JPS5894767A - Fuel cell device - Google Patents

Fuel cell device

Info

Publication number
JPS5894767A
JPS5894767A JP56192284A JP19228481A JPS5894767A JP S5894767 A JPS5894767 A JP S5894767A JP 56192284 A JP56192284 A JP 56192284A JP 19228481 A JP19228481 A JP 19228481A JP S5894767 A JPS5894767 A JP S5894767A
Authority
JP
Japan
Prior art keywords
fuel
oxidizing agent
pressure
fuel cell
oxidizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56192284A
Other languages
Japanese (ja)
Inventor
Masatsugu Yoshimori
吉森 正嗣
Hitoshi Kuramoto
倉本 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56192284A priority Critical patent/JPS5894767A/en
Publication of JPS5894767A publication Critical patent/JPS5894767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To detect the cross over in a cell and to improve the efficiency of pressure difference controlling by adding a concentration meter of carbon dioxide for detecting the density of carbon dioxide in an oxidizing agent discharge passage discharging the oxidizing agent from an oxidizing agent pole. CONSTITUTION:A fuel cell 4 composed of an electrolyte matrix 1, oxidizing agent pole 2, fuel pole 3, oxidizing agent passage 6 and fuel passage 7 is stored in a container 5 filled with inactive gas 8, and the pressure difference between the oxidizing agent and inactive gas is measured by a pressure differece measurement/control unit 13 and the pressure difference between the fuel and inactive gas is measured by a pressure difference measurement/control unit 14 respectively and they are controlled so as to obtain predetermined pressure differnces. In addition, a concentration meter 18 of carbon dioxide is provided in an oxidizing agent discharge passage 10 to detect an occurrence of cross over. Accordingly, the cross over can be effectively reduced to a minimum and the cell life can be extended by determining the pressure differece setting values of individual pressure difference measurement/control units 13, 14 based on the output of the concentration meter 18.

Description

【発明の詳細な説明】 発明の技術分野 本発明は燃料電池装置に係り、特に燃料極から酸化剤極
への燃料のもれ出しの程度を検出し、燃料電池の異常検
出を行うに好適な燃料電池装置に関する。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to a fuel cell device, and particularly to a fuel cell device suitable for detecting the degree of leakage of fuel from a fuel electrode to an oxidizer electrode and detecting an abnormality in a fuel cell. This invention relates to a fuel cell device.

従来技術並びに従来技術の問題点 第7図は燃料電池の基本構造を示す断面図で、燃料電池
の内部で起こる現象を模式的に表わしたものである。同
図中lはフェノール系紗維の不織布または層化けい素の
倣粒子から成る層にりん酸電解液を保持させた電解液マ
)9クス、コ、3は電解液マトリクスlを両面からはさ
む形で配置され、そjぞれカーボンベーパー郷な基材と
し、電解液マトリクスlと接する面にプラチナ等の触媒
を付与し、反対面に市、解液によるぬわを防止すると共
に3相界面が出来易くするために撥水処理を施した構成
を有するガス拡散電極としての酸化剤極及び燃料極、/
?及びJはそれぞれ酸化剤極コ、燃料極3の外側に配さ
れるカーボン板である。
Prior Art and Problems with the Prior Art FIG. 7 is a sectional view showing the basic structure of a fuel cell, and schematically represents the phenomena that occur inside the fuel cell. In the figure, l is an electrolytic solution matrix in which a phosphoric acid electrolyte is held in a layer made of a nonwoven fabric of phenolic gauze or layered silicon pattern particles. The base material is carbon vapor, and a catalyst such as platinum is applied to the surface in contact with the electrolyte matrix, and a catalyst such as platinum is applied to the opposite surface to prevent the formation of sludge due to the solution and to form a three-phase interface. An oxidizer electrode and a fuel electrode as gas diffusion electrodes having a water-repellent treatment to make them easier to manufacture;
? and J are carbon plates arranged on the outside of the oxidizer electrode and the fuel electrode 3, respectively.

かかる構成に於いて、電解液マ)9クスl、酸化剤極コ
、燃料極Jから構成されたものは単電池とよばれ、一体
化して製造されるのが一般的である。この単電池を積層
して燃料電池積層体を形成する場合、そ9ぞれの単電池
を電気的に直列に接続すると共に燃料極3に燃l!を、
また酸化剤極コに酸化剤をそわぞれ供給するためのガス
流路l有するカーボン板〃、/デが基本構成要素として
介在することとなる。
In such a configuration, a cell made up of an electrolyte, an oxidizer electrode, and a fuel electrode is called a single cell, and is generally manufactured in an integrated manner. When stacking these single cells to form a fuel cell stack, the nine single cells are electrically connected in series and the fuel electrode 3 is injected with fuel! of,
Further, carbon plates 〃, 〃/de having gas flow paths 1 for supplying the oxidizing agent to the oxidizing agent electrodes are interposed as basic constituent elements.

正常な作動状態に於いては、燃料流中の■、が燃料極3
の表面でB となり、これが電解液マトリクスlの電解
液内を酸化剤&λ側へと移動し、酸化剤極コの表面で酸
化剤締中の0.から生じた0″″″と反応してH,Oが
生成する。この際、外部回路を通してe−イオンが燃料
極J側から酸化剤極コ側へと流ね、結果として直流電力
を得ることが出来るものである。
Under normal operating conditions, ■ in the fuel flow is at the fuel electrode 3.
B on the surface of the oxidizer pole, which moves in the electrolyte of the electrolyte matrix l toward the oxidizer &λ side, and on the surface of the oxidizer pole, the 0. H and O are generated by reacting with the 0'''' generated from the oxidizer.At this time, e-ions flow from the fuel electrode J side to the oxidizer electrode side through the external circuit, resulting in obtaining DC power. This is something that can be done.

つまり、燃料電池に於ける電極反応は燃料ガスまたは酸
化剤ガスと触媒、電解液の共存下での反応、即ち気相、
固相、液相のJ相共存下に於ける界面反応であるため、
燃料電池の性能を最大限にひき出すためには、このJ相
界面の維持、制御が厳密に行なわわなければならず、燃
料極3、酸化剤極コ間の差圧制御か極めてxl!な問題
である。
In other words, the electrode reaction in a fuel cell is a reaction in the coexistence of a fuel gas or an oxidant gas, a catalyst, and an electrolyte, that is, a reaction in the gas phase,
Since this is an interfacial reaction in the coexistence of solid and liquid J phases,
In order to maximize the performance of the fuel cell, this J-phase interface must be maintained and controlled strictly, and the differential pressure between the fuel electrode 3 and oxidizer electrode must be controlled extremely well! This is a serious problem.

以上、概略的に述べた様に、燃料電池は単電池を構成し
ている部材がカーボンペーパー勢で代mされる様に極め
てもろくて破損し易いものであること、また電極反応に
際してJ相界面を維持制御しかけねばならない等の要件
のため、燃、電極Jと酸化剤&−の間の差圧の制御は極
めて厳密に行なわれなければならず1両極の差圧制御を
±jインチ水柱の範囲に入る様に制御しているψIもあ
る。
As outlined above, fuel cells are extremely brittle and easily damaged, as the members constituting the cells are made of carbon paper, and the J-phase interface during electrode reactions Due to requirements such as the need to maintain and control the fuel, the differential pressure between the electrode J and the oxidizer must be extremely strictly controlled. There is also ψI that is controlled so that it falls within the range.

燃料電池の燃料極Jと酸化剤緑コの間の差圧が増大した
場合には、燃料あるいは酸化剤が電解液マトリクスlの
層をつきぬけて他極へもれ出し、他極で酸化剤あるいは
燃料と触媒燃焼反応を起こす、?!に、このもれ出しが
大量に発生すると燃焼熱により、電極尋、燃料電池の構
成部材自体が燃焼を始めるW1能性もあり、危険な状態
となる。
When the pressure difference between the fuel electrode J and the oxidizer green increases in the fuel cell, the fuel or oxidizer leaks through the electrolyte matrix l layer to the other electrode, and the oxidizer or oxidizer leaks out to the other electrode. Causes a catalytic combustion reaction with fuel? ! Furthermore, if a large amount of this leakage occurs, there is a possibility that the electrode pad and the fuel cell components themselves will start to burn due to combustion heat, resulting in a dangerous situation.

このもれ出し現象はクロスオーバーと呼ばれているが、
クロスオーバーが起るということは、電池反応に寄与せ
ずに、直接燃焼によって消費される燃料や酸化剤の割合
が増加することを意味し、その分だけ燃料電池としての
燃料の利用効率、酸化剤の利用効率が低下し、燃料電池
の総合効率を下げることとなる。従って、燃料電池に於
いてはこのクロスオーバーの極小化を図ることが必要で
ある。
This leakage phenomenon is called crossover,
The occurrence of crossover means that the proportion of fuel and oxidant consumed by direct combustion increases without contributing to the cell reaction, which increases the efficiency of fuel use and oxidation in the fuel cell. This will reduce the efficiency of using the agent and reduce the overall efficiency of the fuel cell. Therefore, it is necessary to minimize this crossover in fuel cells.

第J図はクロスオーバーの極小化を目的に構成された従
来の燃料電池装置の概略構成図で、同図中卒は燃料電池
本体、!は本体参を収納する容器、4は酸化剤極コに酸
化剤を供給する酸化剤流路、りは燃料極3に燃料を供給
する燃料流路、ざは容器j内を不活性ガスふん詐槃にす
るべく充てんさ名るちっ素、アルゴン醇の不活性ガス、
tは酸化剤流路6に酸化剤を供給する酸化剤供給路、I
Oは酌什剤流路6から酸化剤を排出する酸化剤排出路、
//は燃料流路りに燃料を供給する燃料供給路、12は
燃料流路りから燃料を排出する燃料排出路、13は酸化
剤流路4と容器!内の不活性ガスふん囲気との間の差圧
を測定してこれを制御するための差圧御1足制御器、/
41は燃料流路7と容器j内の不活性カスふん囲気との
間の差圧をall定してこれを制御するための差圧測定
制@器、/jは酸化剤排出路IOに設けられ、酸化剤流
路6の圧力を制御するための制御弁、14は燃料排出路
lコに設けらt、燃料流路りの圧力を制御するための制
御弁、17は容器!内に不活性ガスを供給する不活性ガ
ス供給路である。
Figure J is a schematic configuration diagram of a conventional fuel cell device configured to minimize crossover. 4 is a container for storing the main body, 4 is an oxidizer flow path that supplies the oxidizer to the oxidizer electrode, 1 is a fuel flow path that supplies fuel to the fuel electrode 3, and Filled with nitrogen, an inert gas in argon,
t is an oxidizing agent supply path that supplies an oxidizing agent to the oxidizing agent flow path 6;
O is an oxidizing agent discharge path for discharging the oxidizing agent from the extenuating agent flow path 6;
// is a fuel supply path that supplies fuel to the fuel flow path, 12 is a fuel discharge path that discharges fuel from the fuel flow path, and 13 is the oxidizer flow path 4 and the container! a differential pressure controller for measuring and controlling the differential pressure between the inert gas atmosphere and the surrounding air;
41 is a differential pressure measuring controller for determining and controlling the differential pressure between the fuel flow path 7 and the atmosphere surrounding the inert gas in the container j, and /j is provided in the oxidizer discharge path IO. A control valve 14 is provided in the fuel discharge path 1 to control the pressure in the oxidizer flow path 6, a control valve 17 is provided in the fuel flow path 6, and 17 is a container! This is an inert gas supply path that supplies inert gas into the interior of the chamber.

かかる構成に於いては、燃料電池本体参内でのクロスオ
ーバーを極小化するために、差圧制御を行なっている。
In this configuration, differential pressure control is performed to minimize crossover within the fuel cell body.

つまり、燃料電池積体参を収納する容器参内に封入され
た不活性ガスlの圧力を基準として酸化11111m路
6内の圧力がこれよりわずかに低い圧力になる様に、ま
た燃IP+流路?内の圧力が艷にこれよりわずかに低い
圧力になる様に、差圧11JV制御器/3、/41に予
め差圧を設定し、設定差圧が確保される様、制御弁/j
t、 /Aを制御している。
That is, based on the pressure of the inert gas sealed in the container housing the fuel cell stack, the pressure in the oxidation 11111m path 6 is set to be slightly lower than this pressure, and the fuel IP+ flow path? Set the differential pressure in the differential pressure 11JV controllers /3 and /41 in advance so that the pressure inside the vessel is slightly lower than that in the vessel, and set the control valve /j to ensure the set differential pressure.
t, /A are controlled.

従って、酸化剤流路&Etび燃料流路7と容器!内の不
活性ガスtの令圧力の関保は不活性カスlの圧力、酸化
剤流路6の圧力、燃料流路7の圧力の1劇に低くなる様
に制御されるが、この様な制御がなされる理由は、燃料
、酸化剤が燃料電池装置参の収納容器内にもれ出して混
合し、爆発する可能性な椿小化するためであり、更に燃
料流側の圧力を酸化剤流側の圧力より低くしたのは、燃
料中の水素が極めてもれ出し易い性質をもっていること
を考慮し°たためである。
Therefore, the oxidant flow path & fuel flow path 7 and the container! The pressure of the inert gas t in the tank is controlled to be as low as the pressure of the inert gas 1, the pressure of the oxidizer flow path 6, and the pressure of the fuel flow path 7. The reason for this control is to reduce the risk of fuel and oxidizer leaking into the storage container of the fuel cell device and causing an explosion, and to reduce the pressure on the fuel flow side to prevent the oxidizer from leaking into the storage container of the fuel cell device. The reason why the pressure was set lower than that on the stream side was to take into account that hydrogen in the fuel has a tendency to leak easily.

ところで、クロスオーバーの極小化の観点から云えば、
酸化剤流路6の圧力と燃料流路りの圧力は先に述べた如
き大小関係を満足した上で、可能な限り近い値となる様
に制御することが望ましいが、この様な制御を行うため
にはクロスオーバーが発生しているか否かを判定する有
効な手段が必要である。
By the way, from the perspective of minimizing crossover,
It is desirable that the pressure in the oxidizer flow path 6 and the pressure in the fuel flow path be controlled so that they are as close to each other as possible while satisfying the above-mentioned magnitude relationship. In order to do so, an effective means for determining whether or not crossover is occurring is required.

また、電解液マトリクスl内の粘性抵抗が温度によって
大きく変化し、更に長時間運転を行なっている間に電解
液が電解液マトリクスlからしみ出し、電解液層の段さ
が変化する勢、クロスオーバーの起き易さが時間と共に
変化していく可能性もあり、この点からも有効なりロス
オーバーの検出手段が必要である。
In addition, the viscous resistance within the electrolyte matrix l changes greatly depending on the temperature, and furthermore, during long-term operation, the electrolyte seeps out of the electrolyte matrix l, causing the level of the electrolyte layer to change. There is also a possibility that the likelihood of loss over occurrence changes over time, and from this point of view as well, an effective means for detecting loss over is required.

かかる要求に対して、従来の燃料電池装置には効果的に
クロスオーバーを検出する機能が付加されておらず、従
って効率的な差圧制御が出来ないという問題があった。
In response to such demands, conventional fuel cell devices do not have a function to effectively detect crossover, and therefore have a problem in that efficient differential pressure control cannot be performed.

発明の目的 従って、本発明の目的は上記従来技術の間館点に1み、
燃料電池内に於けるクロスオーバーを適確に〜検出し、
差圧制御の効率の同士を可能としたf#料市池装置を提
供するにある。
Purpose of the Invention Accordingly, the purpose of the present invention is to solve the problems of the prior art described above.
Accurately detect crossover in fuel cells,
An object of the present invention is to provide an f# pressure control device that enables efficient differential pressure control.

発明の構成 上記目的を達成するために、本発明は燃料電池装置を電
解質の両側に酸化剤極と慾料極とを配置して成る燃料電
池本体と、燃料電池本体を不活性ガス中に密閉収納する
容器と、酸化111極から酸化剤を排出する酸化剤排出
路と、酸イヒ剤排出流路中の二酸化炭素の111度を検
出する手段とから構成“するものである。
Structure of the Invention In order to achieve the above object, the present invention provides a fuel cell device including a fuel cell main body comprising an oxidizing agent electrode and an oxidizing electrode arranged on both sides of an electrolyte, and a fuel cell main body sealed in an inert gas. It consists of a container for storing the oxidizing agent, an oxidizing agent discharge path for discharging the oxidizing agent from the oxidizing agent discharge channel, and means for detecting the 111 degrees of carbon dioxide in the acid stifling agent discharge channel.

発明の実施例 以下、図面に従って本発明の実施例を鉄明する。Examples of the invention Hereinafter, embodiments of the present invention will be explained according to the drawings.

第3図は本発明の一実施例に係る燃料電池装置の゛概略
構成図で、同図構成が第一図の構成と異なる点は、WI
化剤排出路ioに二酸化炭素#1度計18が設けられた
ことである。
FIG. 3 is a schematic configuration diagram of a fuel cell device according to an embodiment of the present invention, and the difference between the configuration in the diagram and the configuration in FIG.
The reason is that a carbon dioxide #1 degree meter 18 is provided in the chemical agent discharge path io.

かかる構成に於いて、酸化剤供給路デから酸化剤流路6
中に供給された酸化剤並びに燃料供給路//から燃料流
路を中に供給された燃料は燃料電池本体参内で反応して
必要な直流電力を発生する。
In this configuration, the oxidant flow path 6 is connected from the oxidant supply path D to the oxidant flow path 6.
The oxidizer supplied therein and the fuel supplied from the fuel supply channel // into the fuel flow path react within the fuel cell body to generate necessary DC power.

なお、酸化剤流路6中の酸化剤の圧力と容lit内の不
活性ガスtの圧力差は差圧測定制御器13で測定され、
これが予め設定された所望の差圧となる様、制御弁is
を制御して酸化剤排出路10から酸化剤を排出して、酸
化剤流路4中の不活性ガスtに対する差圧を保っている
。一方、燃料流路7中の燃料の圧力と客器!内の不活性
ガスlの圧力差は差圧測定制御器/亭で測定され、これ
が予め設定された所望の差圧となる機、制御弁/6を制
御して燃料排出路lコから燃料を排出して、燃料流路り
中の不活性カスtに対する差圧を保っている。なお、各
差圧測定制御器/J、 /4Iに設定される設定差圧は
不活性カスj、酸化剤流路6、燃料流路7の順で小さく
なるという関係を保ったまま、クロスオーバーが発生し
ない程度に近い儲に設定される。
Note that the pressure difference between the pressure of the oxidant in the oxidizer flow path 6 and the pressure of the inert gas t in the volume lit is measured by a differential pressure measurement controller 13,
The control valve is so that this becomes the desired preset differential pressure.
The oxidizing agent is discharged from the oxidizing agent discharge path 10 by controlling the oxidizing agent flow path 10 to maintain the differential pressure with respect to the inert gas t in the oxidizing agent flow path 4. On the other hand, the pressure of the fuel in the fuel flow path 7 and the passenger equipment! The pressure difference of the inert gas in the tank is measured by a differential pressure measurement controller, and this becomes a preset desired differential pressure, which controls the control valve to discharge fuel from the fuel discharge path. is discharged to maintain a differential pressure with respect to the inert scum t in the fuel flow path. In addition, while maintaining the relationship that the set differential pressure set in each differential pressure measurement controller /J, /4I decreases in the order of inert gas j, oxidizer flow path 6, and fuel flow path 7, cross-over The profit is set to a level that is close to the level that does not occur.

なお、クロスオーバーの発生は酸化剤排出路i。Note that the crossover occurs in the oxidant discharge path i.

の途中に設けられた二酸化炭素濃度計/jによって検出
するもので、各差圧測定制御器/3、/ダの設定差圧は
二酸化炭素濃度計itの出力に応じて、クロスオーバー
91発生しない範囲で設定される。
The set differential pressure of each differential pressure measurement controller /3 and /da is determined by the carbon dioxide concentration meter /j installed in the middle of the carbon dioxide concentration meter /j, and the set differential pressure of each differential pressure measurement controller /3 and /da is determined according to the output of the carbon dioxide concentration meter it so that crossover 91 does not occur. Set in range.

ところで、次に二酸化炭素濃度計/gによるクロスオー
バー検出のW理について説明する。燃料電池の燃料とし
ては一般に石油から水蒸気改質勢のプロセスを経て得ら
れたガスが用いられており、その組成は水素10憾に対
して二酸化炭素Kss度のものである。このため、クロ
スオーバーの発生により燃料が電解液マトリクスlを突
き抜けて酸化剤流路A中に入った場合、二酸化炭素は酸
化剤とは反応しないため、酸化剤流路6中の二酸化炭素
濃度が増加する。従って、酸化剤流路6から酸4ff剤
を排出する酸化剤排出路10の中の二酸化脚素の濃度を
二酸化炭素濃度計itで測定することにより、クロスオ
ーバーの程度を判定することが出来る。
By the way, next, the W principle of crossover detection using a carbon dioxide concentration meter/g will be explained. Gas obtained from petroleum through a steam reforming process is generally used as a fuel for fuel cells, and its composition is 10 degrees of hydrogen and Kss of carbon dioxide. Therefore, when the fuel penetrates the electrolyte matrix l and enters the oxidizer flow path A due to the occurrence of crossover, the carbon dioxide concentration in the oxidizer flow path 6 decreases because carbon dioxide does not react with the oxidizer. To increase. Therefore, the degree of crossover can be determined by measuring the concentration of carbon dioxide in the oxidizing agent discharge passage 10 that discharges the acid 4ff agent from the oxidizing agent passage 6 using the carbon dioxide concentration meter IT.

従って、二酸化炭素濃度計itの出力に基いて。Therefore, based on the output of the carbon dioxide concentration meter it.

クロスオーバーを極小化出来る範囲で各差圧測定制御器
/3、l亭の差圧設定値を決定することにより、効果的
で効率的なりロスオーバーの極小化を図ることか出来る
。その結果、燃料電池の使用条件の!&適化がなされる
ため、電池寿命を長くすることか出来る。更に、二酸化
炭素濃度計itの出力によって、燃料電池の性能判定な
いしは劣化判定を行うことも出来る。
By determining the differential pressure settings of each differential pressure measurement controller/3 and 1 within a range that can minimize the crossover, it is possible to effectively and efficiently minimize the loss over. As a result, the usage conditions of fuel cells! & Due to optimization, battery life can be extended. Furthermore, the performance or deterioration of the fuel cell can be determined based on the output of the carbon dioxide concentration meter IT.

発明の変形例 なお、上記実施例に於いては、二酸化炭素濃度計itが
単独で設けられている場合を例示したが。
Modifications of the Invention In the above embodiments, the case where the carbon dioxide concentration meter IT was provided alone was exemplified.

二酸化炭素濃度計/gと各差圧測定制御器/J、/41
間を有機的に結合して、・股、、、*差圧を自動設定す
る如く構成してもよい。
Carbon dioxide concentration meter/g and each differential pressure measurement controller/J,/41
It may also be configured such that the differential pressure is automatically set by organically combining the two.

発明の効果 以上述べた如く、本発明によれば燃料電池なり■スオー
バーを極小化しながら効率的に運転することを可能とし
、燃料電離の長寿命化の上でも効果的な燃料電池装置を
得ることが出来るものである・
Effects of the Invention As described above, according to the present invention, it is possible to efficiently operate a fuel cell while minimizing sover, and to obtain a fuel cell device that is effective in extending the life of fuel ionization. It is something that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

W41図は燃料電池の基本構造を示す断面図、第1図は
従来の燃料電池装置の概略構成図、第3図は本発明の一
実施例に係る燃料電池装置の概略構成図である。 ハ・・電解液マトリクス、コ・・・酸化剤極、3・・・
燃l#+極、ト・・敢化剤流路、?・・・燃料流路、!
・・・容器、/3、IQ・・・差圧測定制御器、/!、
 /!・・・制御弁、/l・・・二酸化炭素濃度計。 出願人代理人  猪  股     清第1囚
FIG. W41 is a sectional view showing the basic structure of a fuel cell, FIG. 1 is a schematic diagram of a conventional fuel cell device, and FIG. 3 is a schematic diagram of a fuel cell device according to an embodiment of the present invention. C... Electrolyte matrix, C... Oxidizer electrode, 3...
Mole #+pole, G...Curative agent flow path,? ...Fuel flow path!
... Container, /3, IQ ... Differential pressure measurement controller, /! ,
/! ...control valve, /l...carbon dioxide concentration meter. Applicant's representative: Kiyoshi Inomata, 1st prisoner

Claims (1)

【特許請求の範囲】 1、を解質の両側に酸化剤極と燃料極とを配置して成る
燃料電池本体と、燃料電池本体を不活性方ス中に密閉収
納する容器と、酸化剤極から酸化剤を排出する酸化剤排
出流路と、酸化剤排出流路中の二酸化縦紫の〜濃度を検
出する手段とから成ることを特徴とする燃料電池装置。 コ、酸化剤排出流路に酸化剤極の圧力調節用の制御弁が
設けられ、燃料極にも圧力制御手段が付加さめているこ
とを特徴とする特許請求の範囲第1項に記載の燃料電池
装置t。 3、制御弁並びに圧力制御手段がそねぞれ酸化剤極、燃
料極と容器内の各圧力差を制御することを特徴とする特
許請求の範囲第コ項に記載の燃料電池装置。
[Scope of Claims] 1. A fuel cell body comprising an oxidizer electrode and a fuel electrode disposed on both sides of a solute, a container in which the fuel cell body is hermetically housed in an inert container, and an oxidizer electrode. 1. A fuel cell device comprising: an oxidizing agent discharge channel for discharging an oxidizing agent from the oxidizing agent discharge channel; and means for detecting the concentration of vertical purple dioxide in the oxidizing agent discharging channel. h. The fuel according to claim 1, characterized in that the oxidizer discharge passage is provided with a control valve for adjusting the pressure of the oxidizer electrode, and the fuel electrode is also provided with pressure control means. Battery device t. 3. The fuel cell device according to claim 1, wherein the control valve and the pressure control means respectively control the pressure difference between the oxidizer electrode, the fuel electrode, and the inside of the container.
JP56192284A 1981-11-30 1981-11-30 Fuel cell device Pending JPS5894767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56192284A JPS5894767A (en) 1981-11-30 1981-11-30 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56192284A JPS5894767A (en) 1981-11-30 1981-11-30 Fuel cell device

Publications (1)

Publication Number Publication Date
JPS5894767A true JPS5894767A (en) 1983-06-06

Family

ID=16288713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56192284A Pending JPS5894767A (en) 1981-11-30 1981-11-30 Fuel cell device

Country Status (1)

Country Link
JP (1) JPS5894767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939218A (en) * 1994-11-11 1999-08-17 Toyota Jidosha Kabushiki Kaisha Polyelectrolytic fuel cell and the method of controlling the operation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939218A (en) * 1994-11-11 1999-08-17 Toyota Jidosha Kabushiki Kaisha Polyelectrolytic fuel cell and the method of controlling the operation thereof

Similar Documents

Publication Publication Date Title
KR0171207B1 (en) Fuel cell
JP4468994B2 (en) Fuel cell system
US6096448A (en) Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
US8039154B2 (en) Fuel cell system, method of starting fuel cell system
JP2924009B2 (en) How to stop fuel cell power generation
US8765314B2 (en) Fuel cell system and method for stopping operation of fuel cell system
JP2006024546A (en) Operation method of fuel cell
JP5609205B2 (en) Fuel cell system
JP4772470B2 (en) Fuel cell system
JP4661055B2 (en) Fuel cell system and operation method
JP2002208428A (en) Fuel cell system
JPS59149668A (en) Fuel battery
JPS5894767A (en) Fuel cell device
JPH0622144B2 (en) Fuel cell
JPH01200567A (en) Power generation system of fuel cell
JPH069143B2 (en) Fuel cell storage method
JPH0326507B2 (en)
JPH0837014A (en) Phosphoric acid type fuel cell power plant and method of maintaining the same
US20060115696A1 (en) Hydrogen gas humidity control apparatus, fuel cell, hydrogen gas humidity controlling method, and humidity control method for fuel cell
JP2009170388A (en) Fuel cell system
JPH08138697A (en) Fuel cell
JPH0622153B2 (en) How to operate a fuel cell
JPH0311559A (en) Operating method of fuel battery
JP2012059659A (en) Fuel cell power generator
JPS59105272A (en) Fuel cell power generating system