
スを改質装置10により改質された水素リッチガス(約
75%)が燃料として供給される。他方、カソード電極
3には圧縮空気11がカソード空気供給弁21を介して
酸化剤として供給される。そして、アノード電極2に供
給された水素リッチガスとカソード電極3に供給された
圧縮空気11とが反応して、所定の電力が得られる。
Initially, in the operating state of the phosphoric acid fuel cell power generation plant, the air supply valve 24 and the hydrogen supply valve 26 are closed. The anode gas supply valve 20, the cathode air supply valve 21, and the atmosphere cutoff valve 22 are open. As a result, hydrogen-rich gas (approximately 75%) obtained by reforming a mixed gas of natural gas 8 and water vapor 9 by the reformer 10 is supplied to the anode electrode 2 as fuel. On the other hand, compressed air 11 is supplied to the cathode electrode 3 via a cathode air supply valve 21 as an oxidizing agent. Then, the hydrogen-rich gas supplied to the anode electrode 2 and the compressed air 11 supplied to the cathode electrode 3 react, and a predetermined electric power is obtained.

一方、リン酸型燃料電池発電プラントの待機状態におい
ては、7ノードガス供給弁20が閉じており、カソード
空気供給弁21もカソード電極3へ不活性ガスを供給し
た後間じている。そして、空気供給弁24及び水素供給
弁26が開いている。これにより、アノード電極2には
水素供給ライン25より水素供給弁26を介して水素リ
ッチガス(約75%)が供給される。他方、カソード電
極3には空気供給ライン23より空気供給弁24を介し
て空気が供給される。このため、アノード電極2に供給
された水素リッチガスとカソード電極3に供給された空
気とが反応して、僅かな電力を得る。同時に、このとき
の電池電圧は電圧計31で測定し、この電圧計31の出
力が制御装置28に入力される。
On the other hand, in the standby state of the phosphoric acid fuel cell power generation plant, the seven-node gas supply valve 20 is closed, and the cathode air supply valve 21 is also closed after supplying inert gas to the cathode electrode 3. Further, the air supply valve 24 and the hydrogen supply valve 26 are open. As a result, hydrogen-rich gas (approximately 75%) is supplied to the anode electrode 2 from the hydrogen supply line 25 via the hydrogen supply valve 26. On the other hand, air is supplied to the cathode electrode 3 from an air supply line 23 via an air supply valve 24 . Therefore, the hydrogen-rich gas supplied to the anode electrode 2 and the air supplied to the cathode electrode 3 react to obtain a small amount of electric power. At the same time, the battery voltage at this time is measured by a voltmeter 31, and the output of this voltmeter 31 is input to the control device 28.

そして、単位セル当りの電池電圧が例えば0.1v以下
の場合には、制御装置28の指令により空気供給弁24
の弁開度を大きくしてカソード電極3内への空気供給量
を増加するとともに、電気抵抗切換装置30を動作させ
て電気抵抗29を切るもしくはその抵抗値を減少させる
。これにより電池電圧を上昇させることができる。尚、
単位セル当りの電池電圧がほぼ0.1v以下の場合、触
媒の活性化を維持することができないことや逆起電力(
転極)が発生する等の問題がある。
When the battery voltage per unit cell is, for example, 0.1 V or less, the air supply valve 24 is
The opening degree of the valve is increased to increase the amount of air supplied into the cathode electrode 3, and the electrical resistance switching device 30 is operated to cut the electrical resistance 29 or reduce its resistance value. This allows the battery voltage to be increased. still,
If the battery voltage per unit cell is approximately 0.1 V or less, it may be impossible to maintain activation of the catalyst or the back electromotive force (
There are problems such as polarity reversal).

また、単位セル当りの電池電圧が例えば0.8v以上の
場合には、制御装置28の指令により空気供給弁24の
弁開度を小さくしてカソード電極3内への空気供給量を
減少させるとともに、電気抵抗切換装置30を動作させ
て電気抵抗29の抵抗値を増加させるにれにより、電池
電圧を低下させることができる。尚、単位セル当りの電
池電圧がほぼ0.8v以上の場合、触媒の劣化が進行す
る等の問題がある。
Further, when the battery voltage per unit cell is, for example, 0.8 V or more, the valve opening degree of the air supply valve 24 is reduced by a command from the control device 28 to reduce the amount of air supplied into the cathode electrode 3. By operating the electric resistance switching device 30 and increasing the resistance value of the electric resistance 29, the battery voltage can be lowered. It should be noted that if the battery voltage per unit cell is approximately 0.8 V or more, there are problems such as accelerated deterioration of the catalyst.

この動作を繰返すことにより、単位セル当りの電池電圧
は0.1V乃至0.8vに維持される。そして、好条件
としては単位セル当りの電池電圧が0.4v乃至0.6
vに設定されることである。
By repeating this operation, the battery voltage per unit cell is maintained at 0.1V to 0.8V. And, as a good condition, the battery voltage per unit cell is 0.4V to 0.6V.
v.

さらに、リン酸型燃料電池発電プラントの起動時及び停
止後においては、待機状態とほぼ同様であるが、相違点
はアノード電極3内に供給される水素濃度を約20%乃
至30%にすることである。この水素濃度の設定は、ア
ノード電極2出口に設けた水素濃度検出器27にてここ
での水素濃度を測定し、この水素濃度検出器27の出力
を制御装置28に入力し、この制御装置28の指令によ
り水素供給弁26の弁開度を調整することにより行なう
Furthermore, when starting up and after stopping the phosphoric acid fuel cell power generation plant, it is almost the same as the standby state, but the difference is that the hydrogen concentration supplied to the anode electrode 3 is approximately 20% to 30%. It is. This hydrogen concentration is set by measuring the hydrogen concentration with a hydrogen concentration detector 27 provided at the outlet of the anode electrode 2, inputting the output of this hydrogen concentration detector 27 to the control device 28, and This is done by adjusting the valve opening degree of the hydrogen supply valve 26 in accordance with the command.

また、リン酸型燃料電池発電プラントの待機状態、起動
時及び停止時においてアノードリサイクルブロワ18及
びカソードリサイクルブロワ19は適宜運転すればよい
Further, the anode recycle blower 18 and the cathode recycle blower 19 may be operated as appropriate during the standby state, startup, and shutdown of the phosphoric acid fuel cell power generation plant.

本実施例においては、リン酸型燃料電池発電プラントの
待機状態において、カソード電極3に不活性ガスととも
に空気を供給している。このため。
In this embodiment, air is supplied to the cathode electrode 3 together with an inert gas when the phosphoric acid fuel cell power generation plant is in a standby state. For this reason.

アノード電極2に約75%の水素リッチガスを供給し、
この水素がアノード電極2からカソード電極3に拡散し
ても、この拡散した水素はカソード電極3に供給された
空気との電気化学的反応によりその都度徐々に消費され
る。よって、カソード電極3内の水素濃度は爆発下限界
を超えることがなく、待機状態から運転状態へ移行時に
燃料電池本体1が爆発する危険性が除去される。また、
水素と空気との電気化学的反応により電池電圧が得られ
るけれども、この電池電圧が低すぎると触媒の活性化を
維持できず転極の心配があり、電池電圧が高すぎると触
媒のシンタリングが進行する。そして、電池電圧は空気
供給量の増減に応じて増減する。そこで、カソード電極
3への空気供給量は単位セル当りの電池電圧が0.1v
乃至0.8vとなるように設定している。
Supplying about 75% hydrogen rich gas to the anode electrode 2,
Even if this hydrogen diffuses from the anode electrode 2 to the cathode electrode 3, this diffused hydrogen is gradually consumed each time by an electrochemical reaction with the air supplied to the cathode electrode 3. Therefore, the hydrogen concentration in the cathode electrode 3 does not exceed the lower explosive limit, and the risk of the fuel cell body 1 exploding when transitioning from the standby state to the operating state is eliminated. Also,
Battery voltage is obtained through the electrochemical reaction between hydrogen and air, but if this battery voltage is too low, the activation of the catalyst cannot be maintained and there is a risk of polarity reversal, while if the battery voltage is too high, the catalyst may sinter. proceed. Then, the battery voltage increases or decreases in accordance with the increase or decrease in the amount of air supplied. Therefore, the amount of air supplied to the cathode electrode 3 is such that the battery voltage per unit cell is 0.1V.
The voltage is set to between 0.8v and 0.8v.

さらに、単位セル当りの電池電圧を所定値に維持するた
めに、水素の拡散量が推定できる。従って、電池電圧の
制御状態を監視することにより、燃料電池本体1のクロ
スオーバーの有無及びその量を診断することができる。
Furthermore, in order to maintain the battery voltage per unit cell at a predetermined value, the amount of hydrogen diffusion can be estimated. Therefore, by monitoring the control state of the battery voltage, it is possible to diagnose the presence or absence of crossover in the fuel cell main body 1 and its amount.

その上、電池電圧の調整は、カソード電極3への空気供
給量の増減のみならず電気抵抗29の抵抗値の増減によ
り行っているので、容易でかつ信頼性の高い電池電圧調
整が可能となる。
Furthermore, since the battery voltage is adjusted not only by increasing or decreasing the amount of air supplied to the cathode electrode 3 but also by increasing or decreasing the resistance value of the electrical resistor 29, easy and reliable battery voltage adjustment is possible. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明においては、待機状態時にカ
ソード電極に酸化剤を供給するので、アノード電極から
カソード電極に拡散する燃料をその都度徐々に消費させ
ることができ、カソード電極内燃料濃度の過上昇を防止
することができるので、安全な待機状態を維持できるリ
ン酸型燃料電池発電プラントを提供することができる。
As explained above, in the present invention, since the oxidizing agent is supplied to the cathode electrode during the standby state, the fuel that diffuses from the anode electrode to the cathode electrode can be gradually consumed each time, and the fuel concentration in the cathode electrode can be increased. Since the rise can be prevented, it is possible to provide a phosphoric acid fuel cell power generation plant that can maintain a safe standby state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すリン酸型燃料電池発電
プラントの概略構成図、第2図は第1図に示す燃料電池
本体の電圧を測定及び調整する装置の概略構成図、第3
図は従来のリン酸型燃料電池発電プラントの概略構成図
である。 1・・・燃料電池本体、   2・・・アノード電極、
3・・・カソード電極、  8・・・天然ガス。 9・・・水蒸気、     10・・・改質装置。 11・・・圧縮空気、 12・・・アノード出口リン酸吸着器、13・・・アノ
ード出口凝縮器、 14・・・改質器バーナ、  15・・・大気、16・
・・カソード出ロリン酸吸着器、17・・・カソード出
口凝縮器、 18・・・アノードリサイクルブロワ。 19・・・カソードリサイクルブロワ、20・・・アノ
ードガス供給弁、 21・・・カソード空気供給弁、 22・・・大気遮断弁、   23・・・空気供給ライ
ン。 24・・・空気供給弁、25・・・水素供給ライン、2
6・・・水素供給弁、27・・・水素濃度検出器、28
・・・制御装置、    29・・・電気抵抗、30・
・・電気抵抗切換装置、 31・・・電圧計。 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 第2図 第3図
FIG. 1 is a schematic configuration diagram of a phosphoric acid fuel cell power generation plant showing an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a device for measuring and adjusting the voltage of the fuel cell main body shown in FIG. 3
The figure is a schematic diagram of a conventional phosphoric acid fuel cell power generation plant. 1...Fuel cell main body, 2...Anode electrode,
3...Cathode electrode, 8...Natural gas. 9... Steam, 10... Reformer. DESCRIPTION OF SYMBOLS 11... Compressed air, 12... Anode outlet phosphoric acid adsorption device, 13... Anode outlet condenser, 14... Reformer burner, 15... Atmosphere, 16...
...Cathode output rophosphoric acid adsorption device, 17...Cathode outlet condenser, 18...Anode recycle blower. 19... Cathode recycle blower, 20... Anode gas supply valve, 21... Cathode air supply valve, 22... Atmospheric cutoff valve, 23... Air supply line. 24...Air supply valve, 25...Hydrogen supply line, 2
6... Hydrogen supply valve, 27... Hydrogen concentration detector, 28
...control device, 29...electric resistance, 30.
...Electric resistance switching device, 31...Voltmeter. Agent Patent Attorney Nori Ken Yudo Daishimaru Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)燃料及び酸化剤を夫々アノード電極及びカソード
電極に導き、前記燃料及び酸化剤の電気化学的反応によ
り電気を得るリン酸型燃料電池発電プラントにおいて、
前記カソード電極入口に接続し待機状態時酸化剤をカソ
ード電極に供給する酸化剤供給ラインと、この酸化剤供
給ラインを開閉する酸化剤供給弁と、燃料電池の電池電
圧を測定する電圧計と、この電圧計に接続し電圧計の出
力値に応じて前記酸化剤供給弁の弁開度を制御し待機状
態において電池電圧を所定値に設定する制御装置とを備
えてなるリン酸型燃料電池発電プラント。
(1) In a phosphoric acid fuel cell power generation plant in which a fuel and an oxidant are introduced to an anode electrode and a cathode electrode, respectively, and electricity is obtained through an electrochemical reaction of the fuel and oxidant,
an oxidizing agent supply line connected to the cathode electrode inlet and supplying an oxidizing agent to the cathode electrode in a standby state; an oxidizing agent supply valve that opens and closes the oxidizing agent supply line; and a voltmeter that measures the cell voltage of the fuel cell; A phosphoric acid fuel cell power generator comprising: a control device connected to the voltmeter to control the opening degree of the oxidizing agent supply valve according to the output value of the voltmeter, and to set the battery voltage to a predetermined value in a standby state. plant.
(2)制御装置は回路に直列に接続された電気抵抗の抵
抗値を制御してなる請求項1記載のリン酸型燃料電池発
電プラント。
(2) The phosphoric acid fuel cell power generation plant according to claim 1, wherein the control device controls the resistance value of an electrical resistor connected in series with the circuit.
(3)電池電圧は単位セル当り0.1V乃至0.8Vに
設定してなる請求項1記載のリン酸型燃料電池発電プラ
ント。
(3) The phosphoric acid fuel cell power generation plant according to claim 1, wherein the battery voltage is set at 0.1 V to 0.8 V per unit cell.
JP63132816A 1988-06-01 1988-06-01 Phosphoric acid fuel cell power plant Expired - Lifetime JP2752987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132816A JP2752987B2 (en) 1988-06-01 1988-06-01 Phosphoric acid fuel cell power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132816A JP2752987B2 (en) 1988-06-01 1988-06-01 Phosphoric acid fuel cell power plant

Publications (2)

Publication Number Publication Date
JPH01304668A true JPH01304668A (en) 1989-12-08
JP2752987B2 JP2752987B2 (en) 1998-05-18

Family

ID=15090240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132816A Expired - Lifetime JP2752987B2 (en) 1988-06-01 1988-06-01 Phosphoric acid fuel cell power plant

Country Status (1)

Country Link
JP (1) JP2752987B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010266A2 (en) * 1989-12-29 1991-07-11 International Fuel Cells Corporation Use and composition of a reactant gas to control fuel cell potential
WO1991010267A2 (en) * 1989-12-29 1991-07-11 International Fuel Cells Corporation Air ejector system for fuel cell passivation
JPH06503330A (en) * 1990-12-13 1994-04-14 ザ ユニバーシティ オブ メルボルン Compounds and compositions that inhibit bone resorption
JP2006100153A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell
JP2007048503A (en) * 2005-08-08 2007-02-22 Nissan Motor Co Ltd Fuel cell system
WO2007110969A1 (en) * 2006-03-28 2007-10-04 Hitachi, Ltd. Method and apparatus for measuring crossover loss of fuel cell
WO2008132948A1 (en) * 2007-04-18 2008-11-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP4840896B2 (en) * 2002-01-18 2011-12-21 インテリジェント エナジー リミテッド Fuel cell oxygen removal and preconditioning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149668A (en) * 1983-02-14 1984-08-27 Toshiba Corp Fuel battery
JPS62283564A (en) * 1986-05-31 1987-12-09 Toshiba Corp Generating system for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149668A (en) * 1983-02-14 1984-08-27 Toshiba Corp Fuel battery
JPS62283564A (en) * 1986-05-31 1987-12-09 Toshiba Corp Generating system for fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010266A2 (en) * 1989-12-29 1991-07-11 International Fuel Cells Corporation Use and composition of a reactant gas to control fuel cell potential
WO1991010267A2 (en) * 1989-12-29 1991-07-11 International Fuel Cells Corporation Air ejector system for fuel cell passivation
JPH06503330A (en) * 1990-12-13 1994-04-14 ザ ユニバーシティ オブ メルボルン Compounds and compositions that inhibit bone resorption
JP4840896B2 (en) * 2002-01-18 2011-12-21 インテリジェント エナジー リミテッド Fuel cell oxygen removal and preconditioning system
JP2006100153A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Operation method of solid oxide fuel cell, and power generation facility of solid oxide fuel cell
JP2007048503A (en) * 2005-08-08 2007-02-22 Nissan Motor Co Ltd Fuel cell system
WO2007110969A1 (en) * 2006-03-28 2007-10-04 Hitachi, Ltd. Method and apparatus for measuring crossover loss of fuel cell
WO2008132948A1 (en) * 2007-04-18 2008-11-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8227143B2 (en) 2007-04-18 2012-07-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
JP2752987B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
US4904548A (en) Method for controlling a fuel cell
JP3972675B2 (en) Fuel cell system
JP4538190B2 (en) High fuel utilization in the fuel cell
JPH10144334A (en) Fuel cell system power plant, and starting and stopping method therefor
JP5233064B2 (en) Fuel cell system
US20100330447A1 (en) Fuel cell system and method
JP2924009B2 (en) How to stop fuel cell power generation
JP2501872B2 (en) Method for converting inert gas of fuel electrode when fuel cell is shut down
KR101128552B1 (en) Fuel cell system
JP2009016170A (en) Fuel cell system and control device of fuel cell system
JP7080348B2 (en) Fuel cell activation method and activation device
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
JP2007287633A (en) Fuel cell power generator and control program as well as control method
JP5128072B2 (en) Fuel cell power generation system
JP4469560B2 (en) Fuel cell system
JPH01304668A (en) Phosphoric acid type fuel cell power generating plant
JP2007141744A (en) Fuel cell system
JPH05251102A (en) Phospholic acid type fuel cell power generating plant
JP3583914B2 (en) Auxiliary power supply for fuel cell
JP6304430B1 (en) Fuel cell system and operation method thereof
JPH04133271A (en) Fuel cell
JPH07249424A (en) Phosphoric acid fuel cell power generating plant
JP6575621B2 (en) Fuel cell system and operation method thereof
JPH04115467A (en) Phosphate type fuel cell generating plant
JPH08190929A (en) Fuel cell power generating plant