JPH03189063A - Ferrous porous reinforced material and combined body of this and non-ferrous metal - Google Patents

Ferrous porous reinforced material and combined body of this and non-ferrous metal

Info

Publication number
JPH03189063A
JPH03189063A JP32780489A JP32780489A JPH03189063A JP H03189063 A JPH03189063 A JP H03189063A JP 32780489 A JP32780489 A JP 32780489A JP 32780489 A JP32780489 A JP 32780489A JP H03189063 A JPH03189063 A JP H03189063A
Authority
JP
Japan
Prior art keywords
iron
ferrous
porous
resistance
reinforced material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32780489A
Other languages
Japanese (ja)
Inventor
Tadayoshi Nakamura
忠義 中村
Hirohisa Tanaka
裕久 田中
Isao Tan
功 丹
Kazutaka Sakamoto
和隆 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP32780489A priority Critical patent/JPH03189063A/en
Publication of JPH03189063A publication Critical patent/JPH03189063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture a combined body having excellent corrosion resistance, wear resistance, heat resistance, etc., by filling up non-ferrous metal having m.p. lower than m.p. of iron, into a porous reinforced material coating fine hole surface layer part of a ferrous porous body with iron oxide, etc. CONSTITUTION:Iron powder or powder containing iron as essential component and material except iron is sintered at about 800 - 1,300 deg.C for about 1 hr to manufacture the porous body having about 45 - 81 vol% porosity. This porous body is held under oxidizing atmosphere at about 100 - 500 deg.C for about 2 hr or humidified and heated with a humidifying-heater and the fine hole surface layer part in the porous body is coated with oxide or hydroxide film having about 0.01 - 10mu to form the ferrous porous reinforced material. Successively, the non-ferrous metal (Mg, Al, etc.) having m.p. lower than m.p. of iron, is filled up into this porous reinforced material to form the combined body. By this method, the combined body having excellent fatigue resistance and creep resistance, etc., is obtd. and available to cylinder block, piston, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉄系多孔質強化材およびそれと非鉄金属との複
合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferrous porous reinforcing material and a composite of the same with a non-ferrous metal.

[従来の技術] 従来、たとえば車両用エンジンのシリンダブロックをア
ルミニウムなどの合金で製造するばあいには、ダイカス
トあるいは砂型鋳造によって行なわれていた。しかし、
アルミニウム合金は耐摩耗性が乏しく、そのためシリン
ダーの内部に鉄のライナーを挿入していた。しかし、こ
の方法ではコスト高、重量の増加、ライナーとアルミ合
金との熱膨張率の違いによる障害などの問題があった。
[Prior Art] Conventionally, for example, cylinder blocks for vehicle engines have been manufactured using alloys such as aluminum by die casting or sand mold casting. but,
Aluminum alloy has poor wear resistance, so an iron liner was inserted inside the cylinder. However, this method has problems such as high cost, increased weight, and problems due to the difference in coefficient of thermal expansion between the liner and the aluminum alloy.

この欠点を改良するためにグラファイトを含む多孔質鋳
鉄にアルミニウムを含浸し、鉄とアルミニウムの境界に
鉄−アルミニウム金属間化合物を形成させる複合強化方
法が開発されたが(特開昭62−286680号公報)
、鉄−アルミニウム金属間化合物は硬度が高く、切削な
どの加工が困難であるほか脆くなるので構造部材として
の信頼性が損なわれてしまうという問題点があった。
In order to improve this drawback, a composite strengthening method was developed in which porous cast iron containing graphite is impregnated with aluminum to form an iron-aluminum intermetallic compound at the boundary between iron and aluminum (Japanese Patent Laid-Open No. 62-286680). Public bulletin)
Iron-aluminum intermetallic compounds have high hardness and are difficult to process, such as cutting, and also become brittle, resulting in a problem in that their reliability as structural members is impaired.

またピストンでは軽量化のためにアルミニウム合金が以
前から用いられているが、ディーゼルエンジンなどの熱
負荷の高いエンジン用ピストンには第1リング溝部にニ
レジスト鋳鉄製の耐摩環を鋳くるんでいる。しかしこの
耐摩環は高コストであり、かつピストン重量が増大する
などの問題があった。
Aluminum alloys have long been used in pistons to reduce weight, but pistons for engines with a high heat load such as diesel engines have a wear-resistant ring made of Niresist cast iron cast in the first ring groove. However, this wear ring has problems such as high cost and increased piston weight.

そこで特開昭59−212159号公報および特開昭6
0−11111367号公報などには耐熱、耐摩耗性向
上をねらい、ニッケルなどの金属多孔体(ウレタンに金
属をメツキし、そののちウレタンを加熱除去)を第1リ
ング溝部へ複合する方法が、また特開昭58−9394
8号公報などにはセラミックスファイバーからなるプリ
フォームを前記第1リング溝部へ複合する方法が提案さ
れているがどれも高コストである。
Therefore, Japanese Patent Application Publication No. 59-212159 and Japanese Patent Application Publication No. 6
Publication No. 0-11111367 also describes a method in which a metal porous material such as nickel (urethane is plated with metal and then the urethane is removed by heating) is composited into the first ring groove with the aim of improving heat resistance and wear resistance. Japanese Patent Publication No. 58-9394
Although Japanese Patent No. 8 and other publications propose a method of combining a preform made of ceramic fibers into the first ring groove, all methods are expensive.

また、マグネシウム合金はアルミニウムの273とさら
に軽量であって、とくに可動化部品の軽量化には燃費、
出力の点から活用がのぞまれるが、アルミニウムより耐
熱性や耐摩耗性が低く、かつ、異種金属と接触している
と局部電池を形成し腐食するという欠点があって、耐久
信頼性の点から市販車に搭載されたエンジンのピストン
などに活用できないという問題があった。
In addition, magnesium alloy is even lighter than aluminum 273, so it is especially useful for reducing the weight of movable parts.
Although it is desired to be used in terms of output, it has lower heat resistance and wear resistance than aluminum, and has the disadvantage of forming local batteries and corroding when it comes into contact with dissimilar metals, so it has poor durability and reliability. There was a problem that it could not be used for pistons in engines installed in commercially available cars.

[発明が解決しようとする課題] 本発明は、かかる問題点を解決すべく鋭意研究の結果、
耐摩耗性、耐食性にすぐれた鉄系多孔質強化材およびそ
れと非鉄金属をもちいた複合体を見出し、完成するにい
たったものである。
[Problems to be Solved by the Invention] The present invention has been made as a result of intensive research to solve these problems.
This led to the discovery and completion of an iron-based porous reinforcing material with excellent wear resistance and corrosion resistance, and a composite using it and non-ferrous metals.

[課題を解決するための手段] 本発明は、(1)鉄からなる多孔質体の細孔の表層部分
が酸化鉄または水酸化鉄で被覆されてなる鉄系多孔質強
化材、(2)細孔の表面が三二酸化鉄、四三酸化鉄、水
酸化第1鉄および水酸化第2鉄よりなる群から選ばれた
1種以上で被覆されていることを特徴とする鉄系多孔質
強化材、(3)前記多孔質体が鉄以外の金属、グラファ
イト、シリコン、粒子状または繊維状セラミックよりな
る群から選ばれた1種以上を含有するものである鉄系多
孔質強化材および(4)前記鉄系多孔質強化材に鉄より
融点が低い非鉄金属が充填されてなる複合体に関する。
[Means for Solving the Problems] The present invention provides (1) an iron-based porous reinforcing material in which the surface layer of the pores of a porous body made of iron is coated with iron oxide or iron hydroxide; Iron-based porous reinforcement characterized in that the surface of the pores is coated with one or more selected from the group consisting of iron sesquioxide, triiron tetroxide, ferrous hydroxide, and ferric hydroxide. (3) an iron-based porous reinforcing material in which the porous body contains one or more selected from the group consisting of metals other than iron, graphite, silicon, particulate or fibrous ceramic; ) The present invention relates to a composite in which the iron-based porous reinforcing material is filled with a non-ferrous metal having a melting point lower than that of iron.

[実施例] 本発明の鉄系多孔質強化材は、多孔質体の細孔の表層部
分が酸化鉄または水酸化鉄で被覆されてなるものであっ
て、かかる手段を施すことによって電気絶縁性となり、
直接非鉄金属との接触もしないので局部電池ができると
いうこともない。なお耐摩耗性は内部の鉄条孔体によっ
て確保できる。
[Example] The iron-based porous reinforcing material of the present invention is one in which the surface layer of the pores of a porous body is coated with iron oxide or iron hydroxide, and by applying such measures, electrical insulation properties can be improved. Then,
Since there is no direct contact with non-ferrous metals, there is no chance of local batteries forming. In addition, wear resistance can be ensured by the internal barred hole.

本発明の鉄系多孔質強化材は純鉄あるいは純鉄にケイ素
、鉄以外の金属、黒鉛あるいは粒子状、繊維状セラミッ
クなどの物質の1種以上を含んだ粉末を焼結してえられ
るものである。
The iron-based porous reinforcing material of the present invention is obtained by sintering pure iron or powder containing one or more substances such as silicon, metals other than iron, graphite, or particulate or fibrous ceramics. It is.

原料の鉄粉が純鉄でないばあいの鉄以外の含量は合計で
全重量の約50%以下が好ましい。また他の金属、たと
えばコバルト、ニッケル、クロム、モリブデン、タング
ステン、マンガンなどは鉄と合金を作っていても、混合
物になっていてもよい。
When the raw material iron powder is not pure iron, the total content of materials other than iron is preferably about 50% or less of the total weight. Further, other metals such as cobalt, nickel, chromium, molybdenum, tungsten, and manganese may be alloyed with iron or in a mixture.

この、鉄系多孔質強化材をつるには前記鉄粉および(ま
たは)鉄以外の物質を含んだ鉄を主体とした粉末を焼結
する。焼結温度は約800〜1300℃、好ましくは1
100〜1200℃であり焼結時間は約1時間が好まし
い。
This iron-based porous reinforcing material is produced by sintering the iron powder and/or a powder mainly composed of iron containing substances other than iron. The sintering temperature is about 800-1300°C, preferably 1
It is preferable that the temperature is 100 to 1200°C and the sintering time is about 1 hour.

焼結温度が高すぎると気孔率が小さくなりマトリックス
金属が含浸しないし、低すぎると充分な焼結温度かえら
れず、含浸時強化材である本多孔体が破壊する。この焼
結体の気孔率は約45〜81%(体積)である。
If the sintering temperature is too high, the porosity will be small and the matrix metal will not be impregnated. If the sintering temperature is too low, the sintering temperature will not be changed sufficiently, and the porous body, which is the reinforcing material, will be destroyed during impregnation. The porosity of this sintered body is about 45 to 81% (by volume).

気孔率が50%程度の金属フィルターとしての気孔体は
従来から知られているが、本発明はそれ以上の気孔率を
作るものである点、従来からのものとは異ったものであ
る。
Porous bodies as metal filters with a porosity of about 50% have been known for a long time, but the present invention differs from the conventional ones in that it creates a porosity higher than that.

細孔の表層部を鉄の酸化物または水酸化物の皮膜で被覆
するには、鉄系多孔質強化材を酸化雰囲気中で100〜
500℃、好ましくは400℃で約2時間程度保持する
か、または加湿部器で湿度・温度をかける方法による。
In order to coat the surface layer of the pores with a film of iron oxide or hydroxide, the iron-based porous reinforcing material is heated in an oxidizing atmosphere to
Either by holding the temperature at 500°C, preferably 400°C for about 2 hours, or by applying humidity and temperature using a humidifier.

この皮膜の厚さは平均0.01〜10左、好ましくは0
.5〜2ρである。皮膜が厚すぎると金属加圧・鋳造後
の複合界面が脆くなり、薄すぎると目的の効果はえられ
ない。
The thickness of this film is on average 0.01 to 10, preferably 0.
.. It is 5 to 2ρ. If the film is too thick, the composite interface after metal pressing and casting will become brittle, and if it is too thin, the desired effect will not be achieved.

前記複合体は、前記鉄系多孔質強化材に鉄より融点が低
い非鉄金属を充填してえられる。本発明においては鉄よ
り融点が低い非鉄金属およびその合金を含めて非鉄金属
とよぶ。非鉄金属の種類に特別の限定はないがその中で
もとくに実用的にすぐれているのはマグネシウム、マグ
ネシウム合金、アルミニウムおよびアルミニウム合金で
ある。アルミニウム合金はケイ素を含んでいてもよい。
The composite is obtained by filling the iron-based porous reinforcing material with a non-ferrous metal having a lower melting point than iron. In the present invention, non-ferrous metals include non-ferrous metals with melting points lower than iron and their alloys. There are no particular limitations on the type of nonferrous metals, but among them, magnesium, magnesium alloys, aluminum, and aluminum alloys are particularly practical. The aluminum alloy may contain silicon.

充填する非鉄金属はその成分によって性質が異なるので
目的に応じて合金の種類を選択する。
Since the properties of the nonferrous metal to be filled differ depending on its components, the type of alloy is selected depending on the purpose.

前記鉄系多孔質強化材にはその細孔の表層部に酸化鉄ま
たは水酸化鉄の膜があるが非鉄金属を充填する際に酸化
鉄として残存する。ただし、水酸化鉄は100〜400
℃程度で酸化鉄となるが、このとき水が発生するため十
分な予備加熱などの熱処理が施せないばあいは酸化鉄の
膜を有する鉄系多孔質強化材を用いるのが好ましい。こ
れらの膜は電気絶縁層なので、マグネシウムなどを充填
しても局部電池を生成しに<<、その結果充填金属とし
てのマグネシウムおよびマグネシウム合金の使用も可能
になった。
The iron-based porous reinforcing material has a film of iron oxide or iron hydroxide on the surface layer of its pores, but when it is filled with non-ferrous metal, it remains as iron oxide. However, iron hydroxide is 100-400
It becomes iron oxide at about 0.degree. C., but since water is generated at this time, if heat treatment such as sufficient preheating cannot be performed, it is preferable to use an iron-based porous reinforcing material having an iron oxide film. Since these membranes are electrically insulating layers, they cannot be filled with magnesium or the like to form local batteries, thus making it possible to use magnesium and magnesium alloys as filler metals.

本発明の複合体はシリンダブロック、ピストン、シリン
ダヘッド、エンジンマウントなどに、耐摩耗、耐食性に
すぐれ、低コストの複合体として使用することができる
The composite of the present invention has excellent wear resistance and corrosion resistance, and can be used as a low-cost composite for cylinder blocks, pistons, cylinder heads, engine mounts, etc.

以下に本発明の具体例を実施例について説明するが、本
発明はかかる実施例のみに限定されるものではない。
EXAMPLES Specific examples of the present invention will be described below with reference to Examples, but the present invention is not limited only to these Examples.

実施例および比較例 粒度10〜150m+(平均粒径約74摩)の純鉄粉6
0gを焼結用容器(容ff120m1)に自然充填で充
填した。このものをRxガス(Co、、N2 、H2混
合ガス)気流中1150℃に1時間加熱、焼結をした。
Examples and Comparative Examples Pure iron powder 6 with a particle size of 10 to 150 m+ (average particle size of about 74 mm)
0 g was filled into a sintering container (volume ff 120 m1) by natural filling. This material was heated and sintered at 1150° C. for 1 hour in a flow of Rx gas (Co, N2, H2 mixed gas).

生成した焼結体は嵩密度的3.0g/cj、気孔率約6
2(体積)%の多孔体であった。
The produced sintered body has a bulk density of 3.0 g/cj and a porosity of approximately 6.
It was a porous body of 2% (by volume).

つぎに、この多孔体を酸化雰囲気中で400℃で2時間
保持し、酸化皮膜を形成させた。このとき酸化皮膜の膜
厚は約0.Bρであった。
Next, this porous body was held at 400° C. for 2 hours in an oxidizing atmosphere to form an oxide film. At this time, the thickness of the oxide film is approximately 0. It was Bρ.

この焼結体と酸化皮膜形成処理をしない焼結体(比較例
)とを、あらかじめ300℃で30分間予備加熱し、そ
れぞれ鋳造用金型にセットする。
This sintered body and a sintered body not subjected to oxide film forming treatment (comparative example) were preheated in advance at 300° C. for 30 minutes, and each was set in a casting mold.

そしてマグネシウムの溶湯(700℃)を注入し、40
0kg/cシで加圧鋳造した。
Then, inject molten magnesium (700℃) and
Pressure casting was performed at 0 kg/c.

冷却後、えられた本発明による複合体の顕微鏡写真につ
いて観察した。その写真を第1図、第3図に示す。これ
らの写真はX線マイクロアナライザー(EPMA) (
使用機器は■島津製作所製EPMA−8705型)を用
いて撮影した。
After cooling, a micrograph of the obtained composite according to the present invention was observed. The photographs are shown in Figs. 1 and 3. These photos were taken using an X-ray microanalyzer (EPMA) (
The photograph was taken using a device used (model EPMA-8705 manufactured by Shimadzu Corporation).

第1図および第3図は前記鉄−マグネシウム複合体の断
面の顕微鏡写真である。第3図は第1図の部分拡大写真
である。第2図は第1図の説明図、第4図は第3図の説
明図である。第1〜4図において(おの部分は、鉄、市
の部分はマグネシウム、(C)の部分は酸化鉄である。
FIGS. 1 and 3 are micrographs of a cross section of the iron-magnesium composite. FIG. 3 is a partially enlarged photograph of FIG. 1. 2 is an explanatory diagram of FIG. 1, and FIG. 4 is an explanatory diagram of FIG. 3. In Figures 1 to 4, the part marked (A) is iron, the part marked (C) is magnesium, and the part (C) is iron oxide.

第1.3図から鉄粒子の表面を酸化鉄の層が約0.6虜
の厚さでとり巻いていることがわかる。
It can be seen from Figure 1.3 that a layer of iron oxide surrounds the surface of the iron particles with a thickness of about 0.6 mm.

えられた本発明により複合体および比較例の性質をしら
べた。各測定法はつぎのとおりである。
The properties of the composites obtained according to the present invention and comparative examples were investigated. Each measurement method is as follows.

酸化鉄層の厚さ EPMA(EPMA−8705型■島津製作所製)を用
いて酸化皮膜の厚さを測定した。
Thickness of Iron Oxide Layer The thickness of the oxide film was measured using EPMA (Model EPMA-8705, manufactured by Shimadzu Corporation).

耐食性(重量減少量) JIS Z 2371による塩水噴霧試験方法により塩
濃度5±1%(重ff1)の水溶液を35℃で噴霧中に
試料を挿入し、24時間後の重量減少量で評価した。
Corrosion resistance (weight loss) A sample was inserted into a spray of an aqueous solution with a salt concentration of 5±1% (weight ff1) at 35° C. according to the salt spray test method according to JIS Z 2371, and the weight loss was evaluated after 24 hours.

耐摩耗性 ピンディスク式による摩擦・摩耗試験機(TRl−81
00O、高千穂精機■製)を用いた。この評価は試験デ
ィスクを1270r、p、m、となるように回転駆動し
、これにダクタイル鋳鉄にクロムメツキのピンを摩擦面
圧240)cg/c−となるように押圧して、100時
間の摩擦時間に対する試験ディスクの摩耗量を測定する
ものである。
Wear-resistant pin-disk type friction/wear tester (TRl-81
00O, manufactured by Takachiho Seiki ■) was used. In this evaluation, the test disk was rotated at 1270 r, p, m, and a chrome-plated pin was pressed onto the ductile cast iron so that the friction surface pressure was 240) cg/c-. This measures the amount of wear on the test disk over time.

実施例および比較例における測定結果を第1表に示す。Table 1 shows the measurement results in Examples and Comparative Examples.

第  1  表 以上実施例および比較例から本発明の鉄系多孔質強化材
を用いた複合体は、耐食性、耐摩耗性、耐熱性、耐疲労
特性、耐クリープ性などにすぐれていることがわかる。
From the Examples and Comparative Examples shown in Table 1, it can be seen that the composite using the iron-based porous reinforcing material of the present invention has excellent corrosion resistance, wear resistance, heat resistance, fatigue resistance, creep resistance, etc. .

[発明の効果] 本発明の、細孔の表層部分が酸化鉄または水酸化鉄で被
覆された鉄系多孔質強化材を用いる複合体の製法によっ
てえられた複合体は耐食、耐摩耗、耐熱、耐疲労、耐ク
リープなどの特性にすぐれ、シリンダブロック、ピスト
ン、シリンダヘッド、エンジンマウント、シリンターヘ
ッドなどの材料としてきわめて有用なものである。
[Effect of the invention] The composite obtained by the method of manufacturing a composite using an iron-based porous reinforcing material in which the surface layer of the pores is coated with iron oxide or iron hydroxide has corrosion resistance, wear resistance, and heat resistance. It has excellent properties such as fatigue resistance and creep resistance, making it extremely useful as a material for cylinder blocks, pistons, cylinder heads, engine mounts, cylinder heads, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化鉄で被覆された鉄とマグネシウムとの複合
体の断面の顕微鏡写真である。第2図は第1図の説明図
である。第3図は倍率を変えて撮影した前記複合体の断
面の顕微鏡写真である。第4図は第3図の説明図である
。 (図面の主要符号) (a):鉄 (b):マグネシウム (C):酸化鉄 第 図 0pm 第2図 第 図 1μm
FIG. 1 is a micrograph of a cross section of an iron and magnesium composite coated with iron oxide. FIG. 2 is an explanatory diagram of FIG. 1. FIG. 3 is a photomicrograph of a cross section of the composite body taken at different magnifications. FIG. 4 is an explanatory diagram of FIG. 3. (Main symbols in the drawings) (a): Iron (b): Magnesium (C): Iron oxide Figure 0pm Figure 2 Figure 1μm

Claims (1)

【特許請求の範囲】 1 鉄からなる多孔質体の細孔の表層部分が酸化鉄また
は水酸化鉄で被覆されてなる鉄系多孔質強化材。 2 細孔の表面が三二酸化鉄、四三酸化鉄、水酸化第1
鉄および水酸化第2鉄よりなる群から選ばれた1種以上
で被覆されていることを特徴とする請求項1記載の鉄系
多孔質強化材。 3 前記多孔質体が鉄以外の金属、グラファイト、シリ
コン、粒子状または繊維状セラミックよりなる群から選
ばれた1種以上を含有するものである請求項1記載の鉄
系多孔質強化材。 4 鉄からなる多孔質体の細孔の表層部分が酸化鉄また
は水酸化鉄で被覆されてなる鉄系多孔質強化材に鉄より
融点が低い非鉄金属が充填されてなる複合体。
[Scope of Claims] 1. An iron-based porous reinforcing material in which the surface layer of the pores of a porous body made of iron is coated with iron oxide or iron hydroxide. 2 The surface of the pores is composed of iron sesquioxide, triiron tetroxide, and hydroxide.
The iron-based porous reinforcing material according to claim 1, characterized in that it is coated with one or more selected from the group consisting of iron and ferric hydroxide. 3. The iron-based porous reinforcing material according to claim 1, wherein the porous body contains one or more selected from the group consisting of metals other than iron, graphite, silicon, and particulate or fibrous ceramics. 4. A composite comprising an iron-based porous reinforcing material in which the surface layer of the pores of a porous body made of iron is coated with iron oxide or iron hydroxide, and filled with a non-ferrous metal having a melting point lower than that of iron.
JP32780489A 1989-12-18 1989-12-18 Ferrous porous reinforced material and combined body of this and non-ferrous metal Pending JPH03189063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32780489A JPH03189063A (en) 1989-12-18 1989-12-18 Ferrous porous reinforced material and combined body of this and non-ferrous metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32780489A JPH03189063A (en) 1989-12-18 1989-12-18 Ferrous porous reinforced material and combined body of this and non-ferrous metal

Publications (1)

Publication Number Publication Date
JPH03189063A true JPH03189063A (en) 1991-08-19

Family

ID=18203180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32780489A Pending JPH03189063A (en) 1989-12-18 1989-12-18 Ferrous porous reinforced material and combined body of this and non-ferrous metal

Country Status (1)

Country Link
JP (1) JPH03189063A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858056A (en) * 1995-03-17 1999-01-12 Toyota Jidosha Kabushiki Kaisha Metal sintered body composite material and a method for producing the same
US6668905B1 (en) 1997-11-06 2003-12-30 Sony Corporation Aluminum nitride/aluminum base composite material and method of producing the same
FR2863186A1 (en) * 2003-12-04 2005-06-10 Toyota Jidoshokki Kk Cast composite element with a porous iron based substance coated with a light metal for components subjected to elevated pressures such as engine cylinder blocks and compressor casings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858056A (en) * 1995-03-17 1999-01-12 Toyota Jidosha Kabushiki Kaisha Metal sintered body composite material and a method for producing the same
US6668905B1 (en) 1997-11-06 2003-12-30 Sony Corporation Aluminum nitride/aluminum base composite material and method of producing the same
US6805973B2 (en) 1997-11-06 2004-10-19 Sony Corporation Aluminum nitride/aluminum base composite material and a method for producing thereof
FR2863186A1 (en) * 2003-12-04 2005-06-10 Toyota Jidoshokki Kk Cast composite element with a porous iron based substance coated with a light metal for components subjected to elevated pressures such as engine cylinder blocks and compressor casings

Similar Documents

Publication Publication Date Title
US4734968A (en) Method for making a valve-seat insert for internal combustion engines
US6387149B1 (en) Metal porous bodies, method for preparation thereof and metallic composite materials using the same
US4505988A (en) Sintered alloy for valve seat
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
JPH05346166A (en) Light alloy piston
JP3007868B2 (en) Porous metal body, light alloy composite member, and production method thereof
CA2332192C (en) Oil pump
US2753858A (en) Valve seat insert ring
JP2614732B2 (en) Low friction structure and manufacturing method thereof
US11154930B2 (en) Method for producing a porous shaped body
US6793705B2 (en) Powder metal materials having high temperature wear and corrosion resistance
EP1132490B1 (en) Piston with a metal matrix composite
JPH03189063A (en) Ferrous porous reinforced material and combined body of this and non-ferrous metal
JPH0639605B2 (en) Multi-layer sintered sliding member with cast iron backing
JPS60145345A (en) High performance bearing material and manufacture
CN111349838A (en) Preparation method of high-entropy alloy composite material
JPH10184324A (en) Manufacture of iron-based sintered alloy made valve seat and iron-based sintered alloy made valve seat
JP4524591B2 (en) Composite material and manufacturing method thereof
JP4240761B2 (en) Al-based oxide-dispersed Fe-based sintered alloy with excellent wear resistance and method for producing the same
RU2230628C1 (en) Method for making article of composite metallic material
JPH09111365A (en) Sliding material, piston, and their production
JPH03189066A (en) Porous metal reinforced material and combined body thereof
JPH0448986B2 (en)
JP3577748B2 (en) Metal-based composite and method for producing the same
JPS6246601B2 (en)