JPH0325495B2 - - Google Patents

Info

Publication number
JPH0325495B2
JPH0325495B2 JP61214717A JP21471786A JPH0325495B2 JP H0325495 B2 JPH0325495 B2 JP H0325495B2 JP 61214717 A JP61214717 A JP 61214717A JP 21471786 A JP21471786 A JP 21471786A JP H0325495 B2 JPH0325495 B2 JP H0325495B2
Authority
JP
Japan
Prior art keywords
less
content
alloy
minutes
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61214717A
Other languages
Japanese (ja)
Other versions
JPS6369933A (en
Inventor
Yoshimasa Ooyama
Masato Asai
Tsutomu Sato
Shigeo Shinozaki
Shoji Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP21471786A priority Critical patent/JPS6369933A/en
Publication of JPS6369933A publication Critical patent/JPS6369933A/en
Publication of JPH0325495B2 publication Critical patent/JPH0325495B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は機械的強度が高く、電気・熱伝導性、
半田付け性、メツキ性及び耐食性の優れた電子・
電気機器用銅合金と、その製造法に関するもので
ある。 〔従来の技術〕 一般に半導体用リードフレーム、各種端子、コ
ネクター接点、スプリング、熱交換器、各種導体
等に使用される電子・電気機器用銅合金として
は、リン青銅(Cu−Sn系合金)、黄銅(Cu−Zn
系合金)、洋白(Cu−Ni−Zn系合金)等が知ら
れている。しかし黄銅と洋白は応力腐食割れとい
う致命的欠陥を有し、機械的ストレスの大きい用
途には適用できない。リン青銅は強度が高く、加
工性に優れているところから最も広く利用されて
いるが、導電率が低く、高価なSnを多量に使用
する。また半田付けやSn及びSn合金メツキの剥
離現象を起し易いばかりか、応力腐食割れについ
ても、黄銅や洋白ほどではないが保有する。 このため一部の用途ではCu−Fe系合金、例え
ばC194(Cu−2.3wt%Fe−0.12wt%Zn−P合金)
以下wt%を%と略記)やC195(Cu−1.5%Fe−0.8
%Co−0.6%Sn−P合金)が利用されている。こ
の合金は6%Snリン青銅ほどの強度はないが、
その2〜3倍の導電率を有し、応力腐食割れ感受
性はない。しかしながら加工性が劣るばかりか、
メツキ性や半田付け性が不十分である。 〔発明が解決しようとする問題点〕 近年電子・電気機器の小型化、高集積度化、高
機能化及び面実装化にともない、次のような特性
を有する銅合金が求められている。 (1) 強度と導電性(熱導電性)が共に高いこと。 (2) 成型加工性が良いこと。 (3) 半田付け性、メツキ性、ボンデイング性が優
れ、特に半田接合強度やメツキ密着力が長期に
わたり高いこと。 (4) 耐食性、特に応力腐食割れ感受性がないこ
と。 (5) 経済的であること。 〔問題点を解決するための手段〕 本発明はこれに鑑み種々検討の結果、機械的強
度が高く、電気・熱導電性、半田付け性、メツキ
性及び耐食性の優れた電子・電気機器用銅合金と
その製造法を開発したものである。 即ち本発明の一つである銅合金は、Cr0.1〜0.4
%、Sn0.05〜6.0%、P0.0001〜0.01%を含み、O2
含有量を0.0025%以下、S含有量を0.0010%以下
に制限し、残部Cuと不可避的不純物からなる金
属及び非金属介在物の大きさを10μm以下とした
ことを特徴とするものである。 また本発明の他の一つである銅合金は、Cr0.1
〜0.4%、Sn0.05〜6.0%、P0.0001〜0.01%を含
み、更にMg0.2%以下、Zn5%以下、Mn0.5%以
下、B0.1%以下、Al0.2%以下、Co0.5%以下の範
囲内で少なくとも何れか1種以上を含み、O2
有量を0.0025%以下、S含有量を0.0010%以下に
制限し、残部Cuと不可避的不純物からなる金属
及び非金属介在物の大きさを10μm以下としたこ
とを特徴とするものである。 更に本発明に他の一つである上記合金の製造法
は、Cr0.1〜0.4%、Sn0.05〜6.0%、P0.0001〜
0.01%を含み、又はこれにMg0.2%以下、Zn5%
以下、Mn0.5%以下、B0.1%以下、Al0.2%以下、
Co0.5%以下の範囲内で少なくとも何れか1種以
上を含み、O2含有量を0.0025%以下、S含有量を
0.0010%以下に制限し、残部Cuと不可避的不純物
からなる合金鋳塊を850〜950℃に加熱して熱間加
工した後、850℃から450℃の温度域を20分以内に
通過させて冷却し、しかる後400〜500℃で5分以
上の熱処理を少なくとも1回以上含む冷間加工を
施し、金属及び非金属介在物の大きさを10μm以
下とすることを特徴とするものである。 〔作 用〕 本発明合金はCu中にSn分が固溶し、Crが析出
分散した合金で、両者の相剰作用により優れた特
性を得たもので、Pは脱酸及び溶解鋳造の際の湯
流れ性を改善するものである。またMg、Zn、
Mn、B、Al、Co等(以下これ等を副成分と略
記)は、Crの析出分散を均質化し、ボンデイン
グ性、エツチング性、メツキ性、半田付け性、成
型加工性等の実用特性を向上するものである。し
かしてこれ等合金成分は本発明の範囲内において
有効に作用し、その含有量が下限未満では十分な
効果が得られず、上限を越えると製造上の欠陥や
導電率の低下をもたらす。 即ちCrは0.1〜0.4%のときに要求特性を最大に
することができるもので、過剰のCrは粗大粒と
して析出し、加工性、メツキ性、半田付け性、ボ
ンデイング性、エツチング性等に有害に働く。
Snは強度や加工性に有効であるが、含有量の増
加と共に導電率の低下をもたらすもので、導電性
と強度を必要とする目的には、Sn含有量を0.05〜
0.5%とすることにより、導電率60〜90%IACS、
強度60Kg/mm2の特性を得ることができる。また
Sn含有量が0.5%以上では、導電率の犠牲におい
て約80Kg/mm2の強度が得られ、加工性も良好であ
る。Pは上記のように脱酸及び溶解鋳造の際の湯
流れ性を改善するも、下限未満では効果が微弱と
なり、上限を越えると、Crとの粗大化合物を形
成し、各特性を損なう。 また副成分の添加は本発明合金の特性や製造条
件を一層改善するもので、副成分は何れも本発明
合金の成分の均一な固溶と析出分散に有効に作用
する。しかして副成分が上限を越えると導電率を
低下するなどの不都合を起す。 以上の本発明合金の成分の作用は、O2含有量
が0.0025%以下、S含有量が0.0010%以下におい
て有効に働き、これを越えてO2やSを含有する
合金では成分の均一な析出分散に有害となる。即
ちCu中にCrを含有する合金はCr含有量が0.1〜0.4
%の範囲内であつてもO2やSの含有量が上限を
越えるとO2やSと粗大化合物を晶出し、非金属
介在物として成型加工性、メツキ性、半田付け
性、ボンデイング性、エツチング性等に有害に働
く。 尚、O2量を0.0025%以下に制限するためには、
レアーアース(RE)、Ti、Zr等の各種脱酸成分
を添加するか、雰囲気溶解鋳造等、従来から知ら
れている溶銅の脱酸技術を適用し、またS量を
0.0010%以下に制限するためには、Ca、RE、Ti
等を添加して脱硫を行なうか、溶解に用いる原料
を精選するか、又はO2ガスもしくは空気を溶銅
中に吹き込んで脱硫する方法を適用すればよい。 本発明合金は上記組成からなり、応力腐食割れ
感受性がなく、前記製造法により強度などの特性
を最適化することができる。即ち上記組成の合金
鋳塊を850〜950℃に加熱して熱間加工し、続いて
850℃から450℃までを20分以内に通過させて冷却
し、次に400〜500℃の温度で5分以上の熱処理を
少なくとも1回施して冷間加工により所望サイズ
に仕上げるものである。 しかして850〜950℃に加熱して熱間加工するの
は、加熱温度が850℃未満でも950℃を越えても本
発明製造法により上記の目的とする均質な析出分
散が達成できないためである。また熱間加工後、
850℃から450℃までを20分以内に通過させて冷却
するのも、通過に20分を越えると目的とする均質
な析出分散が達成できないためである。また冷却
後400〜500℃で5分以上の熱処理を含む冷間加工
を行なうのは、加熱により均質な析出を行なわせ
ると共に、所望のサイズに加工するためであり、
何れも下限未満の処理では析出が不十分となり、
上限を越えると析出物が粗大化するためである。
尚均質な析出には熱処理前に適度な加工歪を与え
ることも有効に働く。 以上の製造法は本発明合金の上記作用を最適化
する例を示したもので、勿論この範囲から外れる
条件でも製造は可能である。また前記組成に加え
てFe、Mo、Ta、Nb、Hf、Ge、Pb、As、Sb、
Ga、In、Y、Tl、Be、Ba、Cd、Bi、Se、Te、
Ru、Ag、Au、Pd、Pt等を併用することもでき
る。 〔実施例〕 第1表に示す組成の合金鋳塊(40mm×40mm×
300mm)を外削してから875℃に15分間加熱した
後、熱間圧延により厚さ10mmの板とした。尚圧延
時間は約3分であり、圧延終了温度は670〜700℃
であつた。これを直ちに水冷して100℃以下に冷
却した。これを酸洗してから厚さ1.2mmまで冷間
圧延し、続いて450℃で25分間熱処理してから冷
間圧延し、続いて450℃で25分間熱処理してから
厚さ0.4mmまで冷間圧延し、再び420℃で30分間熱
処理してから厚さ0.20mmまで冷間圧延し、次に
300℃で15分間熱処理した。 これ等について引張強さ、伸び、導電率、曲げ
成型性、耐食性、半田付け性、メツキ性、ボンデ
イング性および介在物の大きさを調べた。これ等
の結果を従来合金であるリン青銅及びC194と比
較して第2表に示す。 曲げ成型性については、各種先端半径(R)の
90゜角V曲げ試験を行なつて曲げ部の割れ状態を
検鏡し、マイクロクラツクのない最少半径(R)
と板厚(t)との比(R/t)を求めた。応力腐
食割れについては、JIS C8306に準じ3vol%NH3
蒸気中の定荷重法により割れ時間を求めた。尚荷
重は引張強さの50%とした。半田付け性について
は、直径9mmの部分にリード線を共晶半田により
半田付けし、150℃で300hrエージングしてからプ
ル試験して半田接合強度を求めた。メツキ性につ
いてはホウフツ化物浴を用いてSn−5%Pb合金
を7.5μの厚さにメツキし、105℃で2000hr保持し
てから100゜の折り曲げ試験を行ない、折り曲げ部
のメツキ層の剥離を検鏡した。ボンデイング性に
ついては、1%KCN液により処理した後、
AgCN浴を用いてAgを2.5μの厚さにメツキし、
ダイボンデイングの熱履歴を模して450℃で5分
加熱し、225℃で直径23μのAu線を自動式超音波
熱圧着機により、第1、第2ボンドして15mmのル
ープを1000個形成し、プル試験を行なつてボンデ
イング収率を求めた。尚ワイヤー切れ以外のもの
は第2ボンドで剥離しており、これを不良とし
た。
[Industrial Application Field] The present invention has high mechanical strength, electrical and thermal conductivity,
Electronics with excellent solderability, plating performance, and corrosion resistance.
This article relates to copper alloys for electrical equipment and their manufacturing methods. [Prior Art] Copper alloys for electronic and electrical equipment, which are generally used for semiconductor lead frames, various terminals, connector contacts, springs, heat exchangers, various conductors, etc., include phosphor bronze (Cu-Sn alloy), Brass (Cu−Zn
alloys), nickel silver (Cu-Ni-Zn alloys), etc. are known. However, brass and nickel silver have a fatal defect called stress corrosion cracking, and cannot be used in applications that involve large mechanical stress. Phosphor bronze is the most widely used material due to its high strength and excellent workability, but it has low conductivity and uses a large amount of expensive Sn. In addition, it is not only prone to peeling of soldering and Sn and Sn alloy plating, but also has stress corrosion cracking, although not as much as brass or nickel silver. For this reason, in some applications Cu-Fe alloys, such as C194 (Cu-2.3wt%Fe-0.12wt%Zn-P alloy), are used.
Hereinafter, wt% is abbreviated as %) and C195 (Cu−1.5%Fe−0.8
%Co-0.6%Sn-P alloy) is used. Although this alloy is not as strong as 6% Sn phosphor bronze,
It has two to three times the electrical conductivity and is not susceptible to stress corrosion cracking. However, not only is the workability inferior,
Plating and soldering properties are insufficient. [Problems to be Solved by the Invention] In recent years, with the miniaturization, higher integration, higher functionality, and surface mounting of electronic and electrical equipment, a copper alloy having the following characteristics is required. (1) High strength and electrical conductivity (thermal conductivity). (2) Good moldability. (3) Excellent soldering, plating, and bonding properties, with particularly high solder joint strength and plating adhesion over a long period of time. (4) Corrosion resistance, especially no susceptibility to stress corrosion cracking. (5) Be economical. [Means for Solving the Problems] In view of this, the present invention has been developed as a result of various studies, and has been developed to provide copper for electronic and electrical equipment that has high mechanical strength, excellent electrical and thermal conductivity, solderability, plating performance, and corrosion resistance. The alloy and its manufacturing method were developed. That is, the copper alloy that is one of the present inventions has a Cr0.1 to 0.4
%, including Sn0.05~6.0%, P0.0001~0.01%, O2
It is characterized in that the content is limited to 0.0025% or less, the S content is limited to 0.0010% or less, and the size of metal and nonmetallic inclusions consisting of the remainder Cu and unavoidable impurities is 10 μm or less. In addition, the copper alloy which is another one of the present invention is Cr0.1
Contains ~0.4%, Sn0.05~6.0%, P0.0001~0.01%, and further includes Mg0.2% or less, Zn5% or less, Mn0.5% or less, B0.1% or less, Al0.2% or less, Co0 Metallic and non-metallic inclusions containing at least one of the following within the range of .5% or less, limiting the O 2 content to 0.0025% or less, the S content to 0.0010% or less, and the balance consisting of Cu and unavoidable impurities. The feature is that the size of the object is 10 μm or less. Furthermore, the manufacturing method of the above-mentioned alloy, which is another one of the present invention, includes Cr0.1~0.4%, Sn0.05~6.0%, P0.0001~
Contains 0.01% or less than Mg0.2%, Zn5%
Below, Mn 0.5% or less, B 0.1% or less, Al 0.2% or less,
Contains at least one of the following within the range of Co 0.5% or less, O 2 content 0.0025% or less, and S content 0.0025% or less.
The alloy ingot is limited to 0.0010% or less, and the balance consists of Cu and unavoidable impurities. After hot working by heating to 850 to 950℃, it is cooled by passing through a temperature range of 850℃ to 450℃ within 20 minutes. Then, cold working including at least one heat treatment at 400 to 500° C. for 5 minutes or more is performed to reduce the size of metal and nonmetallic inclusions to 10 μm or less. [Function] The alloy of the present invention is an alloy in which Sn is dissolved as a solid solution in Cu, and Cr is precipitated and dispersed. Excellent properties are obtained through the mutual action of the two, and P is removed during deoxidation and melting and casting. This improves the flowability of hot water. Also Mg, Zn,
Mn, B, Al, Co, etc. (hereinafter abbreviated as subcomponents) homogenize the precipitation and dispersion of Cr and improve practical properties such as bonding properties, etching properties, plating properties, soldering properties, and molding properties. It is something to do. These alloy components function effectively within the scope of the present invention; if the content is less than the lower limit, a sufficient effect cannot be obtained, and if the content exceeds the upper limit, manufacturing defects or a decrease in electrical conductivity occur. In other words, the required properties can be maximized when Cr is 0.1 to 0.4%; excessive Cr precipitates as coarse grains and is harmful to workability, plating performance, soldering performance, bonding performance, etching performance, etc. to work.
Sn is effective for strength and workability, but as its content increases, it causes a decrease in electrical conductivity.For purposes that require electrical conductivity and strength, the Sn content should be increased from 0.05 to
Conductivity 60-90% IACS, by 0.5%
A strength of 60Kg/mm 2 can be obtained. Also
When the Sn content is 0.5% or more, a strength of about 80 Kg/mm 2 can be obtained at the expense of electrical conductivity, and workability is also good. As mentioned above, P improves the flowability during deoxidation and melting and casting, but below the lower limit, the effect is weak, and above the upper limit, it forms coarse compounds with Cr, impairing each property. Further, the addition of subcomponents further improves the properties and manufacturing conditions of the alloy of the present invention, and all subcomponents effectively act on uniform solid solution and precipitation dispersion of the components of the alloy of the present invention. However, if the amount of the subcomponent exceeds the upper limit, problems such as a decrease in electrical conductivity occur. The above-described effects of the components of the alloy of the present invention are effective when the O 2 content is 0.0025% or less and the S content is 0.0010% or less. detrimental to dispersion. In other words, alloys containing Cr in Cu have a Cr content of 0.1 to 0.4.
Even if the content of O 2 and S exceeds the upper limit even if it is within the range of It has a harmful effect on etching properties, etc. In addition, in order to limit the amount of O 2 to 0.0025% or less,
Adding various deoxidizing components such as rare earths (RE), Ti, and Zr, or applying conventionally known molten copper deoxidizing techniques such as atmospheric melting and casting, and reducing the amount of S.
In order to limit it to 0.0010% or less, Ca, RE, Ti
Desulfurization can be carried out by adding molten copper, by carefully selecting the raw materials used for melting, or by blowing O 2 gas or air into molten copper to desulfurize. The alloy of the present invention has the above-mentioned composition, is not susceptible to stress corrosion cracking, and properties such as strength can be optimized by the above-mentioned manufacturing method. That is, an alloy ingot with the above composition is heated to 850 to 950°C, hot worked, and then
It is cooled by passing from 850°C to 450°C within 20 minutes, and then subjected to at least one heat treatment at a temperature of 400 to 500°C for 5 minutes or more to finish it into the desired size by cold working. However, the reason why hot working is performed by heating to 850 to 950°C is because the production method of the present invention cannot achieve the above-mentioned objective of homogeneous precipitation dispersion even if the heating temperature is lower than 850°C or higher than 950°C. . Also, after hot processing,
The reason for cooling by passing from 850°C to 450°C within 20 minutes is because if the passing time exceeds 20 minutes, the desired homogeneous precipitation dispersion cannot be achieved. In addition, cold working, which includes heat treatment at 400 to 500°C for 5 minutes or more after cooling, is performed in order to perform homogeneous precipitation by heating and process it to the desired size.
In either case, treatment below the lower limit will result in insufficient precipitation.
This is because if the upper limit is exceeded, the precipitates become coarse.
Furthermore, for homogeneous precipitation, it is also effective to apply appropriate processing strain before heat treatment. The above manufacturing method shows an example of optimizing the above-mentioned effects of the alloy of the present invention, and it is of course possible to manufacture the alloy under conditions outside this range. In addition to the above composition, Fe, Mo, Ta, Nb, Hf, Ge, Pb, As, Sb,
Ga, In, Y, Tl, Be, Ba, Cd, Bi, Se, Te,
Ru, Ag, Au, Pd, Pt, etc. can also be used in combination. [Example] Alloy ingots having the composition shown in Table 1 (40mm x 40mm x
300 mm) was externally milled, heated to 875°C for 15 minutes, and then hot rolled into a 10 mm thick plate. The rolling time is approximately 3 minutes, and the rolling end temperature is 670 to 700℃.
It was hot. This was immediately cooled with water to below 100°C. It was pickled and then cold rolled to a thickness of 1.2mm, followed by heat treatment at 450℃ for 25 minutes, then cold rolled, then heat treated at 450℃ for 25 minutes, and then cold rolled to a thickness of 0.4mm. then heat treated again at 420℃ for 30 minutes and then cold rolled to a thickness of 0.20mm, then
Heat treatment was performed at 300°C for 15 minutes. These were examined for tensile strength, elongation, electrical conductivity, bending formability, corrosion resistance, soldering properties, plating properties, bonding properties, and the size of inclusions. These results are shown in Table 2 in comparison with conventional alloys phosphor bronze and C194. Regarding bending formability, various tip radii (R)
Perform a 90° V-bending test and inspect the cracks at the bent part to find the minimum radius (R) without micro-cracks.
and the plate thickness (t) (R/t) was determined. For stress corrosion cracking, 3vol% NH3 according to JIS C8306
The cracking time was determined by the constant load method in steam. The load was 50% of the tensile strength. Regarding solderability, a lead wire was soldered to a 9 mm diameter portion using eutectic solder, and after aging at 150° C. for 300 hours, a pull test was performed to determine the solder joint strength. Regarding plating properties, we plated a Sn-5%Pb alloy to a thickness of 7.5μ using a borofluoride bath, held it at 105℃ for 2000 hours, and then performed a 100° bending test to check for peeling of the plating layer at the bent part. I took a speculum. Regarding bonding properties, after treatment with 1% KCN solution,
Plating Ag to a thickness of 2.5μ using an AgCN bath,
Simulating the thermal history of die bonding, heat at 450℃ for 5 minutes, and then bond the first and second Au wires with a diameter of 23μ at 225℃ using an automatic ultrasonic thermocompression bonding machine to form 1000 loops of 15mm. Then, a pull test was conducted to determine the bonding yield. It should be noted that anything other than the wire breakage was peeled off at the second bond, and this was considered defective.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば強度、導電性(熱導
電性)、成型加工性及び耐食性が優れ、半田付け、
メツキ、ボンデイングの信頼性が大巾に改善さ
れ、電子・電気機器用として例えば半導体リード
フレーム、コネクター、スイツチ等のばね材、端
子、熱交換器、各種導体として有用であり、電
子・電気機器の小型化、高集積度化を可能にする
等、工業上顕著な効果を奏するものである。
As described above, the present invention has excellent strength, electrical conductivity (thermal conductivity), moldability, and corrosion resistance, and has excellent soldering and
The reliability of mating and bonding has been greatly improved, and it is useful as spring materials for semiconductor lead frames, connectors, switches, etc., terminals, heat exchangers, and various conductors for electronic and electrical equipment. This has significant industrial effects, such as making it possible to achieve smaller size and higher integration.

Claims (1)

【特許請求の範囲】 1 Cr0.1〜0.4wt%、Sn0.05〜6.0wt%、P0.0001
〜0.01wt%を含み、O2含有量を0.0025wt%以下、
S含有量を0.0010wt%以下に制限し、残部Cuと
不可避的不純物からなる金属及び非金属介在物の
大きさを10μm以下とした電子・電気機器用銅合
金。 2 Cr0.1〜0.4wt%、Sn0.05〜6.0wt%、P0.0001
〜0.01wt%を含み、更にMg0.2wt%以下、Zn5wt
%以下、Mn0.5wt%以下、B0.1wt%以下、
Al0.2wt%以下、Co0.5wt%以下の範囲内で少な
くとも何れか1種以上を含み、O2含有量を
0.0025wt%以下、S含有量を0.0010wt%以下に制
限し、残部Cuと不可避的不純物からなる金属及
び非金属介在物の大きさを10μm以下とした電
子・電気機器用銅合金。 3 Cr0.1〜0.4wt%、Sn0.05〜6.0wt%、P0.0001
〜0.01wt%を含み、又はこれにMg0.2wt%以下、
Zn5wt%以下、Mn0.5wt%以下、B0.1wt%以下、
Al0.2wt%以下、Co0.5wt%以下の範囲内で少な
くとも1種以上を含み、O2含有量を0.0025wt%
以下、S含有量を0.0010wt%以下に制限し、残部
Cuと不可避的不純物からなる合金鋳塊を850〜
950℃に熱して熱間加工した後、850℃から450℃
の温度域を20分以内に通過させて冷却し、しかる
後400〜500℃で5分以上の熱処理を少なくとも1
回含む冷間加工を施し、金属及び非金属介在物の
大きさを10μm以下とすることを特徴とする電
子・電気機器用銅合金の製造法。
[Claims] 1 Cr0.1-0.4wt%, Sn0.05-6.0wt%, P0.0001
Contains ~0.01wt%, O2 content less than 0.0025wt%,
A copper alloy for electronic and electrical equipment in which the S content is limited to 0.0010wt% or less, and the size of metal and nonmetallic inclusions consisting of the remainder Cu and unavoidable impurities is 10μm or less. 2 Cr0.1~0.4wt%, Sn0.05~6.0wt%, P0.0001
Contains ~0.01wt%, further Mg0.2wt% or less, Zn5wt
% or less, Mn0.5wt% or less, B0.1wt% or less,
Contains at least one of the following within the range of Al 0.2wt% or less, Co 0.5wt% or less, and O 2 content
A copper alloy for electronic and electrical equipment in which the S content is limited to 0.0025wt% or less, the S content is limited to 0.0010wt% or less, and the size of metal and nonmetallic inclusions consisting of the remainder Cu and unavoidable impurities is 10μm or less. 3 Cr0.1~0.4wt%, Sn0.05~6.0wt%, P0.0001
Contains ~0.01wt% or less than Mg0.2wt%,
Zn5wt% or less, Mn0.5wt% or less, B0.1wt% or less,
Contains at least one type within the range of Al 0.2wt% or less, Co 0.5wt% or less, and O 2 content 0.0025wt%
Below, the S content is limited to 0.0010wt% or less, and the remaining
Alloy ingot consisting of Cu and unavoidable impurities from 850
After heating to 950℃ and hot working, from 850℃ to 450℃
temperature range within 20 minutes, then heat treatment at 400 to 500℃ for at least 5 minutes
A method for producing copper alloys for electronic and electrical equipment, which is characterized by subjecting the metal and non-metallic inclusions to a size of 10 μm or less by subjecting them to cold working.
JP21471786A 1986-09-11 1986-09-11 Copper alloy for electronic and electrical equipment and its production Granted JPS6369933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21471786A JPS6369933A (en) 1986-09-11 1986-09-11 Copper alloy for electronic and electrical equipment and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21471786A JPS6369933A (en) 1986-09-11 1986-09-11 Copper alloy for electronic and electrical equipment and its production

Publications (2)

Publication Number Publication Date
JPS6369933A JPS6369933A (en) 1988-03-30
JPH0325495B2 true JPH0325495B2 (en) 1991-04-08

Family

ID=16660455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21471786A Granted JPS6369933A (en) 1986-09-11 1986-09-11 Copper alloy for electronic and electrical equipment and its production

Country Status (1)

Country Link
JP (1) JPS6369933A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425929A (en) * 1987-07-20 1989-01-27 Furukawa Electric Co Ltd Copper alloy for electronic equipment
JPH01219133A (en) * 1988-02-25 1989-09-01 Mitsubishi Electric Corp Copper alloy for electronic parts
JP5107667B2 (en) * 2007-10-30 2012-12-26 株式会社デンソー Brazing metal material, brazing method, and heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123862A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Manufacture of copper alloy for lead material for semiconductor apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123862A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Manufacture of copper alloy for lead material for semiconductor apparatus

Also Published As

Publication number Publication date
JPS6369933A (en) 1988-03-30

Similar Documents

Publication Publication Date Title
KR950004935B1 (en) Copper alloy for electronic instruments
JP2003306732A (en) Copper alloy for electric and electronic parts
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JPH10219372A (en) Copper alloy for electrical and electronic parts, and is production
JPH0830234B2 (en) High strength and high conductivity copper alloy
JPH07331363A (en) High strength and high conductivity copper alloy
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH0987814A (en) Production of copper alloy for electronic equipment
JPH0325495B2 (en)
JPH0718355A (en) Copper alloy for electronic appliance and its production
JPH02190431A (en) Copper alloy for connecting apparatus
JPS6338543A (en) Copper alloy for electronic appliance and its manufacture
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPH06184666A (en) High strength and high electric conductivity copper alloy
JPS63109132A (en) High-strength conductive copper alloy and its production
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JP3391492B2 (en) High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials
JP2594249B2 (en) Copper base alloy for connector and method of manufacturing the same
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH06235035A (en) High tensile strength and high conductivity copper alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term