JPS59149668A - Fuel battery - Google Patents

Fuel battery

Info

Publication number
JPS59149668A
JPS59149668A JP58021573A JP2157383A JPS59149668A JP S59149668 A JPS59149668 A JP S59149668A JP 58021573 A JP58021573 A JP 58021573A JP 2157383 A JP2157383 A JP 2157383A JP S59149668 A JPS59149668 A JP S59149668A
Authority
JP
Japan
Prior art keywords
fuel cell
load
electromotive force
measuring device
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58021573A
Other languages
Japanese (ja)
Other versions
JPH0763020B2 (en
Inventor
Takeshi Kuwabara
武 桑原
Mitsuru Kono
河野 満
Hiroshi Tomie
富栄 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58021573A priority Critical patent/JPH0763020B2/en
Publication of JPS59149668A publication Critical patent/JPS59149668A/en
Publication of JPH0763020B2 publication Critical patent/JPH0763020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve service life characteristic by controlling electrode potential (electromotive force) of fuel battery body through the supply system of fuel gas and oxidation agent gas and a load apparatus. CONSTITUTION:During the start of fuel battery body 1, a controller 13a having received measured value signals from an internal pressure measuring apparatus 9, internal temperature measuring apparatus 10 and supply flow rate measuring apparatuses 2, 3 controlls the fuel gas and oxidizing agent gas supply regulator valves 4, 5 and regulates the flow of supply. A controller 13b having received measured value signals from pressure/temperature measuring apparatuses 9, 10 and electromotive force measuring apparatus 11 sequentially changes the load of preliminary loading apparatus 12c and controls it so that the specified target voltage value can be obtained. As the preliminary loading apparatus 12c, a multi-stage fixed resistor is used and the specified target voltage value is selected to a value corresponding to the condition of minimum partial loading operation of real loading operation. When the specified target voltage value is obtained, the operation is continued after the loading condition is switched to the real load 12b so as to control the starting power within the specified range.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池に係り、特に電極電位(起電力値)の
調整を可能とし、寿命特性を向上させた燃料電池に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell, and more particularly to a fuel cell in which electrode potential (electromotive force value) can be adjusted and life characteristics are improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

燃料電池は燃料の有している化学的エネルギーを直接電
気エネルギーに変換する装置である。燃料電池は2I(
1常電解質を挾んで一対の多孔質電極を配置するととも
に一方の電極の背面に水素など気体燃料を接触させ、ま
た他方の亀(つの背面に酸素など酸化剤を接触させ、こ
のときに起る電気化学的反応によシ発生ずる電気エネル
ギーを上記一対の電極から取り出すようにしたものであ
る。
A fuel cell is a device that directly converts chemical energy contained in fuel into electrical energy. The fuel cell is 2I (
1 A pair of porous electrodes are placed between a normal electrolyte, and a gaseous fuel such as hydrogen is brought into contact with the back of one electrode, and an oxidizing agent such as oxygen is brought into contact with the back of the other electrode. Electrical energy generated by an electrochemical reaction is extracted from the pair of electrodes.

電解質としては、溶融炭酸塩、アルカリ溶液、酸性溶液
などがあるが、燃料電池として代表的なリン酸を1(j
;解質とする燃料電池の原理を説明する。
Examples of electrolytes include molten carbonate, alkaline solutions, and acidic solutions.
; Explain the principle of a fuel cell that uses solute.

第1図において電解質層1はマトリックスを形成する繊
維質シート又は鉱物劉粉末にリン酸を含浸して形成した
ものである。2はアノード、3はカソードであり炭素質
の多孔性の電極であり、電解質層1に接する面に通常白
金触媒を塗布しである。
In FIG. 1, an electrolyte layer 1 is formed by impregnating phosphoric acid into a fibrous sheet or mineral powder forming a matrix. 2 is an anode, and 3 is a cathode, which is a carbonaceous porous electrode, and the surface in contact with the electrolyte layer 1 is usually coated with a platinum catalyst.

4は水素を含むガスの流れる空間で、5は酸化剤気体、
普通は空気の流れる空間である。リン酸形燃料電池の原
理を説明する。空間4 VC流入し)こ水素は多孔性電
価2の空孔に拡散して触媒に達する。
4 is a space in which gas containing hydrogen flows, 5 is an oxidizing agent gas,
It is usually a space where air flows. The principle of a phosphoric acid fuel cell will be explained. (Space 4 VC flows in) This hydrogen diffuses into the porous pores with a charge value of 2 and reaches the catalyst.

ここで水素ガスは水素イオンと電子に触媒の作用でM、
頗1する。反応式は H2→2H+2e          である。
Here, hydrogen gas becomes M due to the action of a catalyst on hydrogen ions and electrons.
Chest 1. The reaction formula is H2→2H+2e.

水素イオンは11浦イ質M1に入り濃度拡散及び電界作
用によりカソードに向って泳動する。一方、水素ガスの
ル1111Lにょシ分献した電子はアノード2に流れこ
む。カソードでは、アノードから泳動じて来だ水素イオ
ンと酸化剤として空間5に供給てれ、更にカソード3の
空孔を拡散して来た酸素とアノード2から外部の電力負
荷を通って仕事をし、電池のカソード3に戻って来た電
子の3者が触媒表面で次の反応を起す。
Hydrogen ions enter the 11-well mass M1 and migrate toward the cathode due to concentration diffusion and electric field action. On the other hand, the electrons separated by the hydrogen gas 1111L flow into the anode 2. At the cathode, the hydrogen ions migrated from the anode and are supplied to the space 5 as an oxidizing agent, and the oxygen that has diffused through the pores of the cathode 3 and the anode 2 pass through the external power load and do work. , the electrons that returned to the cathode 3 of the battery cause the following reaction on the surface of the catalyst.

4H+ 48 +02−+ 2H,0 かくして、水素が酸化でれて水になる反応と、このとき
の化学的エネルギーが眠気エネルギーとなって外部の電
気負荷中で電気エネνギーを与えるm ’di4.とし
ての全反応が完成する。
4H+ 48 +02-+ 2H,0 Thus, hydrogen is oxidized to water, and the chemical energy at this time becomes drowsiness energy and provides electrical energy ν in an external electrical load m'di4. The entire reaction is completed.

ところで、上記の如く水素を燃和1とし、空気を酸化剤
として用いる燃料電池の単セルは理論的に1.1〜1.
2ボルト程度の起電力値を有するが、負荷によりその起
重力値は変化する。負荷をとらないときは、上記理論起
電力に近い値を示す。ところで、起動・停止操作中は運
転モード上からの無負荷状態になる。これは、温度、ガ
ス霜、圧力が定格条件に達していないために負荷を自由
にとることができないためである。
By the way, as mentioned above, a single cell of a fuel cell using hydrogen as a combustibility of 1 and air as an oxidizing agent theoretically has a combustibility of 1.1 to 1.
It has an electromotive force value of about 2 volts, but the electromotive force value changes depending on the load. When no load is applied, the value is close to the theoretical electromotive force mentioned above. By the way, during start/stop operations, the operation mode is in a no-load state. This is because the load cannot be taken freely because the temperature, gas frost, and pressure have not reached the rated conditions.

しかしながらこの状態は、燃料電池の柾成材相の局食反
応を起こし 劣化を促進するという問題を引@起す。
However, this condition causes a problem in that a local corrosion reaction occurs in the oak wood phase of the fuel cell, accelerating deterioration.

以下に、図を用いて更に1rシ<欣、明する。Below, this will be further explained using figures.

′#G、気化学的エネルギー、あるいは電気化学的反応
の状態は重1極’i′]1.位で示される。第2図(a
)は−ヒ記燃料′ル池の燃料極、すなわちアノードにお
りる反応電流(アノード市原・・・図中実線)とその電
位および空気極すなわちカソードにある反応電流(カソ
ード礼1流・・・図中の実線)とその1([1位につい
ての叱[1111シ)゛である。電極′山1位はある安
定した基準の電)li針′fi]4位に対する値として
表示されるが、一般には一気圧の水素91俸亀位をノ、
(準電位とし、VyQNHEというHe号で表示してい
る。この値は、温度、圧力にも影響されるので一般に5
°C1−気圧で標準化されている。
'#G, the state of gas chemical energy or electrochemical reaction is a heavy monopole 'i']1. It is shown in digits. Figure 2 (a
) is the reaction current flowing to the fuel electrode of the fuel pond, that is, the anode (anode Ichihara...solid line in the figure), its potential, and the reaction current at the air electrode, that is, the cathode (cathode flow 1... (solid line in the figure) and part 1 ([1111 lines for 1st place]). The 1st position of the electrode's peak is displayed as a value relative to the 4th position of a certain stable reference voltage, but in general, the value is 91 cm of hydrogen at one atmosphere.
(It is referred to as a quasi-potential and is indicated by the He number VyQNHE. This value is also affected by temperature and pressure, so it is generally 5
Standardized to °C1-atm.

この4’= ”h化さ)]、た上記アノード’Ml、j
位Eaば0VvsNHEである。一方、標準化された上
記カソード電位Eeは、約1.15 V V8 NHE
である。そして、上記1に位差が起電力値として表現さ
れることになる。
This 4' = "h)], the above anode 'Ml,j
Ea is 0V vs NHE. On the other hand, the standardized cathode potential Ee is approximately 1.15 V V8 NHE
It is. Then, the phase difference in 1 above will be expressed as an electromotive force value.

すなわち、この表現ではカソードが起電力を有している
ことになる。しかし、負荷電流をとると、アノードには
アノード電流が、カソードにはカソード市、流が流れる
。これによりそれぞれに電圧降下が生じ、それぞれの電
位′はk a 8、ECIに変動する。
That is, in this expression, the cathode has an electromotive force. However, when a load current is taken, an anode current flows to the anode and a cathode current flows to the cathode. This causes a voltage drop in each, and each potential' changes to ka 8, ECI.

従って、そのときの起電力値は、E = Ecl−Ea
Therefore, the electromotive force value at that time is E = Ecl - Ea
.

となる。上記電圧降下の諸要因として3種あり、第1と
しては電極上における霜、気化学反応の活性化エネルギ
ーによって決定式れる殆性化分栖、第2としては、電解
質層又は1(1,池構成材料の電気抵抗およびその接触
抵抗による抵抗分極1、第3としては反応愉、即ち、水
素又は酸素が電極反応点まで到達するための電力の濃度
差に起因する濃度介接である。
becomes. There are three types of factors contributing to the voltage drop. The first resistance polarization is caused by the electrical resistance of the constituent materials and the contact resistance thereof.The third is the reaction polarization, that is, the concentration intervention caused by the difference in the concentration of electric power required for hydrogen or oxygen to reach the electrode reaction point.

第2図(b)において、一点鎖線は濃度分極による雷1
圧降下の傾向について示しており、一定の電流密度以上
で著しく増大する。これは供給ガスtにも影響される。
In Figure 2(b), the dashed-dotted line represents lightning 1 due to concentration polarization.
It shows the tendency of pressure drop, which increases significantly above a certain current density. This is also influenced by the supply gas t.

点線は抵抗分極による電圧降下を示し、負荷電流値((
比例して変動する。破線はカソードにおける活性化分析
による電圧降下を示している。アノードVこおける活性
化分極の傾向はカソードにおけるものと同様であるt。
The dotted line shows the voltage drop due to resistance polarization, and the load current value ((
fluctuate proportionately. The dashed line shows the voltage drop due to activation analysis at the cathode. The tendency of activation polarization at the anode V is similar to that at the cathode.

けれども、カソードに比べ非常に小石い。実紳はこれら
の分椅による・it降下を総合的に考慮した実際の起電
力を示している。
However, it is very pebbly compared to the cathode. Sane-san shows the actual electromotive force that comprehensively takes into account the IT drop caused by these division chairs.

すなわち、負荷電流が小さい稈起電力は大きく、従って
電極電位は高くなる。
That is, the culm electromotive force with a small load current is large, and therefore the electrode potential becomes high.

しかし、゛砧、極電位が大きいと、燃料電池の構成材料
、たとえば炭素材料の腐食は08■以上になると加速さ
れることが知られている。又、白金触媒も0,8Vv!
1N、HE以上で触媒の表面楯の減少傾向が顕著となり
始める。
However, it is known that when the electrode potential is large, the corrosion of the constituent materials of the fuel cell, such as carbon materials, is accelerated when the electrode potential exceeds 0.8 mm. Also, the platinum catalyst is also 0.8Vv!
Above 1N and HE, the tendency of the surface shield of the catalyst to decrease becomes noticeable.

以上の如く、電極電位は(18V Vs N)iE以上
すなわち起電、力値を08v以上の状態に維持させるこ
とは燃料電池の寿命を短縮するということは明白である
。特に筒温においてはこの現象は殊に促進される。
As described above, it is clear that maintaining the electrode potential at (18V Vs N) iE or higher, that is, the electromotive force value at 08V or higher, shortens the life of the fuel cell. This phenomenon is particularly accelerated at cylinder temperatures.

一方、電極電位が低下し過ぎると、起動停止時には、流
体流量が少ないため積層単位電池毎に供給されるガス量
の不均一化が助長でれるだめ、各積層単位セル間に特性
の不均一化が生じ、著しい場合には転極といわれる市1
気分解現象が生じ、電池を破壊してしまう原因となる。
On the other hand, if the electrode potential decreases too much, the fluid flow rate is small during startup and stop, which promotes unevenness in the amount of gas supplied to each stacked unit cell, resulting in uneven characteristics between each stacked unit cell. occurs, and in severe cases it is called a polar reversal1.
A gas decomposition phenomenon will occur, causing damage to the battery.

この現象を防止するためにidl Q、3V以上望しく
け0.4V以上の電圧値にも維持する必要性がある。
In order to prevent this phenomenon, it is necessary to maintain the IDl Q at a voltage value of preferably 3V or more, but also 0.4V or more.

ところで、この起電力値を所定範囲内に維持するために
は、各種の状態値を測定して制御することが要求される
。例えば、燃料電池本体の内部温度、内部圧力、負荷(
電流)などを測定1−制御する必要がある。
By the way, in order to maintain this electromotive force value within a predetermined range, it is required to measure and control various state values. For example, the internal temperature, internal pressure, load (
Current) etc. need to be measured and controlled.

しかしなから、従来の燃料電池はこれらを確実に制御し
て起電力値を所定範囲内に維持する機能を有したもので
はなかった。
However, conventional fuel cells do not have a function to reliably control these and maintain the electromotive force value within a predetermined range.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の点を考慮してなをれたもので、その目
的とするところは、電極電位(起電力値)を制御するこ
とにより、長埒命特性を有する燃料電池′を提供するこ
とにある。
The present invention was developed in consideration of the above points, and its purpose is to provide a fuel cell with long life characteristics by controlling the electrode potential (electromotive force value). There is a particular thing.

〔発明の概、冴〕 かかる目的を達成するため、本発明は燃料ガス、酸化剤
ガスの給配系が接続された燃料電池本体と、この燃]・
・1■1:池本体に接続ぢれブを内部圧力測定装置及び
内部温度測定装置と、前記燃料電池本体に接続した負荷
装置及び起電1力測定装置と、口1[記各測定装に測′
1.v値信号から前記給配系及び負り「装置fWを介し
て前記燃料電池1本体の起電力を制御する制御装置とか
らなることを特徴とする。
[Summary of the Invention] In order to achieve the above object, the present invention provides a fuel cell main body to which a fuel gas and oxidizing gas supply distribution system is connected,
・1 ■ 1: Connect the tube connected to the pond body to the internal pressure measuring device and internal temperature measuring device, the load device and electromotive force measuring device connected to the fuel cell body, and the port 1 [to each measuring device listed above] measurement
1. The present invention is characterized by comprising a control device that controls the electromotive force of the fuel cell 1 main body from the v value signal through the supply and distribution system and the negative “device fW”.

〔発明の実施’491 ] 以下、不発、明の一実施1り11を図1mを参照して説
明する。
[Practice of the Invention '491] Hereinafter, an undiscovered, first embodiment 1-11 will be described with reference to FIG. 1m.

燃料電池本体1に燃料ガス及びl’i!2化剖ガス化性
ガス給配系を配管を介して構成する。この給配系は谷々
の供給流量測定器2.3及び供給i+=整弁4.5を備
える供給部と、燃料ガスと酸化剤ガスの圧力差を0+定
する差圧測定器6と連動する缶入の排出調整弁7.8を
備える排出部とから構成する。
Fuel gas and l'i! are supplied to the fuel cell body 1. A bicarbonate gasifying gas distribution system is constructed via piping. This supply distribution system is linked with a supply section including a supply flow rate measuring device 2.3 and a supply i+=regulating valve 4.5, and a differential pressure measuring device 6 that sets the pressure difference between the fuel gas and the oxidizing gas to 0+. and a discharge section equipped with a canned discharge regulating valve 7.8.

さらに、この燃料電池本体1に内部圧力測定装置9、内
部温度測定装置10、起電1力測定装置11、負荷装置
12を各々接続する。負荷装置12は切換装置12aを
介して接妖される実負イdi装置12 b及び予備負荷
装置芒″12Cとから構成する。ぞして、各測定装置の
測定、値(は信号線により制御装置13−に入力される
構))kとする。
Further, an internal pressure measuring device 9, an internal temperature measuring device 10, an electromotive force measuring device 11, and a load device 12 are connected to the fuel cell main body 1, respectively. The load device 12 is composed of an actual load device 12b connected via a switching device 12a and a preliminary load device 12C.The measurements and values of each measuring device are controlled by signal lines. The structure input to the device 13-) is assumed to be k.

制御1装置13け内部圧力1jili定装置9、内部温
度測定’S4 R10、及び供給流量i!iil定器2
.3からの測定値信号を入力烙れ供給fi17j整弁4
.5を制御する制御?!l:13aと、内部圧力測定装
置9、内部圧力測定装置行10及び起電力測定装働1J
からの測定値信号をh力式九負荷装置I2の予備弛荷装
fR,12c及び切換装置ff 12 aの制御を行う
制御器13 bとから構成する。
Control 1 device 13 internal pressure 1jili constant device 9, internal temperature measurement 'S4 R10, and supply flow rate i! ii ruler 2
.. Input measurement value signal from 3 Heat supply fi17j Valve regulator 4
.. Control that controls 5? ! l: 13a, internal pressure measuring device 9, internal pressure measuring device row 10 and electromotive force measuring device 1J
A controller 13b controls the pre-relaxation loading fR, 12c of the h-force nine-loading device I2 and the switching device ff12a.

上看己構成により、燃料電池本体の始動時、前記した各
測定装置の測定値信号をうけた制御器1.3 aは所定
の演碧プログラムに従い、各供給調整弁4.5を制御し
、供給流量をW削整する。
According to the above configuration, when the fuel cell main body is started, the controller 1.3a receives the measurement value signals from the above-mentioned measuring devices and controls each supply regulating valve 4.5 according to a predetermined operation program. Adjust the supply flow rate by W.

供給流量の増加に伴い起電、力が上昇する。次いで起電
力測定装置11等からの測定値信号をうけた制御器13
 bが予備負荷装置12 Cの負荷を順次変化式せ、所
定目標重圧値となるよう制御する。例えば、予備負荷装
置′としては多段固定抵抗を用いる。
As the supply flow rate increases, the electromotive force and force increase. Next, a controller 13 receives a measurement value signal from an electromotive force measuring device 11, etc.
b sequentially changes the load on the preliminary load device 12C and controls it to a predetermined target pressure value. For example, a multistage fixed resistor is used as the preload device'.

所定目標柘、圧値としては大賀gfの最小部分負荷運転
時の争件に対応する値とする。との所定目標電、圧値V
r、達したら切換装置1.2 a (C指令し7、実負
荷12bに切換ジーて運転をせるととにする。
The predetermined target pressure value is a value that corresponds to the issue during minimum partial load operation of Ohga GF. A predetermined target voltage and pressure value V
When the load reaches R, the switching device 1.2a (C command 7) will be used to switch to the actual load 12b and start operation.

停止動作時はこの逆の差11も311作を行えばよい。At the time of the stop operation, the reverse difference 11 may also be operated 311 times.

以上の制御動作により、起電力(的を所定範囲に確実に
制御することが可能となる。
The above control operations make it possible to reliably control the electromotive force (target) within a predetermined range.

次に本発明の他の実フイへ例をf;ζ、1g」する。Next, an example of another embodiment of the present invention will be described.

1、 予備負荷装置として、パワートランジスタを用い
、ベース電流を制御して、エミッター・コレクターnJ
jK流れる負荷電流を制御する電子負荷装置を用いると
とにより負σ丁電流を升m11じ的にかつ精度よくスム
ーズに制御するととができる。負荷急変による流体流量
及び各ガスの差圧の急変を迅速に防市することが可能で
ある。
1. Using a power transistor as a preload device and controlling the base current, the emitter-collector nJ
By using an electronic load device that controls the load current flowing through the load, it is possible to smoothly control the negative σ current in a similar manner and with high accuracy. It is possible to quickly prevent sudden changes in fluid flow rate and differential pressure of each gas due to sudden changes in load.

又、ガスの給配(lこあたって、同時11.給で(弓な
く、燃料ガスを予め供給し、最低↑el+分負荷条件に
もっていっておき、ついで、酸化剤ガスである空気を伊
給し、起電し力値を監視し゛ながら電子負荷装置を接続
することも可能であり、これによって起電力値を08V
以下に制御、できることを確認した。
In addition, the gas supply and distribution (11. supply at the same time) (supply the fuel gas in advance, bring it to the load condition of at least ↑el+, and then supply the air, which is the oxidizing gas, at the same time). It is also possible to connect an electronic load device while supplying electricity and monitoring the electromotive force value, thereby reducing the electromotive force value to 0.8V.
I have confirmed that I can control the following.

〔釘、明の効果〕[Nail, light effect]

す、上説明した様に、本発明によれは電極電位(起電力
)を制御することができ、長寿命特性を有する燃料′酸
油を枦供することがてきる。
As explained above, according to the present invention, the electrode potential (electromotive force) can be controlled and a fuel or acid oil having long life characteristics can be provided.

4、  lA面のl?h”ヤな献明 第1図は、燃料’%’、池のj動作原理の説明ド1、酊
2[シl (a) fd、ナクパり料電池の電位く電位
の謂、開国、第2図(0−1負荷電流と起電力との関係
図、第3区1(−1、本発明の一実施例の燃料寅4(L
の構成図である。
4. l of lA side? Fig. 1 shows the fuel '%', the explanation of the operating principle of the fuel cell, the so-called potential of the fuel cell, the opening of the country, and the Figure 2 (0-1 Relationship diagram between load current and electromotive force, Section 3 1 (-1, Fuel 4 (L) of one embodiment of the present invention
FIG.

Claims (1)

【特許請求の範囲】 ■、燃料ガス、酸化剤ガスの給配系が4γ続された燃料
電池本体と、との燃料電池本体に接続でれた内部圧力測
定装置及び内部温度測定装置と、前記燃料電池本体に接
続した負荷装・童及び起電力測定装置と、前記各測定装
置の測定値信号から前記給配系及び負荷装置゛を介して
前記燃料電池本体の起電力を制御する制御装置とから成
る燃料電池。 2 燃料ガス、酸化剤ガスの給配系け、供給流量測定器
及び供給調整弁を備えた伊給部と、燃料ガスと酸化剤ガ
スとの圧力差を測定する差圧測定器と連動する排出調整
弁を備えた排出部とから成る舶許請求の範囲第1項記載
の燃料電池。 3 負荷装置は切換装置を介して接続をれる実負荷装置
と予備負荷装置とから成る特許請求の範囲第1項及び第
2項記載の燃料電池。 4 制御装置は燃料電池本体の内部圧力測定装置1k及
び内部温度測定装置からの各測定値信号及び供給流量測
定器からの測定値信号から供給調整弁を制御する第1の
制御器と、前記内部圧力測定装置N及び内部温度測定装
置からの測定値信号及び起?+1、力測定装置の測定値
信号から負荷装置を制御する第2の制御器から成る特許
請求の範囲第2項乃至第3項記載の燃料電池。 5、 起電力rf0.3v〜0.8Vの範囲に制御する
特許請求の範囲第1項乃至第4項記載の燃料電池。
[Scope of Claims] (1) A fuel cell main body to which a fuel gas and oxidizing gas supply distribution system is connected in 4γ; an internal pressure measuring device and an internal temperature measuring device connected to the fuel cell main body; a load device, an electromotive force measuring device connected to the fuel cell main body, and a control device that controls the electromotive force of the fuel cell main body via the distribution system and the load device based on the measurement value signals of the respective measuring devices; A fuel cell consisting of. 2. An exhaust section equipped with a fuel gas and oxidizing gas supply distribution system, a supply flow rate measuring device, and a supply regulating valve, and a discharge unit that is linked with a differential pressure measuring device that measures the pressure difference between the fuel gas and oxidizing gas. 2. The fuel cell according to claim 1, comprising a discharge section equipped with a regulating valve. 3. The fuel cell according to claims 1 and 2, wherein the load device comprises an actual load device and a preliminary load device that are connected via a switching device. 4. The control device includes a first controller that controls the supply regulating valve from each measurement value signal from the internal pressure measurement device 1k and the internal temperature measurement device of the fuel cell main body and the measurement value signal from the supply flow rate measurement device, and Measured value signals from the pressure measuring device N and internal temperature measuring device and 3. The fuel cell according to claim 2, further comprising: +1, a second controller that controls the load device from the measured value signal of the force measuring device. 5. The fuel cell according to claims 1 to 4, wherein the electromotive force rf is controlled within the range of 0.3v to 0.8V.
JP58021573A 1983-02-14 1983-02-14 Fuel cell start / stop device Expired - Lifetime JPH0763020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58021573A JPH0763020B2 (en) 1983-02-14 1983-02-14 Fuel cell start / stop device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58021573A JPH0763020B2 (en) 1983-02-14 1983-02-14 Fuel cell start / stop device

Publications (2)

Publication Number Publication Date
JPS59149668A true JPS59149668A (en) 1984-08-27
JPH0763020B2 JPH0763020B2 (en) 1995-07-05

Family

ID=12058765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58021573A Expired - Lifetime JPH0763020B2 (en) 1983-02-14 1983-02-14 Fuel cell start / stop device

Country Status (1)

Country Link
JP (1) JPH0763020B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60146466A (en) * 1984-01-09 1985-08-02 Fuji Electric Corp Res & Dev Ltd Running of phosphoric acid fuel battery
JPS61233975A (en) * 1985-04-10 1986-10-18 Fuji Electric Corp Res & Dev Ltd Operation controller of fuel cell
JPS63181268A (en) * 1987-01-23 1988-07-26 Mitsubishi Electric Corp Fuel cell power generation system
JPH01304668A (en) * 1988-06-01 1989-12-08 Toshiba Corp Phosphoric acid type fuel cell power generating plant
WO2001048848A3 (en) * 1999-12-23 2002-04-25 Emitec Emissionstechnologie Fuel cell system for use as a drive unit for a vehicle
JP2004095527A (en) * 2002-07-12 2004-03-25 Asia Pacific Fuel Cell Technology Ltd Control method and device for fuel cell device
JP2005222857A (en) * 2004-02-06 2005-08-18 Hitachi Ltd Fuel cell power generation system
WO2006040999A1 (en) * 2004-10-08 2006-04-20 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation device
WO2008146928A1 (en) * 2007-05-29 2008-12-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2013232431A (en) * 2006-03-20 2013-11-14 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system, and performance recovery method and performance recovery program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608250B2 (en) * 2004-07-02 2011-01-12 本田技研工業株式会社 Fuel cell system and starting method thereof
JP6053013B2 (en) * 2013-03-28 2016-12-27 本田技研工業株式会社 Fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180938A (en) * 1975-01-13 1976-07-15 Hitachi Chemical Co Ltd
JPS5553876A (en) * 1978-10-13 1980-04-19 United Technologies Corp Method of lowering output power of fuel battery
JPS58128673A (en) * 1982-01-27 1983-08-01 Hitachi Ltd Control of fuel cell power generating plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180938A (en) * 1975-01-13 1976-07-15 Hitachi Chemical Co Ltd
JPS5553876A (en) * 1978-10-13 1980-04-19 United Technologies Corp Method of lowering output power of fuel battery
JPS58128673A (en) * 1982-01-27 1983-08-01 Hitachi Ltd Control of fuel cell power generating plant

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60146466A (en) * 1984-01-09 1985-08-02 Fuji Electric Corp Res & Dev Ltd Running of phosphoric acid fuel battery
JPS61233975A (en) * 1985-04-10 1986-10-18 Fuji Electric Corp Res & Dev Ltd Operation controller of fuel cell
JPS63181268A (en) * 1987-01-23 1988-07-26 Mitsubishi Electric Corp Fuel cell power generation system
JPH01304668A (en) * 1988-06-01 1989-12-08 Toshiba Corp Phosphoric acid type fuel cell power generating plant
WO2001048848A3 (en) * 1999-12-23 2002-04-25 Emitec Emissionstechnologie Fuel cell system for use as a drive unit for a vehicle
JP2004095527A (en) * 2002-07-12 2004-03-25 Asia Pacific Fuel Cell Technology Ltd Control method and device for fuel cell device
JP2005222857A (en) * 2004-02-06 2005-08-18 Hitachi Ltd Fuel cell power generation system
JP4704690B2 (en) * 2004-02-06 2011-06-15 株式会社日立製作所 Fuel cell power generation system
WO2006040999A1 (en) * 2004-10-08 2006-04-20 Matsushita Electric Industrial Co., Ltd. Fuel cell power generation device
JP2013232431A (en) * 2006-03-20 2013-11-14 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system, and performance recovery method and performance recovery program
WO2008146928A1 (en) * 2007-05-29 2008-12-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP5003980B2 (en) * 2007-05-29 2012-08-22 トヨタ自動車株式会社 Fuel cell system
US9118049B2 (en) 2007-05-29 2015-08-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
JPH0763020B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US6376111B1 (en) System and method for controlling the humidity level of a fuel cell
KR100699371B1 (en) Direct-methanol fuel cell system and mtehod for controlling the same
US20160181636A1 (en) Open-loop system and method for fuel cell stack start-up with low-voltage source
US8748051B2 (en) Adaptive loading of a fuel cell
WO2002069429A1 (en) High fuel utilization in a fuel cell
JPH0927336A (en) Fuel cell stack diagnostic method
JPS59149668A (en) Fuel battery
CN105609824A (en) Fuel cell system and fuel cell system control method
JP2008311064A (en) Fuel cell system and activation method of fuel cell
KR20180095987A (en) Method for activating the membrabne-electrode assembly of the fuel cell
JP4362266B2 (en) Fuel gas supply shortage detection method and fuel cell control method
JP2007005000A (en) Control method for fuel cell system
US12009556B2 (en) Fuel cell system and control method for fuel cell system
JP2752987B2 (en) Phosphoric acid fuel cell power plant
US20190074532A1 (en) Method for operating a fuel cell and fuel cell system
JPH0487263A (en) Fuel cell power generation plant
JPH069143B2 (en) Fuel cell storage method
JPH09199151A (en) Fuel cell and its catalytic processing method
US11742503B2 (en) Method and system for operating an electrochemical fuel cell stack with improved performance recovery
JPH09120830A (en) Starting method for fuel cell power-generating device
JPH0622153B2 (en) How to operate a fuel cell
US12009558B2 (en) Fuel cell system and method for controlling fuel cell system
US3847673A (en) Hydrazine concentration sensing cell for fuel cell electrolyte
JP2007265910A (en) Fuel cell system and its operation method
JP2013191568A (en) Fuel cell system and activation method of fuel battery