JP3380892B2 - Ti-Al alloy, method for producing the same, and method for joining the same - Google Patents
Ti-Al alloy, method for producing the same, and method for joining the sameInfo
- Publication number
- JP3380892B2 JP3380892B2 JP36236897A JP36236897A JP3380892B2 JP 3380892 B2 JP3380892 B2 JP 3380892B2 JP 36236897 A JP36236897 A JP 36236897A JP 36236897 A JP36236897 A JP 36236897A JP 3380892 B2 JP3380892 B2 JP 3380892B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- powder
- pulse current
- tial
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/23—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、Ti粉とAl粉を
使用してパルス通電加圧−燃焼合成法により空孔がなく
緻密な組織を持ち、高温耐蝕性および高温比強度に優
れ、特に自動車用エンジン吸排気バルブ(以下「吸排
気」を省略)などに有用であるTi−Al合金および同
合金の製造方法ならびに同Ti−Al合金の接合方法に
関する。TECHNICAL FIELD The present invention relates to a high-temperature corrosion resistance and a high-temperature specific strength, which have a fine structure without pores by a pulse current pressurization-combustion synthesis method using Ti powder and Al powder. The present invention relates to a Ti—Al alloy useful for an automobile engine intake / exhaust valve (hereinafter “intake / exhaust” is omitted), a method for producing the alloy, and a method for joining the Ti—Al alloy.
【0002】[0002]
【従来の技術】Ti−Al合金のような金属間化合物や
高融点無機化合物を製造する方法として燃焼合成法があ
る。これは上記のような金属間化合物や高融点無機化合
物を構成する元素の反応熱を利用するものであり、比較
的簡単な装置ですみ製造エネルギーも少なくてすむので
有効な方法と考えられている。また、反応の際の急激な
反応熱の解放によって粉末粒子表面に吸着していたガス
および不純物が揮発するために、装置上の条件が整えば
高純度の材料が製造できると考えられている。2. Description of the Related Art A combustion synthesis method is known as a method for producing an intermetallic compound such as a Ti--Al alloy or a high melting point inorganic compound. It utilizes the heat of reaction of the elements that make up the intermetallic compounds and high-melting-point inorganic compounds as described above, and is considered to be an effective method because it requires relatively little equipment and requires less manufacturing energy. . Further, it is considered that the gas and impurities adsorbed on the surface of the powder particles are volatilized by the rapid release of the reaction heat during the reaction, so that a high-purity material can be produced if the conditions on the apparatus are adjusted.
【0003】しかし、この燃焼合成法をそのまま用いて
も、急速な反応が災いして多孔質体となり易く、強度の
高い材料が得られないという欠点を有する。このため、
燃焼合成体を緻密化するための手法として、燃焼合成と
同時に圧力を加えるホットプレス法、静水圧加圧法、ガ
ス加圧法、さらには合成後に改めて圧力を加えるHIP
法(熱間静水圧加圧法)が提案された。しかし、これら
のいずれの方法も密閉された状態で加圧するため、本来
合成反応中に、粉末粒子表面に吸着しているガスおよび
不純物が揮発除去できると考えられていたものが材料の
中にそのまま残存し、結果として不純物レベルが高くな
りまた緻密化もできないという欠点を有していた。そし
てまた、このような製造法においてはカプセル化という
工程もあるので、経済的にも問題が多かった。However, even if this combustion synthesis method is used as it is, there is a drawback in that a rapid reaction is apt to cause a porous body and a material having high strength cannot be obtained. For this reason,
As a method for densifying the combustion composition, a hot press method, a hydrostatic pressure method, a gas pressure method, in which a pressure is applied simultaneously with the combustion synthesis, and a HIP in which a pressure is applied again after the synthesis.
The method (hot isostatic pressing) was proposed. However, since pressure is applied in a sealed state in any of these methods, it was originally thought that the gas and impurities adsorbed on the powder particle surface could be volatilized and removed during the synthesis reaction. It has the drawback that it remains, resulting in a high impurity level and inability to densify. Further, since there is a step of encapsulation in such a manufacturing method, there have been many problems economically.
【0004】このような中で、パルス通電による発熱を
燃焼合成反応の熱源として利用し、反応と同時に加圧す
ることができるパルス通電加圧−燃焼合成法が提案され
た。この方法は材料の緻密化および低温、短時間の焼結
が可能なため上記のようなホットプレス法、静水圧加圧
法、ガス加圧法に比べ格段に優れた材料が得られると考
えられた。しかし、現実には結晶粒が粗大化したり、特
に細長い材料(例えば自動車用エンジンバルブ軸部のよ
うな材料)ではその材料の途中に空孔が発生したりし
て、全体に亘って緻密な組織を得ることが困難であっ
た。Under these circumstances, a pulse energization pressurization-combustion synthesis method has been proposed in which heat generated by pulse energization is used as a heat source for a combustion synthesis reaction, and pressure can be applied simultaneously with the reaction. It is considered that this method is capable of densifying the material and sintering at a low temperature for a short time, so that it is possible to obtain a material which is remarkably superior to the hot pressing method, the hydrostatic pressure method, and the gas pressure method as described above. However, in reality, the crystal grains become coarse, and in particular, in the case of a long and slender material (for example, a material such as an automobile engine valve shaft), pores are generated in the middle of the material, which results in a dense structure throughout. Was difficult to obtain.
【0005】[0005]
【発明が解決しようとする課題】本発明は、原料となる
Ti粉とAl粉を調整し、またパルス通電加圧−燃焼合
成法における昇温速度、合成温度、圧力などをコントロ
ールして、内部欠陥がなく高温比強度および高温耐蝕性
に優れかつ均一緻密な金属組織を有するTi−Al合金
およびその製造方法ならびに同合金の接合方法を提供す
るものである。DISCLOSURE OF THE INVENTION The present invention adjusts the Ti powder and Al powder as raw materials and controls the temperature rising rate, synthesis temperature, pressure, etc. in the pulse current pressurization-combustion synthesis method to control the internal Provided are a Ti-Al alloy having no defects, excellent high-temperature specific strength and high-temperature corrosion resistance, and a uniform and dense metal structure, a method for producing the same, and a method for joining the alloys.
【0006】[0006]
【課題を解決するための手段】本発明は、
1. 99%以上の相対密度を有し、TiAl相80〜
88%(容積率)およびTi3Al相12〜20%(容
積率)からなる層状組織のない混晶が均一に分散した緻
密な組織を備えていることを特徴とするTi−Al合金
2. TiAl相に平均粒径10μm〜20μmである
TiAlとTi3Alの混晶が均一に分散した緻密な組
織を備えていることを特徴とする上記1記載のTi−A
l合金
3. パルス通電加圧−燃焼合成法により形成されたも
のであることを特徴とする上記1または2に記載のTi
−Al合金
4.エンジンバルブ用合金であることを特徴とする上記
1〜3のそれぞれに記載のTi−Al合金
5. 平均粒径20μm以下のTi粉末と50μm以下
のAl粉末を用い、これらを混合した後、真空雰囲気下
で昇温速度10〜100K/min、合成温度1273
〜1323K、圧力45〜70MPaの条件でパルス通
電加圧焼結することを特徴とするパルス通電加圧−燃焼
合成法によるTi−Al合金の製造方法
6. パルス通電加圧−燃焼合成法により予め形成した
複数個のTi−Al合金との間、または一方が前記Ti
−Al合金そして他方が耐熱鋼もしくは他のTi合金と
の間に、前記Ti−Al合金の原料粉もしくは該原料粉
を主成分とする混合粉末またはNi粉末を充填し、パル
ス通電加圧−燃焼合成法により、前記Ti−Al合金相
互をまたは該Ti−Al合金と耐熱鋼もしくは他のTi
合金とを接合することを特徴とするTi−Al合金の接
合方法
7. 真空雰囲気下で昇温速度10〜100K/mi
n、合成温度1273〜1323K、圧力45〜70M
Paの条件でパルス通電加圧焼結して接合することを特
徴とする上記6記載のTi−Al合金の接合方法
8. パルス通電加圧−燃焼合成法により予め形成した
TiAl相に平均粒径10μm〜20μmであるTiA
lとTi3Alの混晶が均一に分散した複数個のTi−
Al合金相互をまたは一方が前記Ti−Al合金そして
他方が耐熱鋼もしくは他のTi合金とを摩擦溶接法によ
り接合することを特徴とするTi−Al合金の接合方
法、に関する。The present invention includes: It has a relative density of 99% or more and a TiAl phase of 80-
88% (volume ratio) and Ti 3 Al phase 12 to 20% (vol
1. A Ti-Al alloy characterized by having a dense structure in which a mixed crystal having a layered structure and having a layered structure is uniformly dispersed . The TiAl phase having an average particle diameter of 10 m to 20 m TiAl and Ti 3, characterized in that the Al mixed crystal is provided with a uniformly dispersed dense structure of claim 1, wherein the Ti-A
1 alloy 3. The Ti according to 1 or 2 above, which is formed by a pulse current pressurization-combustion synthesis method.
-Al alloy 4. 4. Ti-Al alloy according to each of 1 to 3, which is an alloy for engine valves. A Ti powder having an average particle size of 20 μm or less and an Al powder having an average particle size of 50 μm or less were used, and after mixing these, a temperature rising rate was 10 to 100 K / min and a synthesis temperature was 1273 in a vacuum atmosphere.
5. A method for producing a Ti-Al alloy by pulse energization pressurization-combustion synthesis method, characterized by performing pulse energization pressurization sintering under conditions of ˜1323 K and pressure of 45-70 MPa. Between a plurality of Ti-Al alloys previously formed by the pulse current pressurization-combustion synthesis method, or one of them is the Ti
-Al alloy and the other of the heat-resistant steel or other Ti alloy, the raw material powder of the Ti-Al alloy, a mixed powder containing the raw material powder as a main component, or Ni powder is filled, and pulse current pressurization-combustion is performed. Depending on the synthesis method, the Ti-Al alloys may be exchanged with each other or the Ti-Al alloys with heat-resistant steel or other Ti.
6. Joining method for Ti-Al alloy characterized by joining with alloy Temperature increase rate of 10 to 100 K / mi under vacuum atmosphere
n, synthesis temperature 1273-1323K, pressure 45-70M
7. The method for joining a Ti-Al alloy as described in 6 above, which is characterized in that pulse current energization pressure sintering is performed under the condition of Pa to perform the joining. TiA having a mean particle size of 10 μm to 20 μm in the TiAl phase previously formed by the pulse current pressurization-combustion synthesis method
l- and Ti 3 Al mixed crystals uniformly dispersed in a plurality of Ti-
A method for joining Ti-Al alloys, characterized in that Al alloys are joined to each other or one of them is a Ti-Al alloy and the other is a heat-resistant steel or another Ti alloy by friction welding.
【0007】[0007]
【発明の実施の形態】原料粉末として、平均粒径20μ
m以下のTi粉末(例えば純度99.9%以上の)と2
0μm以下のAl粉末(例えば純度99.9%以上の)
を用い、これらを例えばTi:Al=1:1(モル比)
に配合し、ヘキサン中で約3時間ボールミル混合を行
い、乾燥して混合粉とした。次に、この混合粉を用いて
パルス通電加圧−燃焼合成を行なう。図1にパルス通電
加圧−燃焼合成装置の概念図を示す。黒鉛製モールド1
に粉末2を充填し、これを上下電極間(上部ロッド3、
下パンチ4)で圧縮しながら、直流パルス通電して燃焼
合成を行ない焼結緻密化する。Ti−Al系金属間化合
物は燃焼合成中に融液が形成されるので、少量の圧力で
もほぼ99%以上の緻密化が可能となる。加熱中の温度
は図1のように、混合粉末から5mmの距離までモール
ド1に穴を開け、そこにKタイプシース熱電対5により
測定する。高温になる場合には赤外放射温度計を用いて
モールド表面の温度を測定してもよい。図1でモールド
1の外層6は黒鉛製フエルトである。BEST MODE FOR CARRYING OUT THE INVENTION The raw material powder has an average particle size of 20 μm.
Ti powder of m or less (for example, purity of 99.9% or more) and 2
Al powder of 0 μm or less (for example, purity of 99.9% or more)
By using, for example, Ti: Al = 1: 1 (molar ratio)
Was mixed in hexane for about 3 hours in a ball mill and dried to obtain a mixed powder. Next, pulse energization pressurization-combustion synthesis is performed using this mixed powder. FIG. 1 shows a conceptual diagram of a pulse current pressurization-combustion synthesis apparatus. Graphite mold 1
Powder 2 is filled into the space between the upper and lower electrodes (upper rod 3,
While being compressed by the lower punch 4), direct current pulses are applied to carry out combustion synthesis to sinter and densify. Since the Ti-Al intermetallic compound forms a melt during combustion synthesis, it is possible to achieve a densification of approximately 99% or more even with a small amount of pressure. As shown in FIG. 1, the temperature during heating is measured by making a hole in the mold 1 up to a distance of 5 mm from the mixed powder and using a K type sheath thermocouple 5 therein. When the temperature becomes high, the temperature of the mold surface may be measured using an infrared radiation thermometer. In FIG. 1, the outer layer 6 of the mold 1 is a graphite felt.
【0008】雰囲気は真空(例えば真空度10-3Pa)
とし、昇温速度10〜100K/min、好ましくは1
0〜40K/min、合成温度1273〜1323K、
圧力45〜70MPaの条件でパルス通電加圧焼結す
る。特に自動車用エンジンバルブの軸部のような長尺の
部材を得るためには、昇温速度を比較的遅くし時間をか
けて燃焼合成を行なうことが必要である。昇温速度が速
すぎる場合にはパンチ部分だけが合成温度より遥かに高
くなり、作製した材料の形成相が不均一となって好まし
くない。また昇温速度が遅すぎる場合には、迅速な製造
が可能であるという本方法のもつ特有性(経済効果)が
失われ得策ではない。以上から上記の昇温速度範囲とす
る。このような条件においてパルス通電加圧−燃焼合成
を行なうことにより99%以上の相対密度を有しTiA
l相が80〜88%(容積率)およびTi3 Al相が1
2〜20%であり、かつTiAl相中に平均粒径10μ
m〜20μmであるTiAlとTi3 Alの混晶が均一
に分散した緻密な組織を備えているTi−Al合金が得
られる。The atmosphere is vacuum (for example, a vacuum degree of 10 -3 Pa)
And the temperature rising rate is 10 to 100 K / min, preferably 1
0-40K / min, synthesis temperature 1273-1323K,
Pulse current energization pressure sintering is performed under the condition of pressure of 45 to 70 MPa. In particular, in order to obtain a long member such as a shaft portion of an automobile engine valve, it is necessary to relatively slow the temperature rising rate and to perform combustion synthesis for a long time. If the rate of temperature rise is too high, only the punched portion becomes much higher than the synthesis temperature, and the forming phase of the produced material becomes non-uniform, which is not preferable. Further, if the temperature rising rate is too slow, the peculiarity (economic effect) of this method that rapid production is possible is lost, which is not a good idea. From the above, the above temperature increase rate range is set. By performing pulse current pressurization-combustion synthesis under such conditions, the TiA having a relative density of 99% or higher
80% to 88% (volume ratio) of 1 phase and 1% of Ti 3 Al phase
2 to 20%, and the average grain size in the TiAl phase is 10μ
TiAl alloys mixed crystal of a M~20myuemu TiAl and Ti 3 Al are provided with uniformly dispersed dense structure is obtained.
【0009】1回の製造できる最大長さは、緻密度およ
び強度を維持する最適な形成相の関係から限界がある。
したがって、さらに長い部材を得るためにはこれらを接
合する、すなわち予めパルス通電加圧−燃焼合成法によ
り形成した複数個のTi−Al合金に間に、該Ti−A
l合金の原料である混合粉末またはNi粉末を充填し、
同様に充填材のパルス通電加圧−燃焼合成法により接合
して、長尺のTi−Al合金材を得ることができる。こ
の場合、接合できる長さに制限はなく、2個以上の複数
の予め形成した上記Ti−Al合金材をつぎつぎに接合
していくことができる。また、接合のために充填する混
合粉末はすでに形成されたTi−Al合金材と同組成の
混合粉末を用いることが望ましいが、該Ti−Al合金
の組成の粉末を主成分とし、他の粉末を混合した粉末ま
たはNi粉末を用いて充填材とし、パルス通電加圧−燃
焼合成法により接合することができる。この場合は、金
属組織も殆ど変化なく接合強度も特に問題となることは
ない。The maximum length that can be produced at one time is limited due to the relationship of the optimum forming phase that maintains compactness and strength.
Therefore, in order to obtain a longer member, these are joined together, that is, the Ti-A alloy is formed between a plurality of Ti-Al alloys previously formed by the pulse current pressurization-combustion synthesis method.
l Mixed powder or Ni powder which is a raw material of the alloy,
Similarly, a long Ti-Al alloy material can be obtained by joining the fillers by pulse current pressurization-combustion synthesis method. In this case, there is no limitation on the length that can be joined, and two or more preformed Ti-Al alloy materials can be joined one after another. Further, it is desirable to use a mixed powder having the same composition as the already formed Ti-Al alloy material as the mixed powder to be filled for joining, but the powder having the composition of the Ti-Al alloy as the main component and other powders It is possible to use a powder or a Ni powder mixed as a filler to form a filling material, and join by a pulse current pressurization-combustion synthesis method. In this case, the metal structure hardly changes and the bonding strength does not become a particular problem.
【0010】一般に、自動車用エンジンバルブはJIS
SUH11(0.5C−1.8Si−8Cr−残Fe)
あるいはJISSUH35(0.55C−21Cr−1
0Mn−4Ni−0.4N−残Fe)などの耐熱鋼が使
用されているが、近年自動車用エンジンの高温完全燃焼
の要求から、自動車用エンジンバルブもそれに応じた、
より高温比強度に優れた材料が求められている。本発明
のTi−Al合金このような要求に適合する材料であ
る。本発明においては、自動車用エンジンバルブのかさ
部と同軸部とを初めから一体なものとして作製できる
が、これとは別に本発明の接合方法を使用して、自動車
用エンジンバルブのかさ部と同軸部とを予めパルス通電
加圧−燃焼合成法により別々に作製しておき、次にこれ
らのTi−Al合金からなるかさ部と軸部間に前記Ti
−Al合金の原料である混合粉末を充填し、同様に充填
材のパルス通電加圧−燃焼合成法により、かさ部および
軸部ならびにこれらの接合部の全てをTiAl相中にT
iAlとTi3 Alの混晶が均一に分散した緻密な組織
を有するTi−Al合金からなる自動車用エンジンバル
ブを作製することができる。このようにして得られた自
動車用エンジンバルブは極めて優れた耐熱比強度および
耐蝕性を有する。Generally, automotive engine valves are JIS
SUH11 (0.5C-1.8Si-8Cr-remaining Fe)
Or JISSUH35 (0.55C-21Cr-1
Heat resistant steels such as 0Mn-4Ni-0.4N-remaining Fe) have been used, but in recent years, the engine valve for automobiles has responded to the demand for high temperature complete combustion of automobile engines.
A material having higher high temperature specific strength is required. The Ti-Al alloy of the present invention is a material that meets such requirements. In the present invention, the bulk portion and the coaxial portion of the automobile engine valve can be manufactured integrally from the beginning, but separately from this, by using the joining method of the present invention, the bulk portion and the coaxial portion of the automobile engine valve can be made coaxial. Section and a pulse section are separately prepared in advance by a pulse current pressurization-combustion synthesis method, and then the Ti section is formed between these Ti-Al alloy and the Ti section.
-A mixed powder that is a raw material of an Al alloy is filled, and similarly, by a pulse current pressurization-combustion synthesis method of the filler, the bulk portion, the shaft portion, and all of these joints are made into a TiAl phase in a T
It can be mixed crystals of iAl and Ti 3 Al are prepared automotive engine valve made of Ti-Al alloy having a uniformly dispersed dense tissue. The engine valve for an automobile thus obtained has extremely high heat resistance specific strength and corrosion resistance.
【0011】上記のTi−Al合金からなる自動車用エ
ンジンバルブの欠点として、やや価格が高いということ
が挙げられる。この点の解決策として、自動車用エンジ
ンバルブのかさ部にTi−Al合金を使用し、高温腐食
を強く受けない軸部に比較的安価な耐熱鋼やTi合金を
使用することができる。この場合には、本発明のパルス
通電加圧−燃焼合成法により予め作製したTi−Al合
金からなる自動車用エンジンバルブのかさ部と耐熱鋼か
らなる軸部(鍛造品など)との間に前記Ti−Al合金
の原料である混合粉末またはNi粉末を充填し、同様に
本発明の充填材のパルス通電加圧−燃焼合成法を実施し
て、本発明のTi−Al合金からなる自動車用エンジン
バルブのかさ部と耐熱鋼からなる軸部とが結合した自動
車用エンジンバルブを製造することができる。このよう
にして得た自動車用エンジンバルブは強い結合強度が得
られ、また製造速度が速く、比較的安価で、優れた耐熱
比強度と高温耐蝕性を有する。軸部に使用する材料とし
ては、前記JISSUH11、JISSUH35などの
JIS規格材はもとより、その他の低合金鋼、高クロム
鋼などのマルテンサイト系耐熱鋼、Cr−Ni鋼などの
オーステナイト系耐熱鋼あるいは6Al4Vなどの他の
比較的安価なTi合金を使用することができる。One of the drawbacks of the above-mentioned automobile engine valve made of Ti-Al alloy is that it is rather expensive. As a solution to this point, a Ti-Al alloy can be used for the bulk portion of an automobile engine valve, and a relatively inexpensive heat-resistant steel or Ti alloy can be used for the shaft portion that is not strongly affected by high temperature corrosion. In this case, the above-mentioned gap is formed between the bulkhead of the automotive engine valve made of Ti-Al alloy and the shaft made of heat-resistant steel (forged product, etc.), which is produced in advance by the pulse current pressurization-combustion synthesis method of the present invention. A mixed powder or a Ni powder, which is a raw material of a Ti-Al alloy, is filled, and similarly, a pulse current pressurization-combustion synthesis method of the filler of the present invention is carried out, and an automobile engine made of the Ti-Al alloy of the present invention. It is possible to manufacture an automobile engine valve in which the bulb portion of the valve and the shaft portion made of heat-resistant steel are joined together. The engine valve for an automobile thus obtained has a strong bond strength, a high production speed, is relatively inexpensive, and has excellent heat resistance specific strength and high temperature corrosion resistance. As the material used for the shaft portion, in addition to JIS standard materials such as JIS SUH11 and JIS SUH35, other low alloy steels, martensitic heat resistant steels such as high chromium steels, austenitic heat resistant steels such as Cr-Ni steels or 6Al4V Other relatively inexpensive Ti alloys such as
【0012】前記自動車用エンジンバルブのかさ部と耐
熱鋼からなる軸部の間に充填する接合用粉末は、前記T
i−Al合金の原料である混合粉末だけでなく該混合粉
末を主成分として他の粉末を混合したり、あるいはかさ
部側すなはち前記本発明のTi−Al合金側に該Ti−
Al合金の原料である混合粉末またはNi粉末を、軸部
側にそのときに使用する耐熱鋼あるいは他のTi合金の
組成あるいは熱膨張が近似する粉末を傾斜的に配合して
使用することもできる。これによりかさ部と軸部の接合
時の熱膨張の差を減少させ、材料に与える熱影響(熱応
力)を抑制して接合強度を高めることができる。さらに
また、かさ部に本発明のTiAl相中にTiAlとTi
3 Alの混晶が均一に分散した緻密な組織を有するTi
−Al合金を使用し、軸部に上記耐熱鋼あるいは他のT
i合金を使用して、これらを摩擦溶接しかさ部と耐熱鋼
からなる軸部とが結合した自動車用エンジンバルブを製
造することができる。これにより両材料の特性を生かし
かつより安価な自動車用エンジンバルブが得られる。The joining powder to be filled between the bulk portion of the automobile engine valve and the shaft portion made of heat-resistant steel is the above-mentioned T powder.
Not only the mixed powder which is a raw material of the i-Al alloy, but also other powders having the mixed powder as a main component are mixed, or the Ti-Al alloy side of the present invention is mixed with the Ti-
A mixed powder or a Ni powder, which is a raw material of an Al alloy, may be used by gradually mixing a powder having a composition of the heat-resistant steel or other Ti alloy used at that time or a thermal expansion similar to that of the Ni powder on the shaft side. . As a result, the difference in thermal expansion between the bulky portion and the shaft portion at the time of joining can be reduced, the thermal effect (thermal stress) on the material can be suppressed, and the joining strength can be increased. Furthermore, TiAl and Ti in the TiAl phase of the present invention
3 Ti with a dense structure in which a mixed crystal of Al is uniformly dispersed
-Al alloy is used and the heat resistant steel or other T
The i alloy can be used to manufacture an automobile engine valve in which the friction welded helix and the shaft portion made of heat-resistant steel are joined together. This makes it possible to obtain a cheaper engine valve for automobiles by making the most of the characteristics of both materials.
【0013】Ti−Al合金の燃焼合成反応はAlの溶
解から始まる。燃焼合成反応はTi粉のサイズにより開
始温度が異なり、粉のサイズが細かい程開始温度が低い
傾向がある。この原因は、粒径による混合粉の熱伝導率
の差およびTi粒子とAl粒子との接触面積の差に基づ
くものと考えられる。より緻密なTi−Al合金部材を
得るためには、本発明の粉の粒度の範囲が最も良い。The combustion synthesis reaction of Ti-Al alloy begins with the dissolution of Al. The starting temperature of the combustion synthesis reaction varies depending on the size of the Ti powder, and the smaller the powder size, the lower the starting temperature tends to be. It is considered that this cause is based on the difference in the thermal conductivity of the mixed powder due to the particle size and the difference in the contact area between the Ti particles and the Al particles. In order to obtain a denser Ti-Al alloy member, the particle size range of the powder of the present invention is the best.
【0014】本発明によるパルス通電加圧−燃焼合成反
応の過程を模式的に示すと図2のようになる。AlとT
iの混合粉末は最初にAlが溶融し、Ti粉末の周囲7
に存在するようになる。さらに燃焼反応によりAlが拡
散し、AlとTiの金属間化合物が形成されていく。図
2はその過程を示したものである。 外層はAlリッチ
のTiAl3 相で、内層に行くにしたがってTiAl
相、Ti3 Al相が形成される。そして、本発明の場合
には最終的にTiAl相とTi3 Al相の2相からなる
Ti−Al合金が形成される。図2の上部は100μm
のTi粉末を使用した場合で、下部は10μmのTi粉
末を使用した場合である。Ti粉末が細かい程すなわち
10μmのTi粉末を使用した場合によりAlが拡散し
易いことを示している。FIG. 2 schematically shows the process of the pulse current pressurization-combustion synthesis reaction according to the present invention. Al and T
In the mixed powder of i, Al was first melted,
To exist in. Further, Al is diffused by the combustion reaction, and an intermetallic compound of Al and Ti is formed. FIG. 2 shows the process. The outer layer is an Al-rich TiAl 3 phase.
Phase, the Ti 3 Al phase is formed. In the case of the present invention TiAl alloy is formed consisting of two phases of final TiAl phase and Ti 3 Al phase. The upper part of FIG. 2 is 100 μm
In the case of using Ti powder of No. 3, the lower part is the case of using Ti powder of 10 μm. It is shown that the finer the Ti powder, that is, the more easily Al diffuses when the Ti powder of 10 μm is used.
【0015】本発明の平均粒径20μm以下のTi粉末
と50μm以下のAl粉末を用いた場合には、80〜8
8%のTiAl相と12〜20%Ti3 Al相からな
り、TiAl相に平均粒径が10μm〜20μmである
TiAlとTi3 Alの混晶が均一に分散した層状組織
のない、全体に亘り強度が高く緻密な組織を有するTi
−Al合金部材が得られる。Al粉末は後述するよう
に、強度を増加させるために平均粒径50μm以下のA
l粉末を用いるのがよい。他方Ti粉末もできるだけ細
かい方がよい。上記TiAl相およよびTi3 Al相を
形成する場合に固相拡散によるからである。この拡散は
粉末の粒径が細かいほど迅速に行なわれる。したがって
Ti粉末は平均粒径20μm以下とするのがよい。溶解
法によって得たTi−Al合金部材を熱拡散処理しても
同様な成分組成のTi−Al合金が得られる場合がある
が、この場合は層状組織となって、強度を低下させ均一
で緻密な組織を得ることができない。When the Ti powder having an average particle size of 20 μm or less and the Al powder having an average particle size of 50 μm or less according to the present invention are used, 80 to 8
It is composed of 8% TiAl phase and 12-20% Ti 3 Al phase, and there is no layered structure in which a mixed crystal of TiAl and Ti 3 Al having an average particle size of 10 μm to 20 μm is uniformly dispersed in the TiAl phase, and the entire layer is formed. Ti with high strength and dense structure
-Al alloy member is obtained. As described later, the Al powder has an average particle size of 50 μm or less in order to increase strength.
1 powder is preferably used. On the other hand, the Ti powder should also be as fine as possible. This is because solid phase diffusion occurs when forming the TiAl phase and the Ti 3 Al phase. The smaller the particle size of the powder, the faster the diffusion. Therefore, the Ti powder should preferably have an average particle size of 20 μm or less. Even if the Ti-Al alloy member obtained by the melting method is subjected to thermal diffusion treatment, a Ti-Al alloy having the same composition may be obtained, but in this case, a layered structure is formed, which reduces strength and is uniform and dense. Can't get a good organization.
【0016】本発明で得られたTi−Al合金材料の組
織を図3に示す。この図3における顕微鏡組織図(写
真)で、黒い部分はTiAl相を、白い部分はTiAl
とTi 3 Alの混晶を示す。この混晶の平均粒径は10
μm〜20μmである。このような層状組織のない緻密
な組織は自動車用エンジンバルブに好適である。これに
対し、より大きなTi粉末を用いた場合、例えば100
μmのTi粉末を使用した場合には、Ti相とTiAl
3 相が形成され、このままでは目的とする強度と緻密な
相の形成が得られない。従来の燃焼合成反応の場合で
は、反応時間が非常に短く(わずか数十秒で終了す
る)、合成反応が終了してしまうと熱処理によって形成
相の制御が殆どできない。しかし、パルス通電加圧−燃
焼合成法では、一応燃焼合成反応が終了した後でも温度
コントロールできるので、上記のように100μmのT
i粉末を使用した場合でも、Alの加熱拡散利用してT
i相とTiAl3 相からTiAl相とTi3 Al相へと
変化させることが考えられる。Set of Ti-Al alloy materials obtained according to the invention
The weave is shown in FIG. The microstructure chart (copy
True), the black part is the TiAl phase, the white part is TiAl
And Ti 3 The mixed crystal of Al is shown. The average grain size of this mixed crystal is 10
μm to 20 μm. Dense without such layered structure
This structure is suitable for automobile engine valves. to this
On the other hand, when a larger Ti powder is used, for example, 100
When using Ti powder of μm, Ti phase and TiAl
3 Phase is formed, and if it is left as it is,
No phase formation is obtained. In the case of conventional combustion synthesis reaction
Has a very short reaction time (it takes only a few tens of seconds)
Formed by heat treatment when the synthesis reaction is completed.
Almost no control of phase. However, pulse current pressurization-fuel
In the calcination synthesis method, the temperature is set even after the combustion synthesis reaction is completed.
Since it can be controlled, as described above, T of 100 μm
Even when i powder is used, it is possible to use T by utilizing the heat diffusion of Al.
i phase and TiAl3 Phase to TiAl phase and Ti3 To the Al phase
It can be changed.
【0017】しかし、事後に反応相をコントロールする
ことは、それだけ加熱処理時間が増加することになり、
また確実に目的とする反応相が形成され得るかどうかと
いう不安定さを残している。したがって、このような不
確実な方法を避ける必要があり、混合粉末の段階から平
均粒径20μm以下のTi粉末と50μm以下のAl粉
末を用いることが望ましい。また、原料粉末の粒径によ
り強度が異なり、上記の粉末の平均粒径の範囲において
最も強度が向上する。上記の10μmTi粉末と100
μmAl粉末を用いた場合と10μmTi粉末と20μ
mAl粉末を用いた場合を対比するために4点曲げ強度
の試験を行なった。その結果を表1に示す。この表1か
ら明らかなように、使用する粉末の粒径が大きい場合に
は強度が著しく低下することが分かる。However, controlling the reaction phase after the fact increases the heat treatment time accordingly,
It also leaves instability as to whether the desired reaction phase can be formed. Therefore, it is necessary to avoid such an uncertain method, and it is desirable to use Ti powder having an average particle size of 20 μm or less and Al powder having an average particle size of 50 μm or less from the mixed powder stage. Further, the strength varies depending on the particle size of the raw material powder, and the strength is most improved in the range of the average particle size of the powder. 10 μm Ti powder above and 100
When using μmAl powder, and when using 10μmTi powder and 20μ
A four-point bending strength test was conducted to compare the case of using the mAl powder. The results are shown in Table 1. As is clear from Table 1, the strength is remarkably lowered when the particle size of the powder used is large.
【0018】[0018]
【表1】 [Table 1]
【0019】本発明においては、Ti−Al合金を基本
成分とし、金属組織的にはTiAl相とTi3 Al相を
中心相とするものであるが、これらの基本成分および金
属組織あるいは強度、緻密性などの特性を大きく変えな
い限りは、0、5%以下の他の合金元素あるいは不純物
元素が含まれることは問題がなく、本発明はこれらを包
含するものである。In the present invention, a Ti--Al alloy is used as a basic component, and a metallographic structure has a TiAl phase and a Ti 3 Al phase as a central phase. As long as the characteristics such as properties are not significantly changed, there is no problem that other alloying elements or impurity elements of 0 or 5% or less are contained, and the present invention includes these.
【0020】[0020]
【実施例および比較例】[実施例1]原料粉末として平
均粒径10μmのTi粉末と20μmのAl粉末を用い
た。これらの原料粉末を、TiとAlが原子量比で1:
1になるように配合し、3次元混合機を用いて24時間
混合した。この混合機は乾式であり、混合容器の容量は
2リットル、1回の充填粉末総量は200gである。得
られた混合粉末をグラファイトモールドおよびパンチを
備えたパルス通電加圧焼結機を用いて、真空雰囲気(1
0-3Pa)、合成温度1273K、昇温速度40K/m
in、5分保持、圧力70MPaの条件で合成を行なっ
た。作成した試料の寸法は直径8mm、長さ40、5
0、60mmであり、これらをそれぞれ10試料(ロッ
ド)を作製した。作成された試料の密度は全体の平均で
3.8g/cm3 であり、ほぼ99%以上の相対密度を
示し、緻密な試料が得られた。このようにして作成した
50mmのロッドを10mm間隔で切断し、その各部の
密度と形成相の観察を行なった結果、1個(本)の試料
の中央部のみの密度が3.67g/cm3 と若干落ちる
傾向を示したが、それ以外は十分に緻密化されていた。
また形成相観察によれば、全ての部分でTiAl相とT
i3 Al相が観察され、均一なTi−Al合金ロッドが
得られた。この顕微鏡組織写真が上記に説明した図3で
ある。すでに説明している通り、図3における顕微鏡組
織図(写真)において、黒い部分はTiAl相、白い部
分はTiAlとTi3 Alの混晶を示す。この混晶の平
均粒径が10μm〜20μmである。このように層状組
織のない緻密な組織得られる。しかし、細長いものを製
造する場合には、特別な温度コントロールをしなけれ
ば、上記に示す直径8mmの寸法では1回で作製可能な
最大長さは、緻密度および形成相を考慮すると、せいぜ
い70mm程度と考えられる。したがって、より長尺の
ものを製作する場合には、これらを接合することが必要
となる。Examples and Comparative Examples [Example 1] As raw material powders, Ti powder having an average particle diameter of 10 µm and Al powder having an average particle diameter of 20 µm were used. These raw material powders have an atomic weight ratio of Ti and Al of 1:
The ingredients were blended so as to be 1 and mixed using a three-dimensional mixer for 24 hours. This mixer is a dry type, and the capacity of the mixing container is 2 liters, and the total amount of powder packed at one time is 200 g. The obtained mixed powder was subjected to a vacuum atmosphere (1) using a pulse current pressure sintering machine equipped with a graphite mold and a punch.
0 -3 Pa), synthesis temperature 1273K, heating rate 40K / m
Synthesis was carried out under the conditions of in, holding for 5 minutes and pressure of 70 MPa. The size of the prepared sample is 8mm in diameter and 40, 5 in length.
0 and 60 mm, and 10 samples (rods) were prepared for each of them. The density of the prepared sample was 3.8 g / cm 3 on the whole average, which showed a relative density of about 99% or more, and a dense sample was obtained. The 50 mm rod thus prepared was cut at 10 mm intervals, and the density of each part and the forming phase were observed. As a result, the density of only one central part of the sample was 3.67 g / cm 3. However, other than that, it was sufficiently densified.
Further, according to the formation phase observation, the TiAl phase and the T
The i 3 Al phase was observed, and a uniform Ti—Al alloy rod was obtained. This microstructure photograph is FIG. 3 described above. As already described, in the microscopic structure diagram (photograph) in FIG. 3, the black portion shows the TiAl phase, and the white portion shows the mixed crystal of TiAl and Ti 3 Al. The average grain size of this mixed crystal is 10 μm to 20 μm. Thus, a dense structure without a layered structure can be obtained. However, in the case of producing a slender product, the maximum length that can be produced at one time with the above-mentioned diameter of 8 mm is 70 mm at the most, considering the compactness and the forming phase, unless special temperature control is performed. It is considered to be the degree. Therefore, when manufacturing a longer product, it is necessary to join them.
【0021】[実施例2]次に、予め作製した直径8m
m、長さ40mmのロッドを2本用意し、このロッドの
間に平均粒径10μmのTi粉末と20μmのAl粉末
でTiとAlが原子量比で1:1であるすでに作製され
たロッドと同一の原料混合粉末を約0.25g充填し、
上記パルス通電加圧焼結機を用いて、真空雰囲気(10
-3Pa)、合成温度1273K、昇温速度40K/mi
n、5分保持、圧力70MPaの条件で合成反応による
接合を行なった。この結果、直径8mm、長さ約80m
mのロッドが得られた。このようにして得られたロッド
の接合界面の顕微鏡組織観察を行なった結果、欠陥は全
く存在せず十分な強度をもつロッドが得られた。この顕
微鏡組織写真を図5に示す。図5において中央部は接合
用に入れた粉末部であり、また左右はすでに作製したT
i−Al合金ロッド部である。このように、図5におい
てはそれほど明確ではないが、中央の新たに接合用の粉
末を入れた部分と左右の被接合ロッド部の3つの部分か
らなっている。図5に示すように、接合用に入れた粉末
部位とすでに作製したTi−Al合金ロッドとの間に縦
方向に薄いすじがあり、やや気孔が残っているためそこ
が界面であることが分かる。しかしこのような接合部の
形成層は他の部分の組織と殆ど同じであり、また強度的
にも接合前に作製したTi−Al合金ロッドと同一であ
り極めて強固な接合が得られていることが分かる。上記
のような本発明の接合法によれば、複数個のTi−Al
合金ロッドを次々に接合して、より長尺のTi−Al合
金ロッドを作製することができる。[Embodiment 2] Next, a diameter of 8 m prepared in advance.
Two rods of m and 40 mm in length were prepared. Between the rods, Ti powder having an average particle diameter of 10 μm and Al powder having an average particle diameter of 10 μm were used. About 0.25 g of the raw material mixed powder of
A vacuum atmosphere (10
-3 Pa), synthesis temperature 1273K, heating rate 40K / mi
Bonding was performed by a synthetic reaction under the conditions of n, holding for 5 minutes and pressure of 70 MPa. As a result, the diameter is 8 mm and the length is about 80 m.
m rods were obtained. As a result of microscopic observation of the joint interface of the rods thus obtained, there were no defects at all, and rods with sufficient strength were obtained. This microstructure photograph is shown in FIG. In FIG. 5, the central part is the powder part put in for joining, and the left and right parts are the already prepared T
It is an i-Al alloy rod part. Thus, although it is not so clear in FIG. 5, it is composed of three parts, that is, the central part where the powder for bonding is newly added and the left and right rod parts to be bonded. As shown in FIG. 5, there are thin streaks in the vertical direction between the powder part put in for bonding and the Ti-Al alloy rod already manufactured, and it can be seen that there are some pores remaining and this is the interface. . However, the formation layer of such a joint portion is almost the same as the structure of other portions, and also in terms of strength, it is the same as the Ti—Al alloy rod produced before the joining, and extremely strong joining is obtained. I understand. According to the bonding method of the present invention as described above, a plurality of Ti--Al
The alloy rods can be joined one after another to produce a longer Ti-Al alloy rod.
【0022】[比較例]実施例1と同様に原料粉末とし
て平均粒径40μmのTi粉末と40μmのAl粉末を
用いた。これらの原料粉末を、TiとAlが原子比で
1:1になるように配合し、ヘキサン中で3時間ボール
ミル混合した後、乾燥させた。得られた混合粉末を耐火
炉の中で燃焼合成法によってTi−Al合金を得た。こ
のように作製した合金から試料を採取し組織を観察し
た。その試料の断面顕微鏡組織写真を図4に示す。この
図4で白い部分がTiとAlの化合物相で、黒い部分は
気孔を示す。このように燃焼合成法によってTi−Al
合金を製造すると、気孔が多くの部分を占めており、均
一微細な組織を持つ正常なTi−Al合金を得ることが
できない。そして原料粉末の粒径によらず常に多孔質と
なるという結果が得られた。Comparative Example Similar to Example 1, Ti powder having an average particle size of 40 μm and Al powder having an average particle size of 40 μm were used as raw material powders. These raw material powders were blended so that Ti and Al were in an atomic ratio of 1: 1, mixed in hexane for 3 hours with a ball mill, and then dried. A Ti-Al alloy was obtained from the mixed powder obtained by a combustion synthesis method in a refractory furnace. A sample was taken from the alloy thus produced and the structure was observed. A cross-sectional microscopic structure photograph of the sample is shown in FIG. In FIG. 4, the white portion shows a compound phase of Ti and Al, and the black portion shows pores. In this way, Ti-Al is produced by the combustion synthesis method.
When an alloy is manufactured, pores occupy many parts, and a normal Ti-Al alloy having a uniform fine structure cannot be obtained. The result was that the material powder was always porous regardless of the particle size of the raw material powder.
【0023】[0023]
【発明の効果】本発明によれば、原料となるTi粉とA
l粉を調整し、またパルス通電加圧−燃焼合成法におけ
る昇温速度、合成温度、圧力などをコントロールして、
内部欠陥がなく均一緻密な金属組織を持ち、かつ高温比
強度および高温耐蝕性に優れたTi−Al合金を得るこ
とができ、特に自動車用エンジンバルブに有用であるT
i−Al合金およびその製造方法ならびに同合金の接合
方法を提供する。EFFECTS OF THE INVENTION According to the present invention, Ti powder and A as raw materials are used.
l powder is adjusted, and the temperature rising rate in the pulse current pressurization-combustion synthesis method, synthesis temperature, pressure, etc. are controlled,
It is possible to obtain a Ti-Al alloy having a uniform and dense metal structure with no internal defects and excellent in high temperature specific strength and high temperature corrosion resistance, and particularly useful for automobile engine valves.
An i-Al alloy, a method for producing the same, and a method for joining the same are provided.
【図1】パルス通電加圧−燃焼合成装置の概念図FIG. 1 is a conceptual diagram of a pulse current pressurization-combustion synthesizer.
【図2】パルス通電加圧−燃焼合成の反応過程を示す模
式図FIG. 2 is a schematic diagram showing a reaction process of pulse current pressurization-combustion synthesis.
【図3】本発明のTi−Al合金の組織を示す図(顕微
鏡写真)FIG. 3 is a view showing a structure of a Ti—Al alloy of the present invention (micrograph).
【図4】従来の燃焼合成法で得られたTi−Al合金の
組織を示す図(顕微鏡写真)FIG. 4 is a diagram (micrograph) showing the structure of a Ti—Al alloy obtained by a conventional combustion synthesis method.
【図5】本発明のパルス通電加圧−燃焼合成法によりT
i−Al合金を接合した接合界面組織を示す図(顕微鏡
写真)FIG. 5 is a graph showing T obtained by the pulse current pressurization-combustion synthesis method of the present invention.
The figure which shows the joint interface structure which joined the i-Al alloy (micrograph).
1 黒鉛製モールド 2 粉末 3 上部ロッド 4 下パンチ 5 熱電対 1 Mold made of graphite 2 powder 3 Upper rod 4 Lower punch 5 thermocouple
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 1/00 C22C 1/00 Q // B23K 35/30 310 B23K 35/30 310Z B23K 103:14 103:14 103:24 103:24 (73)特許権者 598002408 橋本 等 宮城県仙台市太白区郡山3−11−19 (74)上記3名の代理人 100093296 弁理士 小越 勇 (72)発明者 阿部 利彦 宮城県多賀城市東田中2−40−27−601 (72)発明者 厳 泰永 宮城県仙台市太白区三神峯2−2−18 A205 (72)発明者 橋本 等 宮城県仙台市太白区郡山3−11−19 (72)発明者 斎藤 吉信 宮城県柴田郡村田町大字村田字西ケ丘23 東北特殊鋼株式会社内 (72)発明者 西沢 義喬 宮城県柴田郡村田町大字村田字西ケ丘23 東北特殊鋼株式会社内 (56)参考文献 特開 平6−145848(JP,A) 特開 平8−199266(JP,A) 特開 平8−85802(JP,A) 特開 平3−93670(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 49/14 B22F 3/00 B23K 20/12 B23K 35/30 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 1/00 C22C 1/00 Q // B23K 35/30 310 B23K 35/30 310Z B23K 103: 14 103: 14 103: 24 103 : 24 (73) Patent holder 598002408 Hashimoto et al. 3-11-19 Koriyama, Taichiro-ku, Sendai City, Miyagi Prefecture (74) 3 agents above 100093296 Patent Attorney Isamu Kogoshi (72) Inventor Toshihiko Abe Higashitanaka, Tagajo City, Miyagi Prefecture 2-40-27-601 (72) Inventor Yasunaga Tetsu, 2-2-18, Mikamimine, Taishaku-ku, Sendai-shi, Miyagi A205 (72) Inventor Hashimoto, et al. 3-11-19, Koriyama, Taihaku-ku, Sendai-shi, Miyagi Prefecture (72) Inventor Yoshinobu Saito 23 Tohoku Special Steel Co., Ltd., Tohoku Special Steel Co., Ltd., Murata, Shibata-gun, Miyagi Prefecture 23 (72) Inventor Yoshitaka Nishizawa, Murata, Shibata-gun, Miyagi Prefecture, Nishigaoka 23, Tohoku Special Steel Co., Ltd. (56) References -145848 (JP, A) JP 8-199266 (JP, A) JP 8-85802 (JP, A) JP 3-93670 (JP, A) (58) Fields investigated (Int.Cl) . 7 , DB name) C22C 1/00-49/14 B22F 3/00 B23K 20/12 B23K 35/30
Claims (8)
相80〜88%(容積率)およびTi3Al相12〜2
0%(容積率)からなる層状組織のない混晶が均一に分
散した緻密な組織を備えていることを特徴とするTi−
Al合金。1. TiAl having a relative density of 99% or more,
Phase 80-88% (volume ratio) and Ti 3 Al phase 12-2
A mixed crystal of 0% (volume ratio) with no layered structure is uniformly distributed.
Ti- characterized by having a dispersed and dense structure
Al alloy.
mであるTiAlとTi3Alの混晶が均一に分散した
緻密な組織を備えていることを特徴とする請求項1記載
のTi−Al合金。2. The TiAl phase has an average particle size of 10 μm to 20 μm.
m is a TiAl and Ti 3 Al mixed crystal is TiAl alloy according to claim 1, characterized in that it comprises a uniformly dispersed dense tissue.
されたものであることを特徴とする請求項1または2に
記載のTi−Al合金。3. The Ti-Al alloy according to claim 1, which is formed by a pulse current pressurization-combustion synthesis method.
とする請求項1〜3のそれぞれに記載のTi−Al合
金。4. The Ti-Al alloy according to each of claims 1 to 3, which is an alloy for engine valves.
μm以下のAl粉末を用い、これらを混合した後、真空
雰囲気下で昇温速度10〜100K/min、合成温度
1273〜1323K、圧力45〜70MPaの条件で
パルス通電加圧焼結することを特徴とするパルス通電加
圧−燃焼合成法によるTi−Al合金の製造方法。5. A Ti powder having an average particle size of 20 μm or less and 50
Using Al powder of μm or less, after mixing these, pulse current energization pressure sintering is performed under conditions of a temperature rising rate of 10 to 100 K / min, a synthesis temperature of 1273 to 1323 K, and a pressure of 45 to 70 MPa in a vacuum atmosphere. A method for producing a Ti-Al alloy by a pulse current pressurization-combustion synthesis method.
形成した複数個のTi−Al合金との間、または一方が
前記Ti−Al合金そして他方が耐熱鋼もしくは他のT
i合金との間に、前記Ti−Al合金の原料粉もしくは
該原料粉を主成分とする混合粉末またはNi粉末を充填
し、パルス通電加圧−燃焼合成法により、前記Ti−A
l合金相互をまたは該Ti−Al合金と耐熱鋼もしくは
他のTi合金とを接合することを特徴とするTi−Al
合金の接合方法。6. Between a plurality of Ti—Al alloys previously formed by a pulse current pressurization-combustion synthesis method, or one of the Ti—Al alloys and the other of heat resistant steel or another T
The Ti-Al alloy raw material powder, a mixed powder containing the raw material powder as a main component, or a Ni powder is filled between the i-alloy and the Ti-A alloy by a pulse current pressurization-combustion synthesis method.
1-Al alloys, or Ti-Al alloys and heat-resistant steels or other Ti alloys are joined together.
Method of joining alloys.
/min、合成温度1273〜1323K、圧力45〜
70MPaの条件でパルス通電加圧焼結して接合するこ
とを特徴とする請求項6記載のTi−Al合金の接合方
法。7. A heating rate of 10 to 100 K in a vacuum atmosphere.
/ Min, synthesis temperature 1273-1323K, pressure 45-
7. The Ti-Al alloy joining method according to claim 6, wherein the joining is performed by pulse current pressure sintering under a condition of 70 MPa.
形成したTiAl相に平均粒径10μm〜20μmであ
るTiAlとTi3Alの混晶が均一に分散した複数個
のTi−Al合金相互をまたは一方が前記Ti−Al合
金そして他方が耐熱鋼もしくは他のTi合金とを摩擦溶
接法により接合することを特徴とするTi−Al合金の
接合方法。8. A plurality of Ti—Al alloys in which a mixed crystal of TiAl and Ti 3 Al having an average particle size of 10 μm to 20 μm are uniformly dispersed in a TiAl phase previously formed by a pulse current pressurization-combustion synthesis method. Alternatively, a Ti-Al alloy joining method is characterized in that one is joined with the Ti-Al alloy and the other is joined with heat-resistant steel or another Ti alloy by a friction welding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36236897A JP3380892B2 (en) | 1997-12-12 | 1997-12-12 | Ti-Al alloy, method for producing the same, and method for joining the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36236897A JP3380892B2 (en) | 1997-12-12 | 1997-12-12 | Ti-Al alloy, method for producing the same, and method for joining the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11172351A JPH11172351A (en) | 1999-06-29 |
JP3380892B2 true JP3380892B2 (en) | 2003-02-24 |
Family
ID=18476673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36236897A Expired - Lifetime JP3380892B2 (en) | 1997-12-12 | 1997-12-12 | Ti-Al alloy, method for producing the same, and method for joining the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3380892B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107127341A (en) * | 2017-04-10 | 2017-09-05 | 西安铂力特激光成形技术有限公司 | A kind of quick forming method of TiAl alloy part |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6200515B1 (en) * | 1999-08-13 | 2001-03-13 | Centre National De La Recherche Scientifique | One-step synthesis and consolidation of nanophase materials |
JP3737989B2 (en) * | 2002-05-17 | 2006-01-25 | 昌雄 本藤 | Method of joining members by pulse energization |
US7241416B2 (en) * | 2003-08-12 | 2007-07-10 | Borg Warner Inc. | Metal injection molded turbine rotor and metal injection molded shaft connection attachment thereto |
US7052241B2 (en) * | 2003-08-12 | 2006-05-30 | Borgwarner Inc. | Metal injection molded turbine rotor and metal shaft connection attachment thereto |
CN103305722B (en) * | 2013-06-04 | 2015-12-02 | 华南理工大学 | A kind of tough titanium group high temperature Alloy And Preparation Method of height of bimorph construction and application |
DE102015226607A1 (en) * | 2015-12-23 | 2017-06-29 | Robert Bosch Gmbh | Method for producing a line section of a hydraulic line |
CN108817384B (en) * | 2018-06-28 | 2020-11-17 | 北京理工大学 | Preparation method of core-shell structure particle reinforced aluminum matrix composite |
JP7334896B2 (en) * | 2019-03-19 | 2023-08-29 | 国立大学法人島根大学 | Heat-resistant, lightweight, high-strength sintered body manufacturing method |
CN113088734A (en) * | 2021-04-09 | 2021-07-09 | 中国航发北京航空材料研究院 | Preparation method of titanium-aluminum-based high-temperature alloy block |
-
1997
- 1997-12-12 JP JP36236897A patent/JP3380892B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107127341A (en) * | 2017-04-10 | 2017-09-05 | 西安铂力特激光成形技术有限公司 | A kind of quick forming method of TiAl alloy part |
Also Published As
Publication number | Publication date |
---|---|
JPH11172351A (en) | 1999-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0215941B1 (en) | Titanium carbide/titanium alloy composite and process for powder metal cladding | |
US5735332A (en) | Method for making a ceramic metal composite | |
CA2496093C (en) | Process for producing components or semi-finished products which contain intermetallic titanium aluminide alloys, and components producible by the process | |
JPH10511071A (en) | Manufacture of aluminide-containing ceramic compacts | |
JP3380892B2 (en) | Ti-Al alloy, method for producing the same, and method for joining the same | |
JPH08501500A (en) | Method for manufacturing ceramic-metal composite material | |
US5972523A (en) | Aluminum metal matrix composite materials reinforced by intermetallic compounds and alumina whiskers | |
JP2849710B2 (en) | Powder forming method of titanium alloy | |
US5350107A (en) | Iron aluminide alloy coatings and joints, and methods of forming | |
JPH0437658A (en) | Combined material and its production | |
CN1594625A (en) | Method for preparing cermet using powder stock | |
JP3261457B2 (en) | High temperature oxidation resistant alloy material and method for producing the same | |
JP4252161B2 (en) | Method for producing metal-based composite material using liquid phase sintering | |
JP4036925B2 (en) | Method of fleshing a superalloy member based on nickel or cobalt | |
US6821313B2 (en) | Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys | |
JP4326110B2 (en) | Method for producing Ti-Al intermetallic compound member | |
JP2843644B2 (en) | Method for producing composite material at least partially composed of an intermetallic compound | |
US7270782B2 (en) | Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys | |
JP3834283B2 (en) | Composite material and manufacturing method thereof | |
JP3413921B2 (en) | Method for producing Ti-Al based intermetallic compound sintered body | |
JP2765512B2 (en) | Method for manufacturing sliding member and method for manufacturing two-layer member | |
JP3424556B2 (en) | Valve lifter and method of manufacturing the same | |
JP3424555B2 (en) | Composite valve seat and method of manufacturing the same | |
JP3102582B2 (en) | Manufacturing method of composite member | |
JPH03189063A (en) | Ferrous porous reinforced material and combined body of this and non-ferrous metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021029 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121220 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121220 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |