JPH09120830A - Starting method for fuel cell power-generating device - Google Patents

Starting method for fuel cell power-generating device

Info

Publication number
JPH09120830A
JPH09120830A JP7277279A JP27727995A JPH09120830A JP H09120830 A JPH09120830 A JP H09120830A JP 7277279 A JP7277279 A JP 7277279A JP 27727995 A JP27727995 A JP 27727995A JP H09120830 A JPH09120830 A JP H09120830A
Authority
JP
Japan
Prior art keywords
gas
fuel
air electrode
fuel cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7277279A
Other languages
Japanese (ja)
Inventor
Akitoshi Seya
彰利 瀬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7277279A priority Critical patent/JPH09120830A/en
Publication of JPH09120830A publication Critical patent/JPH09120830A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To estatblish a starting method which does not cause deterioration in the characteristics by supplying a fuel gas to a gas passage of a fuel electrode for a certain time, then supplying an oxidator gas to gas passage of an air electrode, and at the same time, connecting the load. SOLUTION: A fuel gas is supplied to a gas passage of a fuel cell, and a certain specified time is allowed to elapse which is longer than the time T(S) in which the fuel gas flows steadily to the gas passages of all element cells. After T(S) elapsed, an oxidator gas is supplied to gas passage of air electrode along with continuous loading so as to start the power generation. Accordingly no load current flows as long as the fuel gas is not in acccess, and no corrosion will be generated on the fuel electrode. Load current flows simultaneously with introduction of the oxidator gas, and the air electrode is prevented from being exposed to a high potential in no-load condition which may cause deterioration of the air electrode catalyst. Thus the intended starting method for fuel cell power-generation device is established, whose characteristics will never be degraded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、酸化剤ガスと燃
料ガスを導入して電気化学反応により発電を行う燃料電
池発電装置の起動方法、特に発電開始方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting a fuel cell power generator that introduces an oxidant gas and a fuel gas to generate electricity by an electrochemical reaction, and more particularly to a method for starting power generation.

【0002】[0002]

【従来の技術】燃料電池発電装置、例えばリン酸型燃料
電池発電装置においては、燃料ガスの通流路を備えた基
材と燃料極触媒層とからなる燃料極と、酸化剤ガスの通
流路を備えた基材と空気極触媒層とからなる空気極とに
より、両触媒層に接しさせて、リン酸電解質を含浸担持
したマトリックスを挟持して単セルを形成し、本単セル
を複数積層して燃料電池本体を構成している。このよう
に構成した燃料電池本体を加熱し、燃料極と空気極のガ
スの通流路に、それぞれ水素濃度の高い燃料ガス、およ
び空気あるいは酸素等の酸化剤ガスを通流させると、電
解質層と両触媒層において電気化学反応が生じ、両電極
間に直流電圧が発生し、負荷に接続すると直流電流が流
れることとなる。
2. Description of the Related Art In a fuel cell power generator, for example, a phosphoric acid fuel cell power generator, a fuel electrode comprising a base material having a fuel gas passage and a fuel electrode catalyst layer and an oxidant gas flow passage. A single cell is formed by contacting both catalyst layers with a base material provided with a passage and an air electrode comprising an air electrode catalyst layer, and sandwiching a matrix impregnated with a phosphoric acid electrolyte to form a single cell. The fuel cell body is formed by stacking layers. When the fuel cell main body configured as described above is heated and the fuel gas having a high hydrogen concentration and the oxidant gas such as air or oxygen are caused to flow through the gas passages of the fuel electrode and the air electrode, respectively, the electrolyte layer is formed. And an electrochemical reaction occurs in both catalyst layers, a DC voltage is generated between both electrodes, and a DC current flows when connected to a load.

【0003】図3は、従来より用いられている燃料電池
発電装置の起動方法の一例を示す特性図で、主要パラメ
ータである燃料流量(燃料極のガス通流路に流れる燃料
ガスの流量)、酸化剤流量(空気極のガス通流路に流れ
る酸化剤ガスの流量)、負荷電流(接続した負荷に流れ
る電流)および単セル電圧(各単セルの両電極間に生じ
る電圧)の起動時の時間経過を図示したものである。図
に見られるように、まず燃料ガスと酸化剤ガスを燃料極
と空気極のガスの通流路に供給し、すべての単セルのガ
ス通流路に定常的に通流する状態となったのち、負荷に
接続して負荷電流を流し、発電を開始する方法が採られ
ている。
FIG. 3 is a characteristic diagram showing an example of a starting method of a fuel cell power generator which has been conventionally used. The fuel flow rate (flow rate of the fuel gas flowing in the gas passage of the fuel electrode), which is a main parameter, When the oxidant flow rate (flow rate of the oxidant gas flowing in the gas passage of the air electrode), load current (current flowing in the connected load) and single cell voltage (voltage generated between both electrodes of each single cell) are started It is a diagram showing the passage of time. As shown in the figure, first, the fuel gas and the oxidant gas were supplied to the gas flow passages of the fuel electrode and the air electrode, and the gas flow passages of all single cells were steadily flowed. After that, a method of connecting to a load, flowing a load current, and starting power generation is adopted.

【0004】[0004]

【発明が解決しようとする課題】上記の図3のごとき起
動方法を用いると、単セル電圧の特性に見られるよう
に、燃料ガスと酸化剤ガスが定常的に通流を始めてのち
負荷が接続されるまでの間は無負荷状態にあるため、各
単セルは1〔V〕程度の電位に曝されることとなる。一
方、燃料電池発電装置の発電特性は燃料電池本体の空気
極触媒層の活性に大きく影響され、空気極触媒層の活性
成分である白金微粒子は1〔V〕程度の電位に曝される
と急激に粗大化が進み、空気極触媒層の活性が低下して
しまうので、上記の無負荷状態においては燃料電池本体
の劣化が加速され、特性が低下してしまうこととなる。
When the starting method as shown in FIG. 3 is used, as shown in the characteristics of the unit cell voltage, the fuel gas and the oxidant gas start to flow constantly and then the load is connected. Until it is carried out, each unit cell is exposed to a potential of about 1 [V] because it is in an unloaded state. On the other hand, the power generation characteristics of the fuel cell power generator are greatly affected by the activity of the air electrode catalyst layer of the fuel cell body, and the platinum fine particles, which are the active component of the air electrode catalyst layer, are rapidly exposed when exposed to a potential of about 1 [V]. As the size of the fuel cell body becomes coarser and the activity of the air electrode catalyst layer decreases, the deterioration of the fuel cell body is accelerated in the above-mentioned no-load state, resulting in deterioration of the characteristics.

【0005】とくに、装置を需要地に設置するオンサイ
ト型の燃料電池発電装置のように、頻繁に起動、停止を
行うと、起動の度に特性が低下し、図2に併記したごと
く、累進的に電圧が低下してしまう。また、装置の起動
法として、燃料ガスと酸化剤ガスの通流開始とともに負
荷に接続する方法を採れば、空気極触媒層が無負荷状態
の1〔V〕程度の電位に曝されることは無くなるが、燃
料ガスが未だ通流していない単セルにおいては、負荷電
流の通流によって、
Particularly, when the apparatus is frequently started and stopped like an on-site type fuel cell power generator which is installed in a demand area, the characteristics are deteriorated each time the apparatus is started, and as shown in FIG. The voltage will drop. Further, if a method of connecting the load with the start of the flow of the fuel gas and the oxidant gas is adopted as the starting method of the apparatus, the air electrode catalyst layer is not exposed to the potential of about 1 [V] in the unloaded state. Although it disappears, in a single cell where fuel gas has not yet flowed, due to the flow of load current,

【0006】[0006]

【化1】 C+2H2O → CO2 +4H+ +4e- (1) の反応が起こり、燃料極が腐食して、大きく劣化してし
まうこととなる。この発明は、上記のごとき従来技術の
問題点を考慮してなされたもので、その目的は、発電開
始時に空気極が高電位に曝されて特性が劣化することな
く、また燃料極が燃料ガスの不足により腐食する恐れが
なく、燃料電池発電装置を長期にわたり安定して使用で
きる起動法を提供することにある。
Embedded image The reaction of C + 2H 2 O → CO 2 + 4H + + 4e (1) occurs, and the fuel electrode is corroded and greatly deteriorated. The present invention has been made in consideration of the above-mentioned problems of the prior art, and an object thereof is to prevent the air electrode from being exposed to a high potential at the start of power generation and the characteristics to be deteriorated. It is to provide a starting method that can stably use a fuel cell power generation device for a long period of time without fear of corrosion due to lack of fuel.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、電解質層を空気極と燃料極と
で挟持してなる単セルを複数積層して燃料電池本体を形
成し、空気極に備えたガス通流路に酸化剤ガスを、また
燃料極に備えたガス通流路に燃料ガスを通流させて発電
する燃料電池発電装置において、燃料極のガス通流路に
燃料ガスを供給し、燃料ガスが供給開始後すべての単セ
ルのガス通流路に定常的に通流するに至る所要時間T
〔s〕より長く選定された所定時間t〔s〕経過したの
ち、空気極のガス通流路に酸化剤ガスを供給し、同時に
負荷を接続して発電を開始することにより燃料電池発電
装置を起動することとする。
In order to achieve the above object, in the present invention, a fuel cell body is formed by stacking a plurality of single cells in which an electrolyte layer is sandwiched between an air electrode and a fuel electrode. In a fuel cell power generation device for generating power by passing an oxidant gas through a gas passage provided in an air electrode and a fuel gas through a gas passage provided in a fuel electrode, a gas passage formed in a fuel electrode The time T required to supply the fuel gas and to allow the fuel gas to steadily flow through the gas passages of all the unit cells after the start of the supply.
After a predetermined time t [s] selected longer than [s] elapses, an oxidant gas is supplied to the gas passage of the air electrode, and at the same time, a load is connected to start power generation, so that the fuel cell power generation device can be operated. I will start it.

【0008】上記のごとき方法により起動することとす
れば、燃料ガスが到達していない状態で負荷電流が流れ
ることはないので燃料極の腐食は生じない。また、酸化
剤ガスの導入と同時に負荷電流が流れるので、空気極が
無負荷状態の高電位に曝されて空気極触媒が劣化する事
態は生じない。
If the method is started by the above method, the load current does not flow in the state where the fuel gas has not reached, so that the corrosion of the fuel electrode does not occur. Further, since the load current flows at the same time as the introduction of the oxidant gas, there is no possibility that the air electrode is exposed to the high potential in the unloaded state and the air electrode catalyst is deteriorated.

【0009】[0009]

【発明の実施の形態】図1は、本発明の燃料電池発電装
置の起動方法の実施の形態を示す特性図で、図3の従来
例と同様に、主要パラメータである燃料流量、酸化剤流
量、負荷電流および単セル電圧の起動時の時間経過を図
示したものである。図に見られるように、本起動方法に
おいては、まず燃料電池本体への燃料ガスの供給を開始
し、すべての単セルの燃料極に燃料ガスが定常的に流れ
る状態となったのを確認し、5分経過後に酸化剤ガスの
供給を開始し、同時に負荷を接続している。この際、酸
化剤ガスが各単セルへ到達しない間は単セル電圧の低下
が観測され、酸化剤ガスの到達とともに単セル電圧が上
昇し、約5分間経過ののちほぼ正常な値に達している。
なお、酸化剤ガスが不足しているとき、単セルの空気極
側において、
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a characteristic diagram showing an embodiment of a method for starting a fuel cell power generator according to the present invention. Like the conventional example of FIG. 3, the main parameters are the fuel flow rate and the oxidant flow rate. FIG. 4 is a diagram showing a lapse of time at the time of starting the load current and the unit cell voltage. As shown in the figure, in this start-up method, first, supply of fuel gas to the fuel cell body was started, and it was confirmed that the fuel gas flowed steadily to the fuel electrodes of all single cells. After the lapse of 5 minutes, the supply of the oxidant gas is started and the load is connected at the same time. At this time, a decrease in the single cell voltage was observed while the oxidant gas did not reach each single cell, and the single cell voltage increased with the arrival of the oxidant gas, and after reaching about 5 minutes, it reached an almost normal value. There is.
When the oxidizing gas is insufficient, on the air electrode side of the single cell,

【0010】[0010]

【化2】 4H+ +4e- → 2H2 (2) なる反応が発生していることが確認されているが、この
反応により単セルの特性が劣化するという現象は認めら
れていない。図2は、複数の単セルを積層したスタック
について、上記の起動方法を用いて繰り返し起動を行っ
た場合のスタック電圧の経時変化を示す特性図である。
本図には、図3の従来の起動方法を用いた場合の特性も
併せて示した。
It has been confirmed that the reaction 4H + + 4e → 2H 2 (2) occurs, but the phenomenon that the characteristics of the single cell deteriorate due to this reaction has not been recognized. FIG. 2 is a characteristic diagram showing a change with time in stack voltage when a stack in which a plurality of unit cells are stacked is repeatedly started by using the above-mentioned starting method.
This figure also shows the characteristics when the conventional starting method of FIG. 3 is used.

【0011】図に見られるように、従来の起動方法を用
いた場合には、起動を繰り返す毎に単セル1個あたり数
mVの電圧低下が生じており、累進的に電圧の低下が進
行しているが、本発明の起動方法においては電圧低下は
認められず。当初の電圧が維持されている。上記のよう
に、図1の起動方法を用いれば、燃料ガスが通流してい
ない状態において負荷電流が流れることはないので燃料
極の腐食は発生せず、また空気極が高電位にさらされる
ことはないので空気極触媒層の劣化も起こらないので、
燃料電池発電装置が長期にわたって安定した特性を保持
することとなる。
As shown in the figure, when the conventional starting method is used, a voltage drop of several mV per unit cell occurs each time the starting is repeated, and the voltage drop progresses progressively. However, in the starting method of the present invention, no voltage drop is recognized. The original voltage is maintained. As described above, if the starting method of FIG. 1 is used, the load current does not flow in the state where the fuel gas is not flowing, so that the corrosion of the fuel electrode does not occur and the air electrode is exposed to the high potential. Since there is no deterioration of the air electrode catalyst layer,
The fuel cell power generator maintains stable characteristics for a long period of time.

【0012】[0012]

【発明の効果】上述のように、本発明によれば、電解質
層を空気極と燃料極とで挟持してなる単セルを複数積層
して燃料電池本体を形成し、空気極に備えたガス通流路
に酸化剤ガスを、また燃料極に備えたガス通流路に燃料
ガスを通流させて発電する燃料電池発電装置において、
燃料極のガス通流路に燃料ガスを供給し、燃料ガスが供
給開始後すべての単セルのガス通流路に定常的に通流す
るに至る所要時間T〔s〕より長く選定された所定時間
t〔s〕経過したのち、空気極のガス通流路に酸化剤ガ
スを供給し、同時に負荷を接続して発電を開始すること
により燃料電池発電装置を起動することとしたので、発
電開始時に空気極が高電位に曝されて特性が劣化する事
態となったり、あるいは燃料極が燃料ガスの不足により
腐食する事態となる危険性がなく、燃料電池発電装置を
長期にわたり安定して使用できる起動法が得られること
となった。
As described above, according to the present invention, a fuel cell body is formed by stacking a plurality of unit cells each having an electrolyte layer sandwiched between an air electrode and a fuel electrode, and a gas provided in the air electrode. In a fuel cell power generation device for generating power by flowing an oxidant gas in a communication channel and a fuel gas in a gas communication channel provided in a fuel electrode,
When a fuel gas is supplied to the gas flow passage of the fuel electrode, and the fuel gas is constantly supplied to the gas flow passages of all the unit cells after the supply is started, the predetermined time longer than the required time T [s] is selected. After the time t [s] has elapsed, the oxidant gas was supplied to the gas flow path of the air electrode, and at the same time, the load was connected to start power generation, so that the fuel cell power generator was started up. There is no risk of the air electrode being exposed to a high electric potential at times to deteriorate the characteristics, or the fuel electrode being corroded due to lack of fuel gas, and the fuel cell power generator can be used stably for a long period of time. The start-up method can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池発電装置の起動方法の実施の
形態を示す特性図で、起動時の燃料流量、酸化剤流量、
負荷電流および単セル電圧の時間変化特性図
FIG. 1 is a characteristic diagram showing an embodiment of a starting method of a fuel cell power generator of the present invention, in which a fuel flow rate at start-up, an oxidant flow rate,
Characteristic diagram of time change of load current and single cell voltage

【図2】本発明の起動方法により繰り返し起動操作を行
ったときの単セル積層体のスタック電圧の経時変化特性
FIG. 2 is a characteristic diagram of a change in stack voltage with time of a single cell stack when a starting operation is repeatedly performed by the starting method of the present invention.

【図3】従来より用いられている燃料電池発電装置の起
動方法の一例を示す特性図で、起動時の燃料流量、酸化
剤流量、負荷電流および単セル電圧の時間特性変化図
FIG. 3 is a characteristic diagram showing an example of a starting method of a fuel cell power generator that has been used conventionally, and is a time characteristic change diagram of a fuel flow rate, an oxidant flow rate, a load current, and a single cell voltage at the time of startup.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電解質層を空気極と燃料極とで挟持してな
る単セルを複数積層して燃料電池本体を形成し、空気極
に備えたガス通流路に酸化剤ガスを、また燃料極に備え
たガス通流路に燃料ガスを通流させて発電する燃料電池
発電装置において、燃料極のガス通流路に燃料ガスを供
給し、所定時間t〔s〕経過したのち、空気極のガス通
流路に酸化剤ガスを供給し、同時に負荷を接続して発電
を開始することを特徴とする燃料電池発電装置の起動方
法。
1. A fuel cell body is formed by stacking a plurality of single cells in which an electrolyte layer is sandwiched between an air electrode and a fuel electrode, and an oxidant gas is supplied to a gas passage provided in the air electrode, and a fuel is also supplied. In a fuel cell power generation device for generating fuel gas by flowing a fuel gas through a gas flow passage provided in an electrode, the fuel gas is supplied to the gas flow passage of the fuel electrode, and after a predetermined time t [s] has passed, the air electrode A method for starting a fuel cell power generator, comprising: supplying an oxidant gas to the gas flow path of 1. and connecting a load at the same time to start power generation.
【請求項2】前記の所定時間t〔s〕が、燃料ガスが供
給開始後すべての単セルのガス通流路に定常的に通流す
るに至る所要時間T〔s〕より長く選定されていること
を特徴とする請求項1に記載の燃料電池発電装置の起動
方法。
2. The predetermined time t [s] is selected to be longer than the time T [s] required for the fuel gas to steadily flow through the gas flow passages of all unit cells after the start of supply. The method for starting a fuel cell power generator according to claim 1, wherein
JP7277279A 1995-10-25 1995-10-25 Starting method for fuel cell power-generating device Pending JPH09120830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7277279A JPH09120830A (en) 1995-10-25 1995-10-25 Starting method for fuel cell power-generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7277279A JPH09120830A (en) 1995-10-25 1995-10-25 Starting method for fuel cell power-generating device

Publications (1)

Publication Number Publication Date
JPH09120830A true JPH09120830A (en) 1997-05-06

Family

ID=17581323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7277279A Pending JPH09120830A (en) 1995-10-25 1995-10-25 Starting method for fuel cell power-generating device

Country Status (1)

Country Link
JP (1) JPH09120830A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077512A (en) * 2001-09-05 2003-03-14 Mitsubishi Gas Chem Co Inc Operating method for methanol direct supply type fuel cell
JP2005085662A (en) * 2003-09-10 2005-03-31 Matsushita Electric Ind Co Ltd Fuel cell system and its operation method
JP2005259664A (en) * 2004-03-15 2005-09-22 Ebara Ballard Corp Operation method of fuel cell stack and fuel cell system
JP2006512734A (en) * 2002-12-26 2006-04-13 ユーティーシー フューエル セルズ,エルエルシー Startup system and method for a fuel cell power plant using cathode electrode fuel purge
JP2006147550A (en) * 2004-10-19 2006-06-08 Toshiba Fuel Cell Power Systems Corp Fuel cell system, and its stopping, retaining and starting method, and stopping, retaining and starting program
WO2009119259A1 (en) * 2008-03-25 2009-10-01 トヨタ自動車株式会社 Fuel cell system
JP2010238495A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Fuel cell system and electric vehicle with the fuel cell system mounted

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077512A (en) * 2001-09-05 2003-03-14 Mitsubishi Gas Chem Co Inc Operating method for methanol direct supply type fuel cell
JP2006512734A (en) * 2002-12-26 2006-04-13 ユーティーシー フューエル セルズ,エルエルシー Startup system and method for a fuel cell power plant using cathode electrode fuel purge
JP2005085662A (en) * 2003-09-10 2005-03-31 Matsushita Electric Ind Co Ltd Fuel cell system and its operation method
JP2005259664A (en) * 2004-03-15 2005-09-22 Ebara Ballard Corp Operation method of fuel cell stack and fuel cell system
JP2006147550A (en) * 2004-10-19 2006-06-08 Toshiba Fuel Cell Power Systems Corp Fuel cell system, and its stopping, retaining and starting method, and stopping, retaining and starting program
WO2009119259A1 (en) * 2008-03-25 2009-10-01 トヨタ自動車株式会社 Fuel cell system
US9017888B2 (en) 2008-03-25 2015-04-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2010238495A (en) * 2009-03-31 2010-10-21 Toyota Motor Corp Fuel cell system and electric vehicle with the fuel cell system mounted
US20120015268A1 (en) * 2009-03-31 2012-01-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system, control method for the fuel cell system, and electric vehicle equipped with the fuel cell system
CN102369621A (en) * 2009-03-31 2012-03-07 丰田自动车株式会社 Fuel cell system, control method for the fuel cell system, and electric vehicle equipped with the fuel cell system
US9853313B2 (en) 2009-03-31 2017-12-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system, control method for the fuel cell system, and electric vehicle equipped with the fuel cell system

Similar Documents

Publication Publication Date Title
US6569549B1 (en) Method for increasing the operational efficiency of a fuel cell power plant
US6558827B1 (en) High fuel utilization in a fuel cell
JP7080348B2 (en) Fuel cell activation method and activation device
US20040185328A1 (en) Chemoelectric generating
US7276305B2 (en) Method of operating fuel cell
JP2009016331A (en) Fuel cell acceleration activating device and method
JP2007103115A (en) Fuel cell system
KR20150074311A (en) Fuel cell management method
US20070154743A1 (en) Micro-energy re-activating method to recover PEM fuel cell performance
JP2008311064A (en) Fuel cell system and activation method of fuel cell
US7709119B2 (en) Method for operating fuel cell
JP2003115318A (en) Operational device and method of fuel cell
JP2000113896A (en) Solid polymer fuel cell and its system
JP5418800B2 (en) Method and program for starting fuel cell system
JP4336182B2 (en) Operation method of fuel cell system and fuel cell system
JPH09120830A (en) Starting method for fuel cell power-generating device
JP6543671B2 (en) Fuel cell output inspection method
JP2007048517A (en) Fuel cell system
JP4788151B2 (en) Method and apparatus for returning characteristics of fuel cell
JP2008166164A (en) Fuel cell system, and its control method
JP2009245859A (en) Fuel cell device and its driving method
JP2007128790A (en) Control method of fuel cell, and its controller
JP2000233905A (en) Device for reducing carbon monoxide concentration in gaseous hydrogen-containing carbon monoxide and fuel cell power generation system using the same
JPS63236262A (en) Fuel cell
JP2006351343A (en) Fuel cell power generation device and method