JPH0719615B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH0719615B2
JPH0719615B2 JP62243744A JP24374487A JPH0719615B2 JP H0719615 B2 JPH0719615 B2 JP H0719615B2 JP 62243744 A JP62243744 A JP 62243744A JP 24374487 A JP24374487 A JP 24374487A JP H0719615 B2 JPH0719615 B2 JP H0719615B2
Authority
JP
Japan
Prior art keywords
battery
reaction gas
cell
fuel cell
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62243744A
Other languages
Japanese (ja)
Other versions
JPS6489158A (en
Inventor
淳 幹
昇平 魚住
曽根  勇
武夫 山形
泰行 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62243744A priority Critical patent/JPH0719615B2/en
Publication of JPS6489158A publication Critical patent/JPS6489158A/en
Publication of JPH0719615B2 publication Critical patent/JPH0719615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池発電システムに関するものである。TECHNICAL FIELD The present invention relates to a fuel cell power generation system.

〔従来の技術〕[Conventional technology]

従来燃料電池発電システムは米国特許4,198,597号公報
に示されているように、電池本体が劣化して不動作セル
が発生したかどうかを検出するために、セル単体あるい
はモジユール電池から夫々発生電圧を連続監視する多く
のセンサーを電池本体から計測系へ導出している。ま
た、特開昭58−94767号公報、特開昭58−87770号公報に
は電池後流側の排ガス中の炭酸ガス濃度から電池本体の
劣化を検出することが示されている。
In the conventional fuel cell power generation system, as shown in U.S. Pat.No. 4,198,597, in order to detect whether or not an inactive cell has occurred due to deterioration of the battery main body, the voltage generated from each cell or a module battery is continuously supplied. Many sensors for monitoring are derived from the battery body to the measurement system. Further, JP-A-58-94767 and JP-A-58-87770 disclose that deterioration of the battery main body is detected from the carbon dioxide concentration in the exhaust gas on the downstream side of the battery.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術でセル電圧を監視する場合は、基本的には
各セル毎にセンサーを配設する必要があり、多量のデー
タを処理する膨大な計測システムが要求され、発電シス
テムが複雑化すると共にコストも高くなる。また、モジ
ユール電池単位に計測する場合には、不動作セルが存在
しても全体が負電位にまで低下せず、検出ができない欠
点があつた。また、後流側のガス分析による場合には炭
酸ガスの検出手段を設ける必要があり、装置が複雑化す
ると共に、コストが高くなる。更に、燃料ガスを改質生
成する過程で既に炭酸ガスが含有されており、セル劣化
によつて生じる炭酸ガスと分離評価することが難しく、
信頼性の上でも問題があつた。
When the cell voltage is monitored by the above-mentioned conventional technique, it is basically necessary to dispose a sensor for each cell, which requires a huge measurement system for processing a large amount of data, which complicates the power generation system. The cost is also high. In addition, when the measurement is performed on a module-battery basis, even if there is an inactive cell, the whole does not drop to a negative potential, and there is a drawback that detection cannot be performed. Further, in the case of gas analysis on the downstream side, it is necessary to provide a means for detecting carbon dioxide, which complicates the apparatus and increases the cost. Furthermore, since carbon dioxide gas is already contained in the process of reforming and producing the fuel gas, it is difficult to separate and evaluate the carbon dioxide gas generated due to cell deterioration,
There was a problem in terms of reliability.

本発明は以上の点に鑑みなされたものであり、電池本体
の劣化、不動作セルの有無を容易に判定し、信頼性の高
い運転を可能とした燃料電池発電システムを提供するこ
とを目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a fuel cell power generation system capable of highly reliable operation by easily determining the deterioration of a battery body and the presence or absence of inactive cells. To do.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、劣化検出手段を、モジユール電池毎に夫々
設けた電圧出力計測系および温度出力計測系と、これら
の計測系に接続した評価システムと、この評価システム
とモジユール電池に夫々反応ガスを供給する反応ガス供
給系との間を接続した流量調節系とで構成し、反応ガス
の利用が変化した場合に生じるモジユール電池の電圧変
化および温度変化が正に相関した場合に、正に相関した
モジユール電池の反応ガスの利用率を低減して運転する
ことにより、達成される。
The purpose of the above is to provide a deterioration detection means for each of the module batteries, a voltage output measurement system and a temperature output measurement system, an evaluation system connected to these measurement systems, and a reaction gas supplied to each of the evaluation system and the module battery. And a flow rate control system connected between the reaction gas supply system and the reaction gas supply system, the module having a positive correlation when the voltage change and the temperature change of the battery that occur when the usage of the reaction gas changes are positively correlated. This is achieved by reducing the utilization rate of the reaction gas of the battery and operating it.

〔作用〕[Action]

劣化検出手段を、電圧出力計測系および温度出力計測
系、評価システム、流量調節系等で構成し、反応ガスの
利用率が変化した場合に生じるモジユール電池の電圧変
化および温度変化が正に相関した場合に、正に相関した
モジユール電池の反応ガスの利用率を低減して運転する
ようにしたので、所期の目的が達せられるようになる
が、それを次に説明する。
The deterioration detecting means is composed of a voltage output measuring system and a temperature output measuring system, an evaluation system, a flow rate adjusting system, etc., and the voltage change and temperature change of the module battery caused when the utilization rate of the reaction gas changes are positively correlated. In this case, since the operating rate of the reaction gas of the module battery, which is positively correlated, is reduced, the intended purpose can be achieved, which will be described below.

一般に燃料電池は反応ガスの有する化学エネルギーを直
接電気エネルギーに変換する装置であり、燃焼反応に伴
う熱エネルギーも含めると総合変換効率80%以上の高い
値を示す。ところで高負荷をとり電気出力を高めて運転
すると、燃焼反応も活発となり熱エネルギーとして外界
に放散するエネルギーも大きくなる。これが正常に動作
している燃料電池の場合であるが、ガス偏流等によりセ
ルの一部が動作しなくなると、そのセルは発電能力を失
ない、電解質、電極その他構成部材の単なる抵抗負荷と
なる。一般にセルの内部抵抗による損失分はセルの電極
反応に伴う損失分に比べ小さいため、このような不動作
セルが発生した場合には熱エネルギーは単なる抵抗損の
ため、セルの発熱量が減少しセル温度が低下する。この
場合当然のこと乍ら発電能力を失うためセル電圧も著し
く低下し、不動作セルを含むモジユール電池の出力電圧
も温度も共に低下することになる。すなわち電圧と温度
変化とが正に相関していることから不動作セルが存在す
ると判断でき、正常なセルの場合のように、出力電圧が
低下した場合にセル温度が上昇するケースと分離評価す
ることができる。このような場合にはガス利用率を低減
してセル電圧の変化と温度変化とが負に相関することを
確認すると共に、そのような条件下で運転するようにし
たので、電池本体の劣化を防止し安定、かつ信頼性の高
い燃料電池の出力を維持することができる。
In general, a fuel cell is a device that directly converts the chemical energy of the reaction gas into electric energy, and when the thermal energy associated with the combustion reaction is included, it shows a high total conversion efficiency of 80% or more. By the way, if the engine is operated under a high load with a high electric output, the combustion reaction also becomes active, and the energy dissipated to the outside as heat energy also increases. This is the case of a fuel cell that is operating normally, but when a part of the cell does not operate due to gas drift etc., the cell loses its power generation capacity and becomes a mere resistive load on the electrolyte, electrodes and other components. . In general, the loss due to the internal resistance of the cell is smaller than the loss due to the electrode reaction of the cell.Therefore, when such a dead cell occurs, thermal energy is simply resistance loss, and the amount of heat generated by the cell decreases. Cell temperature drops. In this case, of course, the power generation capacity is lost, so that the cell voltage is significantly reduced, and the output voltage and temperature of the module battery including the non-operating cell are both reduced. That is, since the voltage and the temperature change are positively correlated, it can be determined that there is an inactive cell, and as in the case of a normal cell, the case where the cell temperature rises when the output voltage decreases is evaluated separately. be able to. In such a case, the gas utilization rate was reduced and it was confirmed that the change in cell voltage and the change in temperature were negatively correlated, and since the operation was performed under such conditions, deterioration of the battery body was prevented. It is possible to maintain the output of the fuel cell which is prevented, stable, and highly reliable.

燃料電池の劣化は、緩慢な性能劣化現象と急激な性能劣
化現象とに大別できる。前者には電解質の経時的な変化
にともなってセルの内部抵抗が増加する現象、あるいは
電解質により触媒層が濡れて拡散抵抗が増加する現象、
さらに触媒の表面積が減少し、反応抵抗が増加する現象
などがある。セル性能は、これらの現象が重なってゆっ
くりと低下していくもので、燃料電池の宿命であり、防
止することは困難である。
The deterioration of the fuel cell can be roughly classified into a slow performance deterioration phenomenon and a rapid performance deterioration phenomenon. In the former, the phenomenon that the internal resistance of the cell increases with the change of the electrolyte with time, or the phenomenon that the catalyst layer gets wet by the electrolyte and the diffusion resistance increases,
Further, there is a phenomenon that the surface area of the catalyst is reduced and the reaction resistance is increased. The cell performance is a phenomenon in which these phenomena are overlapped and gradually decreases, which is the fate of the fuel cell and is difficult to prevent.

後者の急激な劣化現象は、電解質の消失による反応ガス
の直接混合であるいわゆるガスクロス現象、ガスチャン
ネルの閉塞などが原因で生じるガス欠セルの発生、さら
に絶縁不良、冷却管閉塞などの重大な事故に結びつく、
緊急な対応を必要とする現象である。
The latter rapid deterioration phenomenon is a so-called gas cross phenomenon, which is a direct mixing of reaction gases due to the disappearance of electrolyte, the occurrence of gas-deficient cells due to the blockage of gas channels, and further, the insulation failure, the cooling pipe blockage, etc. Leading to an accident,
It is a phenomenon that requires urgent attention.

この中で運転方法の改善で対応できるのは、ガス欠によ
り不動作セルが発生するという本発明で解決の対象とし
た現象である。不動作セルが発生したときの特徴である
セル電圧とセル温度との正の相関性に着目した本発明に
より適正な運転が可能となる。すなわち、ガス欠による
不動作セルの発生はセル電圧が上昇したときセル温度も
上昇するという正の相関性をもっている。これに対し、
ガスクロス現象などはセル電圧が低下するとともにセル
温度は異常に増加するが、この現象は本発明のようにセ
ル電圧とセル温度との正の相関性に着目したものでは検
出できない。
Among them, what can be dealt with by improving the operating method is a phenomenon which is the object of the present invention, in which an inactive cell is generated due to lack of gas. The present invention, which pays attention to the positive correlation between the cell voltage and the cell temperature, which is a feature when the dead cell occurs, enables proper operation. That is, the generation of dead cells due to lack of gas has a positive correlation that the cell temperature rises when the cell voltage rises. In contrast,
The gas crossing phenomenon or the like causes the cell temperature to abnormally increase as the cell voltage decreases, but this phenomenon cannot be detected by focusing on the positive correlation between the cell voltage and the cell temperature as in the present invention.

ガスクロス現象は、燃料電池プラントの安全性、信頼性
の観点から十分配慮しなければならない事項であり、周
知のようにガス濃度検知器などにより厳密な監視がされ
ており、一度許容濃度が限界を越えればプラントとして
直ちに停止し、電池の修復を行うことが必要となる。
The gas cross phenomenon is a matter that must be fully considered from the viewpoint of safety and reliability of the fuel cell plant, and as is well known, it is strictly monitored by gas concentration detectors, etc. If it exceeds the limit, it will be necessary to immediately stop the plant and repair the battery.

なお、劣化セルの電気分解は、水の電気分解のように水
素と酸素は発生しない。その代わりに電極の酸化、還元
反応が生じ、反応式は例えばカソードでは次式のように
表わせる。
In the electrolysis of the deteriorated cell, hydrogen and oxygen are not generated unlike the electrolysis of water. Instead, oxidation and reduction reactions of the electrodes occur, and the reaction formula can be expressed as the following formula at the cathode, for example.

C+2H2O→4H++CO+4e- すなわち、カソードには可燃性ガスである水素の発生は
なく、不活性ガスである炭酸ガスが発生するだけであ
り、空気との直接反応による発熱はない。
C + 2H 2 O → 4H + + CO + 4e − In other words, hydrogen, which is a combustible gas, is not generated in the cathode, only carbon dioxide gas, which is an inert gas, is generated, and there is no heat generation due to a direct reaction with air.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。燃料電池発
電システムは複数のセルから構成されたモジユール電池
1よりなる電池本体1Aを備えており、この電池本体1Aに
は電池本体1Aの劣化を検出する劣化検出手段が設けられ
ている。このように構成された燃料電池発電システムで
本実施例では劣化検出手段を、モジユール電池1毎に夫
々設けた電圧出力計測系2および温度出力計測系3と、
これらの計測系2,3に接続した評価システム4と、この
評価システム4とモジユール電池1に夫々反応ガスを供
給する反応ガス供給系5との間を接続した流量調節系6
とで構成し、反応ガスの利用率が変化した場合に生じる
モジユール電池1の電圧変化および温度変化が正に相関
した場合に、正に相関したモジユール電池1の反応ガス
の利用率を低減して運転するようにした。このようにす
ることにより電池本体1Aの劣化、不動作セルの有無を容
易に判定し、信頼性の高い運転ができるようになつて、
電池本体1Aの劣化、不動作セルの有無を容易に判定し、
信頼性の高い運転を可能とした燃料電池発電システムを
得ることができる。
Hereinafter, the present invention will be described based on the illustrated embodiments. FIG. 1 shows an embodiment of the present invention. The fuel cell power generation system includes a battery body 1A composed of a module battery 1 composed of a plurality of cells, and the battery body 1A is provided with deterioration detecting means for detecting deterioration of the battery body 1A. In the fuel cell power generation system configured as described above, in the present embodiment, the deterioration detection means is provided with the voltage output measurement system 2 and the temperature output measurement system 3 provided for each module battery 1,
An evaluation system 4 connected to these measurement systems 2 and 3, and a flow rate control system 6 connected between the evaluation system 4 and a reaction gas supply system 5 for supplying a reaction gas to the module battery 1 respectively.
When the voltage change and the temperature change of the module battery 1 that occur when the usage rate of the reaction gas changes are positively correlated, the usage rate of the reaction gas of the module battery 1 that is positively correlated is reduced. I tried to drive. By doing this, the deterioration of the battery main body 1A, the presence or absence of inactive cells can be easily determined, and reliable operation can be performed.
Easily determine the deterioration of the battery body 1A, the presence or absence of dead cells,
A fuel cell power generation system that enables highly reliable operation can be obtained.

すなわち同図は複数セルを積層して構成されたモジユー
ル電池1に、反応ガス供給系5により酸化剤および燃料
ガスを供給して発電させ、電気出力と熱出力とを得る燃
料電池発電システムが示されている。この燃料電池発電
システムで、モジユール電池1毎に配設した電圧出力計
測系2および温度出力計測系3からの出力を評価システ
ム4で評価判定し、反応ガスの流量調節系6を制御し、
安定した電池の運転を行うものである。すなわち第2図
には電圧出力と温度出力との変化の特性が模式的に示し
てあるが、同図から明らかなように正常な電池の場合に
は負荷を増加したり、反応ガスの利用率を高めたりする
ことにより電圧が低下すると、電池温度は増加する。こ
れに対しガス偏流などにより一部不動作セルの発生など
が生じると、電池電圧を電池温度とが共に低下し、右上
りの特性曲線となる。この後者の特性の場合には反応ガ
スの利用率を低減し、十分なガスを供給することによつ
て電極反応が正常な状態に復帰する場合が多いが、この
時電圧と温度との関係は上述の第2図の正常な電池の特
性曲線となり、評価システム4により最適な電池運転条
件を極めて正確に判断することができ、安定で信頼性の
高い燃料電池の運転をすることができる。
That is, FIG. 1 shows a fuel cell power generation system in which an oxidant and a fuel gas are supplied from a reaction gas supply system 5 to a module battery 1 configured by stacking a plurality of cells to generate electric power to obtain an electric output and a heat output. Has been done. In this fuel cell power generation system, the output from the voltage output measurement system 2 and the temperature output measurement system 3 arranged for each module battery 1 is evaluated and judged by the evaluation system 4, and the reaction gas flow rate adjustment system 6 is controlled.
It ensures stable battery operation. That is, FIG. 2 schematically shows the characteristics of changes in voltage output and temperature output. As is clear from FIG. 2, in the case of a normal battery, the load is increased and the reaction gas utilization rate is increased. If the voltage drops due to increasing the battery temperature, the battery temperature will increase. On the other hand, if some non-operating cells are generated due to gas drift or the like, the battery voltage and the battery temperature both decrease, and the characteristic curve moves to the upper right. In the case of this latter characteristic, the utilization rate of the reaction gas is reduced and the electrode reaction often returns to a normal state by supplying sufficient gas. At this time, the relationship between voltage and temperature is The characteristic curve of the normal battery shown in FIG. 2 is obtained, and the evaluation system 4 can determine the optimum battery operating conditions extremely accurately, and the fuel cell can be operated stably and with high reliability.

このように本実施例によれば燃料電池本体の出力電圧、
電池温度の変化を計測する手段を与えるだけで、極めて
簡便に電池本体の異常の有無を検出し、かつガス利用率
の低減などの対応により正常化の確認を容易に検出する
ことができるので、安定性,信頼性を飛躍的に向上する
ことができる。また、本実施例によれば電圧、温度の基
本的な物理量の相関性に着目しているので、従来のよう
に多量の電圧、温度センサーを配設した膨大な計測シス
テムが不要となり、システム構成を単純化、低コスト化
できると共に、センサーの導出による電池製作工程を簡
略化でき、電池本体の信頼性の向上に寄与することがで
きる。
Thus, according to the present embodiment, the output voltage of the fuel cell body,
By simply providing a means for measuring the change in battery temperature, it is possible to detect the presence or absence of an abnormality in the battery body very easily, and to easily confirm the normalization by responding such as reducing the gas utilization rate. The stability and reliability can be dramatically improved. Further, according to the present embodiment, since attention is paid to the correlation of basic physical quantities of voltage and temperature, a huge measurement system having a large number of voltage and temperature sensors as in the conventional art is unnecessary, and the system configuration Can be simplified and the cost can be reduced, and the battery manufacturing process by deriving the sensor can be simplified, which can contribute to the improvement of the reliability of the battery main body.

〔発明の効果〕〔The invention's effect〕

上述のように本発明は電池本体の劣化、不動作セルの有
無を容易に判定し、信頼性の高い運転ができるようにな
つて、電池本体の劣化、不動作セルの有無を容易に判定
し、信頼性の高い運転を可能とした燃料電池発電システ
ムを得ることができる。
As described above, the present invention easily determines the deterioration of the battery body and the presence or absence of non-operating cells, and enables reliable operation, and easily determines the deterioration of the battery body and the presence or absence of non-operating cells. A fuel cell power generation system that enables highly reliable operation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の燃料電池発電システムの一実施例のガ
スフローおよび計測評価系の構成を示す説明図、第2図
は電圧出力と温度出力との変化を示す特性図である。 1……モジユール電池、1A……電池本体、2……電圧出
力計測系、3……温度出力計測系、4……評価システ
ム、5……反応ガス供給系、6……流量調節系。
FIG. 1 is an explanatory diagram showing the configuration of a gas flow and measurement / evaluation system of an embodiment of the fuel cell power generation system of the present invention, and FIG. 2 is a characteristic diagram showing changes in voltage output and temperature output. 1 ... Module battery, 1A ... Battery main body, 2 ... Voltage output measuring system, 3 ... Temperature output measuring system, 4 ... Evaluation system, 5 ... Reactive gas supply system, 6 ... Flow rate adjusting system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山形 武夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 堤 泰行 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeo Yamagata 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitate Works, Ltd.Hitachi Research Laboratory (72) Yasuyuki Tsutsumi 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Nitate Works, Ltd. Hitachi Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数のセルから構成されたモジュール電池
よりなる電池本体と、前記モジュール電池に夫夫反応ガ
スを供給する反応ガス供給系と、前記モジュール電池毎
に夫夫設けた電圧出力計測系および温度出力計測系と、
これらの計測系に接続した評価システムと、前記評価シ
ステムと前記反応ガス供給系との間に接続した流量調節
系を備え、前記評価システムは、電圧変化および温度変
化が正に相関するモジュール電池に接続した反応ガス供
給系の流量調節系を調節して充分な反応ガスを供給し、
それによって反応ガスの利用率を低減して運転すること
を特徴とする燃料電池発電システム。
1. A battery main body composed of a module battery composed of a plurality of cells, a reaction gas supply system for supplying a reaction gas to the module battery, and a voltage output measuring system provided for each module battery. And a temperature output measurement system,
An evaluation system connected to these measurement systems and a flow rate adjustment system connected between the evaluation system and the reaction gas supply system are provided, and the evaluation system is a module battery in which a voltage change and a temperature change are positively correlated. Adjust the flow rate control system of the connected reaction gas supply system to supply sufficient reaction gas,
Thereby, the fuel cell power generation system is characterized in that it operates by reducing the utilization rate of the reaction gas.
JP62243744A 1987-09-30 1987-09-30 Fuel cell power generation system Expired - Fee Related JPH0719615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62243744A JPH0719615B2 (en) 1987-09-30 1987-09-30 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62243744A JPH0719615B2 (en) 1987-09-30 1987-09-30 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS6489158A JPS6489158A (en) 1989-04-03
JPH0719615B2 true JPH0719615B2 (en) 1995-03-06

Family

ID=17108342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62243744A Expired - Fee Related JPH0719615B2 (en) 1987-09-30 1987-09-30 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0719615B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366821A (en) * 1992-03-13 1994-11-22 Ballard Power Systems Inc. Constant voltage fuel cell with improved reactant supply and control system
DE10058083A1 (en) * 2000-11-23 2002-06-20 Forschungszentrum Juelich Gmbh fuel cell stack
IT1315772B1 (en) * 2000-12-15 2003-03-18 Sit La Precisa Spa FUEL CELL CONTROL METHOD AND DEVICE
US6893756B2 (en) * 2002-04-30 2005-05-17 General Motors Corporation Lambda sensing with a fuel cell stack
JP4085805B2 (en) * 2002-12-25 2008-05-14 日産自動車株式会社 Fuel cell system
JP4899285B2 (en) * 2003-09-17 2012-03-21 日産自動車株式会社 Fuel cell system
EP3133686B1 (en) 2003-07-25 2018-03-14 Nissan Motor Co., Ltd. Method for controlling fuel cell system and fuel cell system
JP5122319B2 (en) * 2008-02-14 2013-01-16 株式会社日立製作所 Solid oxide fuel cell
JP5946298B2 (en) * 2012-03-12 2016-07-06 アイシン精機株式会社 Fuel cell system

Also Published As

Publication number Publication date
JPS6489158A (en) 1989-04-03

Similar Documents

Publication Publication Date Title
JP3357300B2 (en) Method for monitoring CO concentration in a flow of hydrogen supply to a PEM fuel cell
JP3357299B2 (en) Fuel cell CO sensor
US7166378B2 (en) Technique to regulate an efficiency of a fuel cell system
JP5330753B2 (en) Fuel cell system
JP3098871B2 (en) Internal reforming fuel cell device and method of operating the same
US6770391B2 (en) Hydrogen sensor for fuel processors of a fuel cell
KR20110077775A (en) Fuel cell system
CN102347502B (en) Stack-powered fuel cell monitoring device with prioritized arbitration
US20040197621A1 (en) Fuel cell power plant having a fuel concentration sensor cell
JP2012528448A (en) Open fuel cell system
JPH0719615B2 (en) Fuel cell power generation system
JP2005524216A (en) Λ detection of fuel cell stack
JP2004039632A (en) Chemical sensor means in fuel cell system
JP2006244952A (en) Fuel cell system
EP2544287A1 (en) Fuel cell system, fuel cell control method, and fuel cell determination method
JP2009070788A (en) Fuel supply control method and fuel cell device utilizing the method
CN102208667B (en) Utilization-based fuel cell monitoring and control
JP2008218051A (en) Control method of fuel cell
CA2518416A1 (en) Fuel cell system and method for stopping operation of fuel cell system
CN102388495A (en) Fuel cell system
JPH01200567A (en) Power generation system of fuel cell
US20050089729A1 (en) Technique and apparatus to control the response of a fuel cell system to load transients
KR101073332B1 (en) Apparatus for detecting and setting optimal driving condition of fuel cell and Method of controlling the same
WO2006008907A2 (en) Fuel cell system
JPS63310573A (en) Fuel line control system of fuel cell power generating facilities

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees