JPH03247572A - Method for bonding ceramic and metal - Google Patents

Method for bonding ceramic and metal

Info

Publication number
JPH03247572A
JPH03247572A JP4077590A JP4077590A JPH03247572A JP H03247572 A JPH03247572 A JP H03247572A JP 4077590 A JP4077590 A JP 4077590A JP 4077590 A JP4077590 A JP 4077590A JP H03247572 A JPH03247572 A JP H03247572A
Authority
JP
Japan
Prior art keywords
ceramic
metal
porous
ceramics
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4077590A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ito
裕之 伊藤
Masao Suzuki
鈴木 征勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP4077590A priority Critical patent/JPH03247572A/en
Publication of JPH03247572A publication Critical patent/JPH03247572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To easily bond a ceramic and a metal with high bond strength by incorporating metallic grains in the ceramic, chemically dissolving the grains on the surface to make the ceramic surface porous and bonding the ceramic and metal at the surface. CONSTITUTION:The fine powder of a ceramic (e.g. silicon nitride), metallic grains (e.g. molybdenum grains) and a binder are mixed, and the mixture is molded and then burned to produce the ceramic 2 contg. the metallic grains 1. The grains 1 on the surface of the ceramic 2 are then chemically treated (e.g. by hot concd. sulfuric acid) and dissolved to make the surface of the ceramic 2 porous. The ceramic and a metal 4 (e.g. silver) are bonded at the porous surface by screen printing, etc., and the ceramic 2 is firmly bonded to the metal 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、セラミックスと金属との接合方法に係り、
特にセラッミクスと金属とを接合する際、その接合強度
と接合方法の改善に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method of joining ceramics and metal,
In particular, it relates to improvements in bonding strength and bonding methods when bonding ceramics and metals.

〔従来の技術〕[Conventional technology]

従来、セラミックスと金属とを接合する方法として、セ
ラミックスと接合しようとする金属との間に、酸化物ろ
う材等の中間層を介在させる方法、金属箔等の拡散層を
介在させる方法(社団法人日本鉄鋼協会、凸出記念技術
講座、セラミックス/金属接合の基礎と応用、平成元年
2月16日(第128回・東京))または、セラミック
スと金属を直接接合する方法などが存在していた。
Conventionally, methods for joining ceramics and metals include interposing an intermediate layer such as an oxide brazing material between the ceramic and the metal to be joined, and interposing a diffusion layer such as metal foil (Incorporated Association) Japan Iron and Steel Institute, Dekode Memorial Technology Lecture, Fundamentals and Applications of Ceramics/Metal Bonding, February 16, 1989 (128th Tokyo)) Or, there were methods of directly bonding ceramics and metals. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のように中間層や拡散層をセラッミ
クスと接合しようとする金属との間に介在させる方法は
工程が複雑となり、中間層や拡散層の材質が限定される
という課題があった。また、セラミックスと金属とを直
接接合する方法は、接合強度が弱いという課題があった
。この課題を解決するために、セラミックスの表面を研
磨し、セラミックスの表面に凹凸をつける従来例もある
が、セラミックスは高硬度のため、凹凸をつけることは
、非常に困難であるという課題がある。
However, the conventional method of interposing an intermediate layer or diffusion layer between the ceramic and the metal to be bonded requires a complicated process and has the problem that the materials for the intermediate layer or diffusion layer are limited. Furthermore, the method of directly bonding ceramics and metals has a problem in that the bonding strength is weak. In order to solve this problem, there is a conventional method of polishing the surface of ceramics to create unevenness on the surface of the ceramic, but due to the high hardness of ceramics, it is extremely difficult to create unevenness. .

この発明は、セラミックスと金属とを接合するための工
程が簡単で、しかもセラミックスと金属とを高い強度で
接合できる、セラミックスと金属との接合方法を提供す
ることを目的とする。
An object of the present invention is to provide a method for joining ceramics and metals, which has a simple process for joining ceramics and metals, and which can join ceramics and metals with high strength.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するために、本発明は、セラミックス表
面に介在している金属を化学処理により溶解させること
により、セラミックスの表面をポーラス状にし、このポ
ーラス状となった表面において金属と接合させことを特
徴とする。
In order to achieve this object, the present invention makes the surface of the ceramic porous by dissolving the metal intervening on the surface of the ceramic through chemical treatment, and the surface of the ceramic is bonded to the metal at this porous surface. It is characterized by

セラミックスに介在させる金属の平均粒径は1〜10μ
が望ましく、含有量は3〜15%が望ましい。
The average particle size of metal interposed in ceramics is 1 to 10μ
is desirable, and the content is desirably 3 to 15%.

セラミックスに介在させる金属としては、高融点金属を
使用することが望ましい。
As the metal interposed in the ceramic, it is desirable to use a high melting point metal.

〔作用〕[Effect]

この発明による、セラミックスに金属を介在させ、セラ
ミックスの表面の金属のみを化学処理により溶解させ、
セラミックスの表面をポーラス状にし、そして、このポ
ーラス状になったセラミックス表面で金属とセラミック
スを接合させることで、従来のように、セラミックスと
接合すべき金属との間に、中間層や拡散層を設けるとい
った、余計な工程を行わずに簡単にセラミックスと金属
とを接合することが可能となり、セラミックスと接合す
べき金属がこのポーラス部に入り込むことにより接合強
度を増加することができる(アンカー効果)。
According to this invention, metal is interposed in ceramic, and only the metal on the surface of the ceramic is dissolved by chemical treatment,
By making the surface of the ceramic porous and bonding the metal and ceramic using this porous ceramic surface, it is no longer possible to create an intermediate layer or a diffusion layer between the ceramic and the metal to be bonded, unlike in the past. It is now possible to easily join ceramics and metal without any extra steps such as providing a porous part, and the strength of the joint can be increased by allowing the metal to be joined to the ceramic to enter this porous part (anchor effect). .

セラミックスに介在させる金属の平均粒径は、1〜1′
0μが望ましい。この金属の平均粒径が1μ未満だとセ
ラミックスの表面の凹凸が小さくなり、金属との接合強
度が上がらない傾向となる。
The average particle size of the metal interposed in the ceramic is 1 to 1'
0μ is desirable. If the average particle size of this metal is less than 1 μm, the unevenness on the surface of the ceramic will be small, and the bonding strength with the metal will tend not to increase.

また、10μ超だと、セラミックスの表面の凹凸が大き
すぎ、本来のセラッミクス表面の凹凸が悪くなり、金属
との接合強度が上がらない傾向となる。
On the other hand, if it exceeds 10μ, the unevenness on the surface of the ceramic is too large, the original unevenness on the surface of the ceramic becomes worse, and the bonding strength with metal tends not to increase.

セラミックスに介在させる金属の含有量は、3〜15容
量%が望ましい。この金属の含有量が3容量%未満だと
、セラミックス表面の凹凸が少なくなるため金属との接
合強度が上がらない傾向となり、15容量%超だと、セ
ラミックス自身の強度が低下する傾向となる。
The content of metal interposed in the ceramic is preferably 3 to 15% by volume. If the content of this metal is less than 3% by volume, the irregularities on the surface of the ceramic will be reduced, so the bonding strength with the metal will tend not to increase, and if it exceeds 15% by volume, the strength of the ceramic itself will tend to decrease.

セラミックスに介在させる金属の融点は、セラミックス
を焼成する温度より高い融点を有する高融点金属を使用
することが望ましい。この金属が高融点金属でないと、
セラッミクスに介在させた後、焼成した時に、金属が溶
融してしまい、化学処理ができなくなったり、均一なポ
ーラス状態を有することができなくなってしまう。
It is desirable to use a high melting point metal that has a melting point higher than the temperature at which the ceramic is fired. If this metal is not a high melting point metal,
After intervening in ceramics, when fired, the metal melts, making it impossible to chemically process it and making it impossible to have a uniform porous state.

前記セラミックスとして、例えば、窒化けい素、アルミ
ナ、ジルコニアなどが使用でき、特に限定されるもので
はない。また、セラミックスに介在させる高融点金属と
して、モリブデン、タングステンなどが使用でき、特に
限定されない。
As the ceramic, silicon nitride, alumina, zirconia, etc. can be used, and the ceramic is not particularly limited. Moreover, molybdenum, tungsten, etc. can be used as the high melting point metal interposed in the ceramic, and there is no particular limitation.

代表的な化学処理としては、濃硫酸、濃塩酸、濃硝酸、
王水、フッ化水素酸等を使用した酸処理、水酸化カリウ
ム、炭酸ナトリウム等を使用した塩基処理などがある。
Typical chemical treatments include concentrated sulfuric acid, concentrated hydrochloric acid, concentrated nitric acid,
Examples include acid treatment using aqua regia, hydrofluoric acid, etc., and base treatment using potassium hydroxide, sodium carbonate, etc.

本発明のセラミックスと金属との接合方法によれば、セ
ラミックスと金属の接合強度は、従来の接合方法よりも
大きいセラミックス−金属複合体を得ることができる。
According to the method of joining ceramics and metal of the present invention, a ceramic-metal composite can be obtained in which the joining strength of ceramics and metal is greater than that of conventional joining methods.

〔実施例〕〔Example〕

以下、この発明の実施例について図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図に示すように、セラミックスの微粉末として窒化
けい素(60容量%)高融点金属粒子としてモリブデン
(平均粒径5μ、8容量%)と、バインダー(32容量
%)で構成される物質を焼成条件ば、ガス圧焼結法によ
り、1300°C,10気圧、4時間で焼成して、窒化
けい素にモリブデンが介在されたセラミックス焼結体が
得られた。
As shown in Figure 1, a material composed of silicon nitride (60% by volume) as fine ceramic powder, molybdenum (average particle size 5μ, 8% by volume) as high melting point metal particles, and binder (32% by volume). The material was fired under gas pressure sintering conditions at 1300° C. and 10 atm for 4 hours to obtain a ceramic sintered body in which molybdenum was interposed in silicon nitride.

第1図で得られたセラミックスを、熱濃硫酸に浸漬し、
セラミックスの表面に介在しているモリブデンを溶解さ
せ、セラミックスの表面をポーラス状にした状態が、第
2図のように得られた。
The ceramic obtained in Figure 1 was immersed in hot concentrated sulfuric acid,
The molybdenum present on the surface of the ceramic was dissolved and the surface of the ceramic was made porous as shown in FIG. 2.

第3図で示すように、表面がポーラス状となったセラミ
ックスのポーラス状面に、第2図で得られた、セラミッ
クスのポーラス状面と接合すべき金属(銀、白金、パラ
ジウム等)をスクリーン印刷の方法で、熱拡散の雰囲気
(銀の場合、700°C12時間)の条件下で被覆し、
ポーラス部の奥深くまで金属を流し込んで、セラミック
ス−金属の複合体を得た。
As shown in Figure 3, the metal (silver, platinum, palladium, etc.) to be bonded to the porous surface of the ceramic obtained in Figure 2 is screened onto the porous surface of the ceramic whose surface is porous. Coated by printing method under the conditions of thermal diffusion atmosphere (700 ° C for 12 hours in the case of silver),
By pouring metal deep into the porous region, a ceramic-metal composite was obtained.

以上の方法により、セラミックスと金属との接合強度の
優れたセラミックス−金属の複合体が得られた。
By the above method, a ceramic-metal composite with excellent bonding strength between the ceramic and metal was obtained.

本発明に係る、接合強度の優れたセラミックス−金属の
複合体を用いることにより、例えば、良好な特性のセン
サーを得ることができる。
By using the ceramic-metal composite with excellent bonding strength according to the present invention, for example, a sensor with good characteristics can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明のセラミックスと金属の
接合方法によれば、簡単な工程で、セラミックスの表面
をポーラス状にすることができ、そのポーラス部に、接
合すべき金属が、奥深く入り込むことにより、セラッミ
クスと接合すべき金属との接合強度に優れた接合が得ら
れるというものである。
As explained above, according to the method for joining ceramics and metal of the present invention, the surface of the ceramic can be made porous through a simple process, and the metal to be joined can penetrate deep into the porous portion. Accordingly, a bond with excellent bonding strength can be obtained between the ceramic and the metal to be bonded.

セラミックスに介在させる金属の平均粒径を1〜10μ
、セラミックスに介在させる金属の含有量を3〜15容
量%、セラミックスに介在させる金属を高融点金属にす
ることにより、特に、均一で良好な表面ポーラス状体の
セラッミクスが得られ、金属との良好な接合強度が得ら
れる。
The average particle size of the metal interposed in the ceramic is 1 to 10μ.
By setting the metal content in the ceramics to 3 to 15% by volume and using a high melting point metal as the metal in the ceramics, it is possible to obtain ceramics with a particularly uniform and good porous surface, and a good bond with metals. A high bonding strength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属粒子を介在させたセラミックスの断面図、
第2図はこの発明の方法による化学処理により、セラミ
ックス表面に介在している金属粒。 子を溶解させセラッミクスの表面をポーラス状にしたセ
ラッミクスの断面図、第3図はポーラス状に接合すべき
金属が入り込んで、セラミックスと金属との接合が行わ
れた状態の断面図である。 図中、1は金属粒子、2はセラミックス、3はポーラス
状態、4はセラミックスと接合すべき金属である。
Figure 1 is a cross-sectional view of ceramics with metal particles interposed in it.
Figure 2 shows metal grains interposed on the surface of ceramics due to chemical treatment according to the method of this invention. FIG. 3 is a cross-sectional view of ceramics in which the surface of the ceramic is made porous by melting the ceramic particles, and FIG. 3 is a cross-sectional view of the state in which the metal to be bonded has entered the porous state and the ceramic and metal have been bonded. In the figure, 1 is a metal particle, 2 is a ceramic, 3 is a porous state, and 4 is a metal to be bonded to the ceramic.

Claims (4)

【特許請求の範囲】[Claims] (1)セラミックスに金属を介在させ、セラミックス表
面に介在している金属を化学処理により溶解させること
により、セラミックスの表面をポーラス状にし、このポ
ーラス状となった表面において金属と接合させることを
特徴とする、セラミックスと金属との接合方法。
(1) The surface of the ceramic is made porous by interposing a metal in the ceramic and dissolving the metal intervening on the surface of the ceramic through chemical treatment, and the surface is bonded to the metal on this porous surface. A method for joining ceramics and metal.
(2)前記セラミックスに介在している金属の平均粒径
が、1〜10μであることを特徴とする請求項(1)記
載のセラミックスと金属との接合方法。
(2) The method for joining ceramics and metal according to claim 1, wherein the average particle size of the metal interposed in the ceramic is 1 to 10 μm.
(3)前記セラミックスに介在している金属の含有量が
、3〜15容量%であることを特徴とする請求項(1)
または請求項(2)記載のセラミックスと金属との接合
方法。
(3) Claim (1) characterized in that the content of metal interposed in the ceramic is 3 to 15% by volume.
Or the method of joining ceramics and metal according to claim (2).
(4)前記セラミックスに介在している金属が高融点金
属であることを特徴とする請求項(1)ないし請求項(
3)記載のいずれか1項に記載のセラミックスと金属と
の接合方法。
(4) Claims (1) to (4) characterized in that the metal interposed in the ceramic is a high melting point metal.
3) A method for joining ceramics and metal according to any one of the above items.
JP4077590A 1990-02-21 1990-02-21 Method for bonding ceramic and metal Pending JPH03247572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077590A JPH03247572A (en) 1990-02-21 1990-02-21 Method for bonding ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077590A JPH03247572A (en) 1990-02-21 1990-02-21 Method for bonding ceramic and metal

Publications (1)

Publication Number Publication Date
JPH03247572A true JPH03247572A (en) 1991-11-05

Family

ID=12590003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077590A Pending JPH03247572A (en) 1990-02-21 1990-02-21 Method for bonding ceramic and metal

Country Status (1)

Country Link
JP (1) JPH03247572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098232A1 (en) * 2000-06-20 2001-12-27 Honeywell International Inc. Protective coating including porouos silicon nitride matrix and noble metal
JP2005187315A (en) * 2003-10-17 2005-07-14 Eads Space Transportation Gmbh Method for brazing ceramic surface
JP2013173181A (en) * 2012-02-27 2013-09-05 Nisshin Steel Co Ltd Stainless steel diffusion bonded product and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098232A1 (en) * 2000-06-20 2001-12-27 Honeywell International Inc. Protective coating including porouos silicon nitride matrix and noble metal
US6699604B1 (en) 2000-06-20 2004-03-02 Honeywell International Inc. Protective coating including porous silicon nitride matrix and noble metal
JP2005187315A (en) * 2003-10-17 2005-07-14 Eads Space Transportation Gmbh Method for brazing ceramic surface
JP2013173181A (en) * 2012-02-27 2013-09-05 Nisshin Steel Co Ltd Stainless steel diffusion bonded product and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3830382B2 (en) Ceramic sintered body and method for producing the same
JPH03247572A (en) Method for bonding ceramic and metal
JP3380892B2 (en) Ti-Al alloy, method for producing the same, and method for joining the same
JP2004142971A (en) Process for joining ceramic material to stainless steel
JPS60200868A (en) Method of bonding silicon carbide or silicon nitride sintered body
JPH05319946A (en) Ceramic substrate joined to metallic plate
JP2000128655A (en) Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same
JPH05163078A (en) Joint form made up of ceramic and metal
JP4131809B2 (en) Metal-ceramic composite material joined body and method for producing the same
JPH0460946B2 (en)
Sandhage et al. Mullite Joining by the Oxidation of Malleable, Alkaline‐Earth‐Metal‐Bearing Bonding Agents
JP2005139057A (en) Method for metallizing powder sintered ceramics
JPH07300374A (en) Joined structure of heat-shielding member and method for joining the same
JPH05319945A (en) Brazing material for producing ceramic substrate joined to metallic plate
JPH0292875A (en) Formation of thermal stress relaxing layer in bonding between ceramic and metal
JP2003048785A (en) Joined structure of metallic member and ceramic member and method of joining metallic member and ceramic member
JPS6228067A (en) Joining method for ceramics
JPS6351994B2 (en)
JPS61155269A (en) Diffusion sinter bonding method
JPH01208375A (en) Production of ceramics conjugate material
JPS6016877A (en) Bonded body of ceramic sintered body and metal member and manufacture
JPH08144065A (en) Metallizing and joining of ceramic
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JP2001163680A (en) JOINED BODY OF SiC SINTERED COMPACT, MEMBER FOR PRODUCING SEMICONDUCTOR USING THE SAME AND METHOD OF PRODUCING THE MEMBER
JPH04349184A (en) Method for metallizing ceramics and method for joining ceramics and metal