JPS62278766A - Operating method for phosphoric acid fuel cell - Google Patents
Operating method for phosphoric acid fuel cellInfo
- Publication number
- JPS62278766A JPS62278766A JP61122782A JP12278286A JPS62278766A JP S62278766 A JPS62278766 A JP S62278766A JP 61122782 A JP61122782 A JP 61122782A JP 12278286 A JP12278286 A JP 12278286A JP S62278766 A JPS62278766 A JP S62278766A
- Authority
- JP
- Japan
- Prior art keywords
- phosphoric acid
- electrode
- fuel cell
- gas
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 title claims abstract description 104
- 239000000446 fuel Substances 0.000 title claims abstract description 53
- 229910000147 aluminium phosphate Inorganic materials 0.000 title claims abstract description 52
- 238000011017 operating method Methods 0.000 title claims description 4
- 239000007789 gas Substances 0.000 claims abstract description 35
- 239000007800 oxidant agent Substances 0.000 claims abstract description 27
- 239000003054 catalyst Substances 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- 239000011261 inert gas Substances 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000012495 reaction gas Substances 0.000 claims description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 4
- 229910001882 dioxygen Inorganic materials 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000002737 fuel gas Substances 0.000 abstract description 12
- 230000007423 decrease Effects 0.000 abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 40
- 230000001590 oxidative effect Effects 0.000 description 9
- 230000000717 retained effect Effects 0.000 description 8
- 239000003595 mist Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000003411 electrode reaction Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 241001494479 Pecora Species 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
3、発明の詳細な説明 3. Detailed description of the invention
この発明は燃料電池の特性劣化を防ぎ、電池の長寿命化
を図るようにしたりん酸型燃料電池の運転方法に関する
。The present invention relates to a method of operating a phosphoric acid fuel cell that prevents deterioration of the characteristics of the fuel cell and extends the life of the cell.
まず頭韻したりん酸型燃料電池の羊電池の構成を第2図
に示すと、図においてlは電解質としてほぼ100%の
純度のりん酸を含浸保持させたマトリックスであり、該
マトリックスlを挟んでその両側には電橋触媒を担持し
た多孔質の燃料Ti、極2および酸化剤電極3が対向し
、さらにその外側に燃料ガス5酸化剤ガスの供給路とな
る反応ガススペース4.5を形成したガス拡散性の電極
基材6゜7を積層して単電池8を構成している。またか
かるjtl i池を相互間にガスセパレータ9を介して
多数積層することによりセルスタックが構成される。
かかる構成で各電極へ燃料ガス、a2化剤ガスの反応ガ
スを供給して燃料電池を運転することにより、燃料電極
2.酸化剤電極3の触媒層内に三相界面が形成され、こ
こで行われる電極反応により発電することは周知の通り
である。
ところでかかる燃料電池の運転に際し、燃料電極2.酸
化剤電極3の触媒層に含浸されているりん酸の保持量が
過剰になると触媒層活性点への水素、&1素の拡散が阻
害されて三相界面が不安定となり、電池特性が著しく低
下することが知られている。このために通常は各電極の
触媒層にポリテトラフルオロエチレン等で代表されるフ
ッ素樹脂の粉末を分散混合して適度な(θ水性を与え、
マトリックスl側から電極2.3へりん酸が過剰に移動
するのを防止する手段が講じられている。
しかして燃料電池を長期間運転している間には、電極に
混入した前記のフッ素樹脂の劣化により電極自身の18
水性が低下したり、あるいはりん酸が吸湿してその体積
膨張が生しる等の現象が原因となってマトリックス1に
保持されているりん酸が次第に電極2゜3へ移動して電
極触媒層内に含浸されろりん酸保持量が過剰となること
が多々発生し、この結末として電池性能が低下すること
が燃料電池の運転経過から知見されている。なおこのよ
うに電極触媒層に過剰なりん酸が含浸した状態では、′
:l極反応に直接関与する反応ガス中の水素。
酸素ガス成分の分圧特性が低下し、かっこの状態におけ
る改質ガス、空気中の水素、酸素ガス°成分の分圧(濃
度)にHする電池の出力電圧は、第3図から明らかなよ
うに、触媒層内のりん酸保持量が適正である場合に比べ
て低下することが実験の考察からも確認されている。な
お第3図の横軸は運転初期時の含浸量を1とする酸化剤
電極触媒層のりん酸含浸量比を示し、縦軸は酸化剤利用
率40〜60%の変化に伴なう電圧低下量を示す。
しかも上記のように電極触媒層に対してりん酸の保持量
が過剰となった場合に、従来では触媒層から積極的にり
ん酸を排除する有効な手段がなく、燃料電池の運転を停
止した上モ分解して余分なりん酸を排除す北方法を採ら
ざるを得ながった。しかしこの方法は燃料電池の停止、
再起動を含めて非常に手間が掛り、燃料電池の稼働率が
低下する。First, the structure of the alliterative phosphoric acid fuel cell sheep cell is shown in Figure 2. In the figure, l is a matrix impregnated with almost 100% pure phosphoric acid as an electrolyte, and the matrix l is sandwiched between On both sides thereof, porous fuel Ti supporting the electric bridge catalyst, electrode 2 and oxidizer electrode 3 face each other, and further outside thereof, a reaction gas space 4.5 is formed which serves as a supply path for the fuel gas 5 and oxidizer gas. A unit cell 8 is constructed by laminating gas-diffusing electrode base materials 6.7. Further, a cell stack is constructed by stacking a large number of such jtl i cells with gas separators 9 interposed between them. With this configuration, by operating the fuel cell by supplying reactant gases such as fuel gas and A2 converting gas to each electrode, the fuel electrodes 2. As is well known, a three-phase interface is formed within the catalyst layer of the oxidizer electrode 3, and power is generated by the electrode reaction that takes place here. By the way, when operating such a fuel cell, the fuel electrode 2. If the retained amount of phosphoric acid impregnated into the catalyst layer of the oxidizer electrode 3 becomes excessive, the diffusion of hydrogen and &1 elements to the active sites of the catalyst layer will be inhibited, the three-phase interface will become unstable, and the battery characteristics will deteriorate significantly. It is known to do. For this purpose, powder of fluororesin, such as polytetrafluoroethylene, is usually dispersed and mixed in the catalyst layer of each electrode to give it an appropriate (θ) aqueous property.
Measures are taken to prevent excessive migration of phosphoric acid from the matrix I side to the electrode 2.3. However, during long-term operation of a fuel cell, the 18
Due to phenomena such as a decrease in aqueous properties or phosphoric acid absorbing moisture and causing its volumetric expansion, the phosphoric acid held in the matrix 1 gradually moves to the electrode 2°3 and becomes the electrode catalyst layer. It has been found from the course of operation of fuel cells that an excessive amount of rophosphoric acid is often impregnated into the fuel cells, resulting in a decrease in cell performance. Note that when the electrode catalyst layer is impregnated with excess phosphoric acid,
:Hydrogen in the reaction gas that directly participates in the l-electrode reaction. As is clear from Figure 3, the partial pressure characteristics of the oxygen gas component decreases, and the output voltage of the battery becomes H, which is the partial pressure (concentration) of the reformed gas, hydrogen in the air, and oxygen gas component in the parentheses state. In addition, it has been confirmed from experimental considerations that the amount of phosphoric acid retained in the catalyst layer is lower than when it is appropriate. The horizontal axis in Figure 3 shows the ratio of phosphoric acid impregnation in the oxidizer electrode catalyst layer, with the impregnation amount at the initial stage of operation being 1, and the vertical axis shows the voltage as the oxidant utilization rate changes from 40 to 60%. Indicates the amount of decrease. Moreover, as mentioned above, when the amount of phosphoric acid retained in the electrode catalyst layer became excessive, conventionally there was no effective means to actively remove phosphoric acid from the catalyst layer, and the operation of the fuel cell had to be stopped. We had no choice but to adopt the northern method of decomposing the upper part and removing excess phosphoric acid. However, this method stops the fuel cell,
This takes a lot of effort, including restarting, and reduces the operating rate of the fuel cell.
この発明は上記の点にかんがみなされたものであり、運
転中にTL電極触媒層のりん酸保持量が過剰になった際
に、N華な操作により運転途中で電極触媒層から過剰な
りん酸を電池外へ排除することにより、電池出力を回復
させて電池の長寿命化が図れるようにしたりん酸型燃料
電池の運転方法を提供することを目的とする。This invention was developed in consideration of the above points, and when the amount of phosphoric acid retained in the TL electrode catalyst layer becomes excessive during operation, the excess phosphoric acid is removed from the electrode catalyst layer during operation by a non-toxic operation. It is an object of the present invention to provide a method of operating a phosphoric acid fuel cell, which can restore the battery output and extend the life of the battery by removing the phosphoric acid fuel from the battery.
上記目的を達成するために、この発明は加l!シたガス
を電極へ供給すると乾燥ガスを供給した場合に比べて電
極触媒層に含浸保持されているりん酸の飛散量が増大す
る現象のあることに着目し、これを基に運転中に燃料電
極ないし酸化剤電極へのりん酸保持計が過剰となった際
に前記電極へ水茎式で加湿されたガスを供給することに
より、過剰なりん酸を加1品ガスに取り込んで加湿ガス
とともに電池外に排除して電池の出力特性の回復を図り
、Pr4i池のノ1命低下を防止しようとするものであ
る。In order to achieve the above object, this invention has additional features! We focused on the fact that when dry gas is supplied to the electrode, the amount of phosphoric acid impregnated and held in the electrode catalyst layer increases in scattering amount compared to when dry gas is supplied. When the phosphoric acid retention meter to the electrode or oxidizing agent electrode becomes excessive, by supplying humidified gas to the electrode using a water stem method, the excess phosphoric acid is taken into the added gas and the battery is charged together with the humidified gas. The purpose is to prevent the life of the Pr4i battery from decreasing by removing it from the outside to restore the battery's output characteristics.
第1図は燃料電池の酸化剤電極側に付いてこの発明の運
転方法を実施するための燃料電池のガス供給系統図を示
すも゛のであり、図中10が第2図で述べた単電池8の
多数積石体であるセルスタックを略示した燃料電池本体
、11が酸化剤ガススペース5に通しる酸化剤ガス供給
路12に介装したガス加湿器、13はガス加湿器11の
バイパス路、14は窒素等の不活性ガス源、15ないし
18は開閉弁、19は燃料ガス供給系である。なおガス
加湿器11は水を蓄えた槽内の水中に加温対象ガスを吐
出してバブリングさせて加湿するか、あるいは水槽内の
貯留水に超音波振動を与えて水のミストを発生させ。
かつこの水ミスト中に加湿対象ガスを通して加湿五周整
する等のa能を備えたものである。
かかる系統回路で通常の運転時には、燃料ガス供給系1
9を通じて燃料電池本体10の燃料ガススペース4に燃
料改質装置を通じて生成した水素リッチな燃料ガスが、
また酸化剤ガススペース5には酸化剤ガスとしての空気
がガス加湿器11を経由せずに酸化剤ガス通路12を通
じて直接供給され、この状態で発電を行っている。
ここで燃料電池本体10のガススペースにおける空気中
の酸素ガス成分の分圧を測定監視し、先記した電極触媒
層内のりん酸保持量と酸素分圧との関係を基に、その酸
素分圧測定値から酸化剤1!極3例の触媒層に過剰なり
ん酸が含浸して電池出力電圧が低下した状態が検知され
た場合には、バイパス弁I5を閉しるとともに弁16.
17を開放して酸化剤ガスである空気をガス加湿器11
へ通して加湿調整した上で燃料電池本体10の酸化剤電
極3へ供給する。これにより酸化剤電極3の触媒層内に
過剰に保持されているりん酸は力U湿空気に取り込まれ
て電池本体lOより外部に排除されるようになる。
なおこの加温操作によりりん酸の飛散排除が行われる理
由は、りん酸分子の吸湿性が強いために加湿ガスに接触
するとりん酸分子が水ミストに付着し、水ミストをキャ
リアとして空気と一緒に電池本体から外部へ排除される
ようになるものと推定される。このように酸化剤電極中
に含浸した過剰分のりん酸を排除することにより、燃料
電池は出力電圧が回復して正常な運転状態に戻る。なお
、酸化剤ガスとしての空気を加湿して供給する代わりに
、燃料電池の開回路の状態で、図示の不活性ガスi#1
5より例えば窒素ガスを加4調整した上で燃料電池本体
の酸化剤スペース4へ供給する方法でも、前記と同様に
過剰なりん酸を排除することができる。
また上記は酸化剤電極側に保持されている過剰分のりん
酸排除に付いて述べたが、燃料電極側τ二ついても同様
に燃料ガスを加温するか、ないしは不活性ガスを加温し
て燃料電池本体lOの燃料ガススペース4へ供給するこ
とにより、燃料ガス電極2の触媒層に保持されている過
剰なりん酸を排除することができる。なお前記した不活
性ガスを加湿供給する場合には、電極電位の高い酸化剤
電極を電極電位の低い燃料ガス電極よりも優先して加温
不活性ガスを供給するのが効果的である。FIG. 1 shows a gas supply system diagram of a fuel cell for implementing the operating method of the present invention attached to the oxidizer electrode side of the fuel cell. 8 is a fuel cell main body schematically showing a cell stack which is a multi-stone structure; 11 is a gas humidifier inserted in an oxidant gas supply path 12 passing through an oxidant gas space 5; 13 is a bypass of the gas humidifier 11. 14 is a source of inert gas such as nitrogen, 15 to 18 are on-off valves, and 19 is a fuel gas supply system. The gas humidifier 11 either discharges a gas to be heated into the water in a water tank and bubbles it to humidify the water, or generates a water mist by applying ultrasonic vibration to the water stored in the water tank. In addition, it is equipped with functions such as passing gas to be humidified into this water mist to perform humidification. During normal operation in such a system circuit, the fuel gas supply system 1
9, the hydrogen-rich fuel gas generated through the fuel reformer enters the fuel gas space 4 of the fuel cell main body 10,
Furthermore, air as an oxidizing gas is directly supplied to the oxidizing gas space 5 through the oxidizing gas passage 12 without passing through the gas humidifier 11, and power generation is performed in this state. Here, the partial pressure of the oxygen gas component in the air in the gas space of the fuel cell main body 10 is measured and monitored, and based on the relationship between the amount of phosphoric acid retained in the electrode catalyst layer and the oxygen partial pressure, the oxygen content is determined. Oxidizing agent 1 based on pressure measurement! If it is detected that the catalyst layer of the three electrodes is impregnated with excess phosphoric acid and the battery output voltage is reduced, the bypass valve I5 is closed and the valve 16.
17 is opened and air, which is an oxidant gas, is transferred to the gas humidifier 11.
The fuel is supplied to the oxidizer electrode 3 of the fuel cell main body 10 after being humidified. As a result, the phosphoric acid retained in excess in the catalyst layer of the oxidizer electrode 3 is taken into the humid air and expelled from the battery body 10 to the outside. The reason why phosphoric acid is scattered and eliminated by this heating operation is that phosphoric acid molecules have strong hygroscopicity, so when they come into contact with humidifying gas, phosphoric acid molecules adhere to water mist, and use the water mist as a carrier to combine with air. It is estimated that this will be eliminated from the battery body. By removing the excess phosphoric acid impregnated into the oxidizer electrode in this manner, the output voltage of the fuel cell is restored and the fuel cell returns to its normal operating state. Note that instead of humidifying and supplying air as an oxidant gas, the inert gas i#1 shown in the figure is supplied in an open circuit state of the fuel cell.
Excess phosphoric acid can also be removed in the same manner as described above by adjusting nitrogen gas by 4 and then supplying it to the oxidizing agent space 4 of the fuel cell main body. Also, the above description was about removing the excess phosphoric acid held on the oxidizer electrode side, but even if there are two τ on the fuel electrode side, the fuel gas should be heated in the same way, or the inert gas should be heated. Excess phosphoric acid retained in the catalyst layer of the fuel gas electrode 2 can be removed by supplying the phosphoric acid to the fuel gas space 4 of the fuel cell main body IO. Note that when humidifying and supplying the above-mentioned inert gas, it is effective to supply the heated inert gas to the oxidizing agent electrode, which has a high electrode potential, preferentially to the fuel gas electrode, which has a low electrode potential.
以上述べたようにこの発明によれば、運転中に燃料電極
ないし酸化剤電極の触媒層のりん酸保持量が過剰となっ
た際に前記11t8i!へ水葎気で加湿されたガスを供
給して過剰なりん酸を排除することにより、電極触媒層
におけるりん酸分布を良好に保って三相界面の安定維持
1並びに出力電圧低下を防止し、燃料電池の長寿命化を
図ることができる。しかもその操作には単に燃料電池本
体の反応ガススペースへ加温したガスを供給するだけで
あって燃料電池の運転中にも過剰なりん酸の排除が可能
であり、したがって従来のように燃料電池の運転を停止
して電池本体を分解する等の手間は全く必要が無くなり
燃料電池の稼働率を高めるができる等のII点が得られ
る。As described above, according to the present invention, when the amount of phosphoric acid retained in the catalyst layer of the fuel electrode or oxidizer electrode becomes excessive during operation, the 11t8i! By supplying gas humidified with water and air to remove excess phosphoric acid, the phosphoric acid distribution in the electrode catalyst layer is maintained well, the three-phase interface is maintained stably, and output voltage drop is prevented. It is possible to extend the life of the fuel cell. Moreover, the operation simply involves supplying heated gas to the reaction gas space of the fuel cell body, and excess phosphoric acid can be removed even while the fuel cell is in operation. There is no need to stop the operation of the fuel cell and disassemble the main body of the cell, thereby increasing the operating rate of the fuel cell.
第1図はこの発明の運転方法を実施するための燃r)電
池を含むガス供給系統図、第2図はりん酸型燃料電池の
、111電池の構成断面図、第3図は触媒層内のりん酸
保持〒の変化に対する電圧低下量を示すグラフである。
各図において、
1:マトリノクス、2:燃料電極、3・酸化剤電極、4
:燃料ガススペース、5二酸化剤ガススペース、6.’
ltl基極、8:単電池、10:燃料電池本体、11:
ガス加湿器、12;酸化剤ガス供給通路、14:不活性
ガス源。
111図
(mv)Fig. 1 is a gas supply system diagram including a fuel cell for carrying out the operating method of the present invention, Fig. 2 is a cross-sectional view of the structure of a 111 cell of a phosphoric acid fuel cell, and Fig. 3 is a diagram of the inside of the catalyst layer. 3 is a graph showing the amount of voltage drop with respect to changes in phosphoric acid retention. In each figure, 1: Matrinox, 2: Fuel electrode, 3. Oxidizer electrode, 4
: Fuel gas space, 5 Dioxide gas space, 6. '
ltl base electrode, 8: single cell, 10: fuel cell main body, 11:
Gas humidifier, 12; Oxidizing gas supply passage, 14: Inert gas source. Figure 111 (mv)
Claims (1)
を挟んでその両側に燃料電極、酸化剤電極を配して成る
りん酸型燃料電池の運転方法において、燃料電極ないし
酸化剤電極の触媒層のりん酸保持量が過剰となった際に
前記電極へ水蒸気で加湿されたガスを供給して過剰なり
ん酸を排除することを特徴とするりん酸型燃料電池の運
転方法。 2)特許請求の範囲第1項記載の運転方法において、加
湿された反応ガスを電極に供給することを特徴とするり
ん酸型燃料電池の運転方法。 3)特許請求の範囲第1項記載の運転方法において、加
湿された窒素等の不活性ガスを電極に供給することをこ
とを特徴とするとするりん酸型燃料電池の運転方法。 4)特許請求の範囲第1項記載の運転方法において、電
極触媒層内のりん酸浸透状態を、反応ガス中における水
素ないし酸素ガス成分の分圧を測定することにより検知
することを特徴とするりん酸型燃料電池の運転方法。[Scope of Claims] 1) A method of operating a phosphoric acid fuel cell comprising a matrix impregnated with phosphoric acid as an electrolyte and a fuel electrode and an oxidizer electrode disposed on both sides of the matrix, wherein the fuel electrode or the oxidizer A method for operating a phosphoric acid fuel cell, characterized in that when the amount of phosphoric acid held in a catalyst layer of an electrode becomes excessive, gas humidified with water vapor is supplied to the electrode to remove the excess phosphoric acid. 2) A method of operating a phosphoric acid fuel cell according to claim 1, characterized in that a humidified reaction gas is supplied to the electrodes. 3) A method of operating a phosphoric acid fuel cell according to claim 1, characterized in that a humidified inert gas such as nitrogen is supplied to the electrodes. 4) The operating method according to claim 1, characterized in that the state of phosphoric acid permeation within the electrode catalyst layer is detected by measuring the partial pressure of hydrogen or oxygen gas components in the reaction gas. How to operate a phosphoric acid fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61122782A JPS62278766A (en) | 1986-05-28 | 1986-05-28 | Operating method for phosphoric acid fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61122782A JPS62278766A (en) | 1986-05-28 | 1986-05-28 | Operating method for phosphoric acid fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62278766A true JPS62278766A (en) | 1987-12-03 |
Family
ID=14844471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61122782A Pending JPS62278766A (en) | 1986-05-28 | 1986-05-28 | Operating method for phosphoric acid fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62278766A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02215054A (en) * | 1989-02-16 | 1990-08-28 | Toshiba Corp | Fuel cell |
JP2001332281A (en) * | 2000-05-24 | 2001-11-30 | Fuji Electric Co Ltd | Solid polyelectrolyte fuel cell power generation system and its operation method |
JP2008226513A (en) * | 2007-03-09 | 2008-09-25 | Toyota Motor Corp | Fuel cell system |
JP2009158270A (en) * | 2007-12-26 | 2009-07-16 | Toyota Motor Corp | Fuel cell system |
-
1986
- 1986-05-28 JP JP61122782A patent/JPS62278766A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02215054A (en) * | 1989-02-16 | 1990-08-28 | Toshiba Corp | Fuel cell |
JP2001332281A (en) * | 2000-05-24 | 2001-11-30 | Fuji Electric Co Ltd | Solid polyelectrolyte fuel cell power generation system and its operation method |
JP2008226513A (en) * | 2007-03-09 | 2008-09-25 | Toyota Motor Corp | Fuel cell system |
JP2009158270A (en) * | 2007-12-26 | 2009-07-16 | Toyota Motor Corp | Fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200402165A (en) | Solid polymer cell assembly | |
JP4072707B2 (en) | Solid polymer electrolyte fuel cell power generator and its operation method | |
JPH1131520A (en) | Solid high molecular type fuel cell | |
JP5419255B2 (en) | Reversible cell operation switching method | |
JP2008539550A (en) | Mitigating degradation of fuel cell start / stop performance | |
US20080171244A1 (en) | Standalone Hydrogen Generating System | |
TWI389381B (en) | Method of operating fuel cell with high power and high power fuel cell system | |
JP2002367655A (en) | Fuel cell | |
JP3141619B2 (en) | Solid polymer electrolyte fuel cell power generator | |
JP3360485B2 (en) | Fuel cell | |
JP2001006698A (en) | Solid polymer electrolyte fuel cell and manufacture of its diffusion layer | |
JPH10270057A (en) | Solid high molecular fuel cell | |
JPH08167416A (en) | Cell for solid high polymer electrolyte fuel cell | |
JP2002164057A (en) | Solid high molecular fuel cell and method of manufacturing the same | |
JPS62278766A (en) | Operating method for phosphoric acid fuel cell | |
JP4665353B2 (en) | Solid polymer electrolyte fuel cell power generator and its operation method | |
JP2001236977A (en) | Solid high polymer fuel cell generator and method of operating solid high polymer fuel cell | |
JPH10208757A (en) | Fuel cell generating set | |
JP3575650B2 (en) | Molten carbonate fuel cell | |
JPH069143B2 (en) | Fuel cell storage method | |
JP3685136B2 (en) | Polymer electrolyte fuel cell | |
JP2002231283A (en) | Solid polymer electrolyte fuel cell generating device and its operating method | |
JPH0622153B2 (en) | How to operate a fuel cell | |
JPS60258863A (en) | Fuel cell | |
JP5112525B2 (en) | Starting method for polymer electrolyte fuel cell |