JPH03245567A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03245567A
JPH03245567A JP2042888A JP4288890A JPH03245567A JP H03245567 A JPH03245567 A JP H03245567A JP 2042888 A JP2042888 A JP 2042888A JP 4288890 A JP4288890 A JP 4288890A JP H03245567 A JPH03245567 A JP H03245567A
Authority
JP
Japan
Prior art keywords
insulating film
film
transistor
thickness
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2042888A
Other languages
Japanese (ja)
Inventor
Masataka Takebuchi
竹渕 政孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2042888A priority Critical patent/JPH03245567A/en
Priority to US07/658,699 priority patent/US5101248A/en
Priority to EP19910102621 priority patent/EP0443603A3/en
Priority to KR1019910002887A priority patent/KR940005900B1/en
Publication of JPH03245567A publication Critical patent/JPH03245567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance a logic transistor in performance and degree of integration by a method wherein a high breakdown strength C-MOS transistor, memory cells, and a logic C-MOS transistor are mixedly mounted on the same substrate to constitute a semiconductor device, where the gate insulating film of the logic transistor is properly formed in thickness. CONSTITUTION:Gate insulating films used in an electrically erasable P-ROM are classified into three types in thickness, a tunnel insulating film in a memory cell 16, a 5V insulating film 17 in a logic transistor, and a high breakdown strength insulating film 18 in a memory cell. The films 16, 17, and 18 are so set in thickness to satisfy a formula, T16<T17<T18, where T16, T17, and T18 denote the thicknesses of the films 16, 17, and 18 respectively. The thickness of the film 16 is determined in accordance with a coupling ratio, and the easier rewriting becomes, the thinner the film 16 becomes. The film 18 is usually formed thicker than 450Angstrom . The thinner the film 17 becomes, the more it is enhanced in operational speed, a threshold value can be lessened in change due to a short channel effect, but a lower limit is determined basing on a voltage applied onto a gate insulating film. By this setup, a logic transistor can be improved in performance and degree of integration.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は半導体装置、特に、電気的に書換え可能な不
揮発性半導体記憶装置(EEFROM)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device, and particularly to an electrically rewritable nonvolatile semiconductor memory device (EEFROM).

(従来の技術) 電気的に記憶情報の消去、再書き込みが可能な不揮発性
メモリとしてE E PROM(electrical
ly erasable and programma
bleROM)が知られている。EEPROMはEPR
OMと同様に、メモリセルに蓄えられた電荷により情報
を記憶するが、書き込みや消去時の電荷の移動にはトン
ネル現象が利用され、基板上の薄いトンネル絶縁膜を介
したトンネル電流によって、浮遊ゲートと電子のやりと
りが行われる。
(Prior Art) EEPROM (electrical
ly erasable and programmable
bleROM) is known. EEPROM is EPR
Similar to OM, information is stored using charges stored in memory cells, but tunneling is used to move charges during writing and erasing, and a tunnel current passing through a thin tunnel insulating film on the substrate causes floating Electrons are exchanged with the gate.

第4図(a)は従来のE E P ROMの1個のメモ
リセル構造を示すパターン平面図、第4図(b)は同図
(a)のx−x’線に沿った断面図、第4図(c)は同
図(a)のY−Y’線に沿った断面図、第4図(d)は
上記メモリセルと同一基板内に形成されるゲートアレイ
等大規模論理回路を構成するロジック系トランジスタを
示す断面図である。
FIG. 4(a) is a pattern plan view showing the structure of one memory cell of a conventional EEPROM, FIG. 4(b) is a cross-sectional view taken along line xx' in FIG. 4(a), FIG. 4(c) is a cross-sectional view taken along the line Y-Y' in FIG. 4(a), and FIG. 4(d) shows a large-scale logic circuit such as a gate array formed on the same substrate as the memory cell. FIG. 2 is a cross-sectional view showing a logic transistor included in the device.

第4図(a)〜(C)において、1ビツト(情報の単位
)を表すセルは、半選択を防止するための選択トランジ
スタ41と情報を記憶するための記憶トランジスタ42
より構成されている。すなわち、半導体基板43上の素
子分離領域44によって分離された素子領域にゲート絶
縁膜45を介して選択ゲート46及び浮遊ゲート47が
隣接して形成され、さらに層間絶縁膜48を介して制御
ゲート49が形成されている。
In FIGS. 4(a) to (C), a cell representing one bit (unit of information) has a selection transistor 41 for preventing half selection and a storage transistor 42 for storing information.
It is composed of That is, a selection gate 46 and a floating gate 47 are formed adjacent to each other with a gate insulating film 45 interposed in an element region separated by an element isolation region 44 on a semiconductor substrate 43, and a control gate 49 is further formed with an interlayer insulating film 48 interposed therebetween. is formed.

なお、50は基板と逆導電型の拡散層、51は層間絶縁
膜上に形成されたアルミニウム配線である。
Note that 50 is a diffusion layer of a conductivity type opposite to that of the substrate, and 51 is an aluminum wiring formed on an interlayer insulating film.

記憶トランジスタ42中、情報の蓄積場所は、電気的に
浮遊状態にある浮遊ゲート47である。この浮遊ゲート
47に電子を蓄積/欠乏させることで、記憶トランジス
タの0N10FFが制御される。
In the storage transistor 42, information is stored at a floating gate 47 that is electrically floating. By accumulating/depleting electrons in this floating gate 47, 0N10FF of the storage transistor is controlled.

浮遊ゲート47に電子を蓄積/欠乏させるには、ゲート
絶縁膜45の一部が薄い膜厚(例えば100人程程度と
なっているトンネル絶縁膜52の領域を用いる。すなわ
ち、制御ゲート49と拡散層50とのバイアスにより、
上記トンネル絶縁膜52を介してトンネル電流が流れる
。これにより、浮遊ゲート47における電子の授受が達
成される。
In order to accumulate/deplete electrons in the floating gate 47, a region of the tunnel insulating film 52 where a part of the gate insulating film 45 is thin (for example, about 100 layers) is used. Due to the bias with layer 50,
A tunnel current flows through the tunnel insulating film 52. Thereby, transfer of electrons at the floating gate 47 is achieved.

一方、第4図(d)に示す大規模論理回路を構成するロ
ジック系トランジスタも、同じ基板43内においてゲー
ト絶縁膜45を介してゲート電極53が形成され、基板
上にはゲート電極53を隔てて基板と逆導電型の拡散領
域が形成されている。
On the other hand, in the logic transistors constituting the large-scale logic circuit shown in FIG. A diffusion region having a conductivity type opposite to that of the substrate is formed.

ところで、上記トンネル現象を利用したEEFROMで
は、セルの書き込み及び消去に必要な電力が小さくてよ
いので、素子に高電圧を発生させる昇圧回路(図示せず
)を内蔵し、単一電源(例えば5V)で動作するものが
多い。
By the way, in the EEFROM that utilizes the above-mentioned tunneling phenomenon, the power required for writing and erasing cells is small, so a booster circuit (not shown) is built in to generate a high voltage in the element, and a single power supply (for example, 5V) is required. ).

上記従来例では、第4図(a)〜(c)に示すメモリセ
ルや選択トランジスタのゲート電極には、昇圧回路から
の高電圧(約20■)がかかり、第4図(d)に示すロ
ジック系トランジスタのゲート電極には通常の電源電圧
(約5V)かかかる。
In the above conventional example, a high voltage (approximately 20 µm) from the booster circuit is applied to the gate electrodes of the memory cells and selection transistors shown in FIGS. 4(a) to 4(c), and the gate electrodes of the memory cells and selection transistors shown in FIG. A normal power supply voltage (approximately 5V) is applied to the gate electrode of the logic transistor.

しかしながら、上記使用電圧にかかわらず、ゲート絶縁
膜はトンネル絶縁膜52の領域を除き、同一の膜厚h(
例えば450人程程度で構成されている。つまり、従来
のEEFROMで使用しているゲート絶縁膜は、100
人程程度膜厚のトンネル絶縁膜以外は高耐圧系、5v系
のトランジスタにかかわらず、すべて450人程程度膜
厚で構成されている。
However, regardless of the voltage used, the gate insulating film has the same thickness h (except for the tunnel insulating film 52 region).
For example, it is made up of about 450 people. In other words, the gate insulating film used in conventional EEFROM is 100%
Except for the tunnel insulating film, which has a thickness of about 450 mm, all the transistors have a thickness of about 450 mm, regardless of whether they are high voltage type or 5V type transistors.

このような構成では、上記ロジック系トランジスタは、
動作電圧が電源電圧の5Vでありなから、450人とい
う高耐圧系のケート絶縁膜と同し膜厚を有して動作する
ことになる。これについて、以下のような問題点か生じ
る。
In such a configuration, the logic transistor is
Since the operating voltage is 5V, which is the power supply voltage, it operates with the same film thickness as the 450-meter high-voltage type Kate insulating film. Regarding this, the following problems arise.

第1の問題として、動作速度か遅くなるという欠点かあ
る。
The first problem is that the operating speed is slow.

通常、簡単な手段として、単体トランジスタの動作速度
を見積もるのにドレイン・ソース間電流105を求める
。このIDSか大きいと動作速度か大きくなる関係にあ
る。上記105は、通常使用されているトランジスタの
飽和領域において、次式で表すことができる。
Usually, as a simple means, the drain-source current 105 is determined to estimate the operating speed of a single transistor. There is a relationship where the greater the IDS, the greater the operating speed. The above 105 can be expressed by the following equation in the saturation region of commonly used transistors.

ここで、 ただし、 μはチャネル内移動度、 COXはゲー ト 絶縁膜容量、Wはチャネル幅、Lはチャネル長、VGS
はゲート・ソース間電圧、VT□はしきい値、dlは絶
縁膜厚、ε0は真空の誘電率、ε1は絶縁膜の比誘電率
、Sは電極面積である。
Here, μ is the intra-channel mobility, COX is the gate insulating film capacitance, W is the channel width, L is the channel length, and VGS
is the gate-source voltage, VT□ is the threshold value, dl is the insulating film thickness, ε0 is the permittivity of vacuum, ε1 is the dielectric constant of the insulating film, and S is the electrode area.

上記(1)式よれば、絶縁膜厚d1が大きくなるに伴い
IDSが減少する。従って、ゲート絶縁膜か厚くなるほ
どトランジスタの動作速度が遅くなる。
According to the above equation (1), IDS decreases as the insulating film thickness d1 increases. Therefore, the thicker the gate insulating film, the slower the operating speed of the transistor becomes.

第2に近年微細化が進む中で、新たな障害となっている
短チヤネル効果の問題がある。短チヤネル効果の近似式
は次式で表すことができる。
Second, as miniaturization progresses in recent years, there is the problem of the short channel effect, which has become a new obstacle. An approximate expression for the short channel effect can be expressed by the following expression.

ここで、 ΔL=[(X j +Wj)2 We2]’  2−X
 jただし、ΔVTHは短チヤネル効果によるVTR変
化分、εSはシリコンの比誘電率、qは電荷量、NAは
アクセプタ不純物濃度、ψBは表面ポテンシャル、CI
は絶縁膜容量、Lt4tは実効チャネル長、Xjは接合
深さ、Wjは接合空乏層幅、Wcはチャネル空乏層幅で
ある。
Here, ΔL=[(X j +Wj)2 We2]' 2-X
j However, ΔVTH is the VTR change due to the short channel effect, εS is the dielectric constant of silicon, q is the amount of charge, NA is the acceptor impurity concentration, ψB is the surface potential, CI
is the insulating film capacitance, Lt4t is the effective channel length, Xj is the junction depth, Wj is the junction depletion layer width, and Wc is the channel depletion layer width.

上記(2)式によれば、絶縁膜厚d1か大きくなるに伴
い、ΔVTHは大きくなり、短チヤネル効果がより一層
大きくなり、集積化の妨げになる。
According to the above equation (2), as the insulating film thickness d1 increases, ΔVTH increases, the short channel effect becomes even greater, and this becomes a hindrance to integration.

(発明か解決しようとする課題) EEFROMでは従来、各種トランジスタのゲート絶縁
膜か、トンネル絶縁膜領域を除き、その使用電圧によら
ず、同一の膜厚で構成されている。
(Problems to be Solved by the Invention) Conventionally, EEFROMs have been constructed with the same film thickness regardless of the voltage used, except for the gate insulating film of various transistors or the tunnel insulating film region.

このため、電源電圧で動作するメモリセル周辺の回路及
び大規模論理回路の動作速度向上の妨げとなるばかりで
なく、短チヤネル効果が大きくなるため集積化の妨げと
なるという欠点があった。
This not only hinders the improvement in operating speed of circuits around memory cells and large-scale logic circuits that operate on a power supply voltage, but also has the drawback that the short channel effect increases, which hinders integration.

この発明は上記のような事情を考慮してなされたもので
あり、その目的は、通常の電源電圧で動作するメモリセ
ル周辺回路及び大規模論理回路を構成するロジック系ト
ランジスタの性能向上と高集積化を実現する半導体装置
を提供することにある。
This invention was made in consideration of the above circumstances, and its purpose is to improve the performance and high integration of logic transistors that constitute memory cell peripheral circuits and large-scale logic circuits that operate at normal power supply voltages. The objective is to provide a semiconductor device that realizes the

[発明の構成] (課題を解決するための手段) この発明の半導体装置は第1の膜厚の第1のゲート絶縁
膜を有し、第1の電源電圧で動作する第1のMOS型ト
ランジスタと、上記第1のゲート絶縁膜とこの絶縁膜の
一部内で第1の膜厚よりも薄い第2の膜厚の第2のゲー
ト絶縁膜とを有し、上記第1の電源電圧で動作する第2
のMOS型トランジスタと、上記第1のゲート絶縁膜よ
りも薄く第2のゲート絶縁膜より厚い第3の膜厚の第3
のゲート絶縁膜を有し、上記M1の電源電圧よりも低い
第2の電源電圧で動作する第3の〜10Sトランジスタ
とから構成される。
[Structure of the Invention] (Means for Solving the Problems) A semiconductor device of the present invention includes a first MOS transistor having a first gate insulating film having a first thickness and operating at a first power supply voltage. and a second gate insulating film having a second film thickness thinner than the first film thickness within a part of the first gate insulating film, and operates at the first power supply voltage. Second to do
a third MOS transistor having a third film thickness that is thinner than the first gate insulating film and thicker than the second gate insulating film.
and a third ~10S transistor which has a gate insulating film and operates at a second power supply voltage lower than the power supply voltage of M1.

(作用) この発明では、5V電源にて動作する EEPROMの周辺回路やE E P ROMと同一の
半導体基板上に混載された大規模論理回路を構成するロ
ジック系トランジスタのゲート絶縁膜の膜厚を、書き込
みや消去用の高電圧が印加されるセルやトランジスタの
ゲート絶縁膜の膜厚よりも薄膜化する。この結果、上記
ゲート絶縁膜で構成される新規トランジスタにより、ド
レイン電流か増加するので、動作速度の向上か達成され
る。さらに、短チヤネル効果によるしきい値の走化量も
抑制できる。
(Function) In this invention, the film thickness of the gate insulating film of the logic transistor that constitutes the peripheral circuit of the EEPROM that operates on a 5V power supply and the large-scale logic circuit that is mounted on the same semiconductor substrate as the EEPROM is determined. , the film is thinner than the gate insulating film of cells and transistors to which high voltages for writing and erasing are applied. As a result, the drain current increases due to the new transistor formed with the gate insulating film, thereby achieving an improvement in operating speed. Furthermore, the amount of threshold chemotaxis due to the short channel effect can also be suppressed.

(実施例) 以下、図面を参照してこの発明を実施例により説明する
(Examples) Hereinafter, the present invention will be explained by examples with reference to the drawings.

第1図(a)〜(c)はこの発明の一実施例に係るEE
FROMを構成するそれぞれのトランジスタ構造を示す
断面図であり、第1図(a)は昇圧された高電圧(20
V)で動作するメモリセル周辺の高耐圧系のトランジス
タの構造を示す断面図、第1図(b)はメモリセルトラ
ンジスタの構造を示す断面図、第1図(c)は通常の電
源電圧(5v)で動作するメモリセル周辺回路及び大規
模論理回路を構成するロジック系CMOS)ランジスタ
のうち、一方チャネルのトランジスタの構造を示す断面
図である。
FIGS. 1(a) to (c) show an EE according to an embodiment of the present invention.
FIG. 1(a) is a cross-sectional view showing the structure of each transistor constituting the FROM. FIG.
1(b) is a sectional view showing the structure of a memory cell transistor, and FIG. 1(c) is a sectional view showing the structure of a high-voltage transistor around a memory cell that operates at a normal power supply voltage ((V). FIG. 2 is a cross-sectional view showing the structure of one channel transistor of a logic CMOS transistor that constitutes a memory cell peripheral circuit and a large-scale logic circuit that operate at 5V.

これら第1図の各トランジスタは同一の半導体基板l上
上に混載されている。周知のように、基板とは逆導電型
の拡散領域12がゲート電極13 (13−1またはI
 3−2)を隔てて形成されている。基板とゲート電1
j 13−1の間にはそれぞれゲート絶縁膜か、ゲート
電極13−1と13−2の間には層間絶縁膜14が形成
されている。なお、第1図(C)の破線15はL D 
D (lightly doped drain )構
造のためのゲート側壁部を示す。
These transistors shown in FIG. 1 are mounted together on the same semiconductor substrate l. As is well known, the diffusion region 12 having a conductivity type opposite to that of the substrate is connected to the gate electrode 13 (13-1 or I
3-2). Substrate and gate electrode 1
A gate insulating film is formed between the gate electrodes 13-1, and an interlayer insulating film 14 is formed between the gate electrodes 13-1 and 13-2. In addition, the broken line 15 in FIG. 1(C) is L D
The gate sidewall portion for the D (lightly doped drain) structure is shown.

この発明では、EEFROMで使用されるゲート絶縁膜
として、メモリセルにおけるトンネル絶縁膜I6、ロジ
ック系トランジスタにおける5V系絶縁膜17、メモリ
セル及び高耐圧系のトランジスタにおける高耐圧系絶縁
膜18のそれぞれ3種類の異なった膜厚に大別される。
In this invention, three gate insulating films used in the EEFROM include a tunnel insulating film I6 in a memory cell, a 5V insulating film 17 in a logic transistor, and a high voltage insulating film 18 in a memory cell and a high voltage transistor. It is broadly classified into different types of film thickness.

すなわち、第1図(C)で示す通常の電源電圧(5v)
で動作するロジック系トランジスタのゲート絶縁膜は、
高耐圧系絶縁膜1Bの膜厚よりも薄膜化された5V系絶
縁膜17として形成される。
That is, the normal power supply voltage (5V) shown in FIG. 1(C)
The gate insulating film of a logic transistor that operates in
It is formed as a 5V insulating film 17 that is thinner than the high voltage insulating film 1B.

この実施例では、高耐圧系絶縁膜18が450人程度広
膜厚に対して、5v系絶縁膜17は250人の膜厚にな
っている。これにより、5v系のロジック系トランジス
タの高速化に大きく寄与する。
In this embodiment, the high voltage insulating film 18 has a thickness of about 450 people, while the 5V insulating film 17 has a thickness of 250 people. This greatly contributes to increasing the speed of 5V logic transistors.

しかも、短チヤネル効果も抑えられ、集積度か向上する
Furthermore, the short channel effect is suppressed, and the degree of integration is improved.

次に、上記3種類の絶縁膜について、その膜厚関係を詳
細に説明する。
Next, the relationship between the film thicknesses of the above three types of insulating films will be explained in detail.

まず、最も薄いゲート絶縁膜は、電荷移動のために高電
界を必要とするトンネル絶縁膜16である。
First, the thinnest gate insulating film is the tunnel insulating film 16, which requires a high electric field for charge transfer.

上記トンネル絶縁膜16の膜厚は記憶トランジスタのカ
ップリング比という容量結合比から決定されることが多
い。容量結合比とは浮遊ゲートへの電荷の授受を行う際
の書き込みのし易さ/し難さを示すパラメータに相当し
、この比が大きければ書き込みがし易いことを示す。
The thickness of the tunnel insulating film 16 is often determined from a capacitive coupling ratio called a coupling ratio of a storage transistor. The capacitive coupling ratio corresponds to a parameter that indicates the ease/difficulty of writing when transferring charge to and from the floating gate, and the larger this ratio is, the easier it is to write.

上記トンネル絶縁膜16の膜厚が厚くなれば、書き換え
がしにくくなり、薄くなると書き換えは有利になる。し
かし、薄くしすぎるとEEFROMの最も重要な信頼性
項目である電荷保持特性を悪化させることになるので、
膜厚の上限、下限はがなり厳しい制約を受ける。このよ
うな背景から、実際にはトンネル絶縁膜16の膜厚A(
第1図に図示)は、100人程度広なければならない。
The thicker the tunnel insulating film 16 is, the harder it is to rewrite, and the thinner it is, the more advantageous it is to rewrite. However, if it is made too thin, it will deteriorate the charge retention characteristics, which is the most important reliability item for EEFROM.
The upper and lower limits of film thickness are severely restricted. From this background, in reality, the film thickness A (
(Illustrated in Figure 1) should be spread out for about 100 people.

次に、20Vの電圧かかかる高耐圧系絶縁膜18につい
て説明する。
Next, the high voltage insulating film 18 to which a voltage of 20V is applied will be explained.

通常、450人程度広膜厚を使用する。電界としては約
4.4MV/cmかかる。特にこの膜厚が電界強度的に
心配であれば、上記膜厚をある程度厚く形成しても何ら
問題はない。従って、高耐圧系絶縁膜18の膜厚C(第
1図(a)、(b)f:図示)は450人以上必要であ
るという制約を設ける。
Usually, about 450 people use a wide film thickness. It takes about 4.4 MV/cm as an electric field. Especially if this film thickness is a concern in terms of electric field strength, there is no problem even if the film thickness is formed to a certain extent. Therefore, the film thickness C (FIGS. 1(a), (b), and f: shown) of the high-voltage insulating film 18 is constrained to require at least 450 people.

次に5Vの電源電圧で使用される5V系絶縁膜17につ
いて説明する。
Next, the 5V insulating film 17 used at a power supply voltage of 5V will be explained.

前記したように膜厚B(第1図(c)に図示)は250
人程度広ある。特に上記膜厚でなくとも良いが、膜厚を
厚くしていくと動作速度の低下、短チヤネル効果による
しきい値の変化、ばらつきがより一層顕著になる。膜厚
を薄くしていくと上記現象と逆の効果が期待できる。下
限はゲート絶縁膜にかかる電界で決定されるが、120
人程度広ては可能である。
As mentioned above, the film thickness B (shown in FIG. 1(c)) is 250
It's about the size of a person. In particular, the film thickness does not have to be the above, but as the film thickness increases, the reduction in operating speed and changes and variations in the threshold value due to the short channel effect become more noticeable. As the film thickness is made thinner, the opposite effect to the above phenomenon can be expected. The lower limit is determined by the electric field applied to the gate insulating film, but is 120
It is possible to spread the number of people.

以上述べたように、E E F ROMで使用するゲー
ト絶縁膜はトンネル絶縁膜J8と5V系絶縁膜17と高
耐圧系絶縁膜18の異なった3種類に大別される。トン
ネル絶縁膜の膜厚をA、5■系絶縁膜の膜厚をB、高耐
圧系絶縁膜の膜厚をCとすれば、この膜厚の大きさの関
係は A<B<C・・・(3) である。
As described above, the gate insulating film used in the EEF ROM is roughly divided into three different types: the tunnel insulating film J8, the 5V type insulating film 17, and the high voltage type insulating film 18. If the thickness of the tunnel insulating film is A, the thickness of the 5-type insulating film is B, and the thickness of the high voltage insulating film is C, then the relationship between the film thicknesses is A<B<C.・(3) It is.

上記関係中A<Bは絶対条件にある。なぜなら、トンネ
ル絶縁膜1Bの膜厚の許容範囲は前記したように特性上
非常に狭く、厚く形成することはできない。一方、5V
系絶縁膜17の電界で決まる下限値は、製造上のばらつ
きとトランジスタの信頼性を考慮して120人(4,2
〜1v/cm)となるからである。
In the above relationship, A<B is an absolute condition. This is because, as described above, the allowable range of the thickness of the tunnel insulating film 1B is extremely narrow due to its characteristics, and it cannot be formed thickly. On the other hand, 5V
The lower limit determined by the electric field of the system insulating film 17 is 120 people (4, 2
~1v/cm).

次に、上記関係中B<Cについては、この発明ではいう
までもなく必要条件にある。上述した問題を解消し、動
作の高速化や、素子の性能を十分に発揮させるためには
この条件が必要となる。
Next, it goes without saying that B<C in the above relationship is a necessary condition in this invention. This condition is necessary in order to solve the above-mentioned problems, increase the speed of operation, and fully demonstrate the performance of the device.

さらに、スケーリングを考慮して設計上の比率を次式に
示す。
Furthermore, the design ratio is shown in the following equation in consideration of scaling.

A: B :’C=1 : 2.1 :4.2    
 ・・・(4)たたし、製造工程上のばらつきを考慮し
て、左辺各々の膜厚は右辺の数値に対してそれぞれ±2
5%の許容範囲をもたせる。
A: B:'C=1: 2.1: 4.2
...(4) However, taking into account variations in the manufacturing process, the film thickness of each left side is ±2 relative to the value on the right side.
Allow a tolerance of 5%.

例えば、トンネル絶縁膜1Bの膜厚Aを80人とした場
合、上記(2)式より、5v系絶縁膜17の膜厚Bは1
68±41人、高耐圧系絶縁膜18の膜厚Cは336±
82人となる。膜厚Aを80人にすることにより、従来
20V必要であった昇圧電圧を17V程度まで下げるこ
とが可能になる。ただし、この場合、層間絶縁膜14の
薄膜化も同時に行う必要がある。
For example, if the thickness A of the tunnel insulating film 1B is 80 people, then from the above equation (2), the thickness B of the 5V insulating film 17 is 1
68±41 people, film thickness C of high voltage insulating film 18 is 336±
There will be 82 people. By setting the film thickness A to 80, it becomes possible to lower the boost voltage, which conventionally required 20V, to about 17V. However, in this case, it is also necessary to thin the interlayer insulating film 14 at the same time.

このように、各種絶縁膜の膜厚に対して、各々のトラン
ジスタについて最高の性能が引き出されるように設計さ
れ、しかもスケーリングを考慮して比を規定することは
非常に重要である。
As described above, it is very important to design each transistor to bring out the best performance for various insulating film thicknesses, and to define the ratio in consideration of scaling.

第2図(a)〜(c)は上記第1図における各トランジ
スタの製造工程を順次示す一実施例の断面図である。図
の左側から、上記高耐圧系のトランジスタを構成する高
耐圧系領域、メモリセルトランジスタを構成するメモリ
セル領域、ロジック系トランジスタを構成する5v系領
域を示し、同一基板内に混載して形成される。なお、こ
の第2図では、浮遊ゲートと制御ゲートとの間の層間絶
縁膜か単層の絶縁膜で構成される場合の一実施例方法を
示すものである。
FIGS. 2(a) to 2(c) are cross-sectional views of one embodiment sequentially showing the manufacturing process of each transistor in FIG. 1. From the left side of the figure, a high voltage region constituting the high voltage transistor, a memory cell region constituting the memory cell transistor, and a 5V region constituting the logic transistor are shown, all of which are formed together on the same substrate. Ru. Note that FIG. 2 shows one embodiment of the method in which the interlayer insulating film or the single-layer insulating film between the floating gate and the control gate is used.

半導体基板21に素子分離絶縁膜22形成後、基板を熱
酸化して、所望の膜厚の高耐圧系のゲート絶縁膜23を
形成する(第2図(a))。
After forming the element isolation insulating film 22 on the semiconductor substrate 21, the substrate is thermally oxidized to form a high-voltage gate insulating film 23 having a desired thickness (FIG. 2(a)).

次に、フォトリソグラフィ技術を用いて、メモリセル領
域におけるトンネル窓領域のみ、基板21が露出するま
で開孔する。熱酸化によって、トンネル絶縁膜24を形
成後、LPCVD法(減圧CVD法)等により、第1の
導電膜25を形成する。
Next, using photolithography technology, holes are opened only in the tunnel window region in the memory cell region until the substrate 21 is exposed. After forming the tunnel insulating film 24 by thermal oxidation, the first conductive film 25 is formed by LPCVD (low pressure CVD) or the like.

続いて熱処理後、再びフォトリソグラフィ技術を用いて
、5v領域に延在する第1の導電膜25及びゲート絶縁
膜23をエツチング除去し、5v領域における素子能動
領域の基板21の表面を露出させる(第2図(b))。
Subsequently, after heat treatment, the first conductive film 25 and gate insulating film 23 extending in the 5V region are etched away using photolithography again, and the surface of the substrate 21 in the element active region in the 5V region is exposed ( Figure 2(b)).

次に、メモリセル領域及び高耐圧系領域の層間絶縁膜2
6と5v系領域のゲート絶縁膜27を同時に形成する。
Next, the interlayer insulating film 2 in the memory cell area and high voltage area is
Gate insulating films 27 for the 6V and 5V regions are formed at the same time.

このゲート絶縁膜27は基板から成長させるので、第1
の導電膜25(ポリシリコン)上の層間絶縁膜26の半
分ぐらいの膜厚にしかならない。
Since this gate insulating film 27 is grown from the substrate, the first
The film thickness is only about half that of the interlayer insulating film 26 on the conductive film 25 (polysilicon).

このように、ゲート絶縁膜27を所望の膜厚で形成し、
引き続き第2の導電膜28を堆積し、熱処理する(第2
図(C))。
In this way, the gate insulating film 27 is formed with a desired thickness,
Subsequently, a second conductive film 28 is deposited and heat treated (second
Figure (C)).

なお、メモリ領域において、第1の導電膜は浮遊ゲート
となり、第2の導電膜は制御ゲートになる。また、高耐
圧系トランジスタは、後で第1導電膜と第2導電膜をシ
ョートさせるか、第2導電膜を除去して使用される。
Note that in the memory region, the first conductive film serves as a floating gate, and the second conductive film serves as a control gate. Further, the high voltage transistor is used later by shorting the first conductive film and the second conductive film or by removing the second conductive film.

第3図(a)〜(c)は上記第2図と同様に上記第1図
の各トランジスタの製造工程を順次示す他の実施例によ
る断面図である。なお、この第3図では、浮遊ゲートと
制御ゲートとの間の層間絶縁膜が比誘電率の異なる2つ
以上の絶縁膜で構成される場合の一実施例方法を示すも
のである。この実施例では、上記層間絶縁膜は酸化膜/
窒化膜/酸化膜からなる。
FIGS. 3(a) to 3(c) are cross-sectional views of other embodiments showing the manufacturing steps of each transistor shown in FIG. 1 in sequence, similar to FIG. 2 above. Note that FIG. 3 shows an example method in which the interlayer insulating film between the floating gate and the control gate is composed of two or more insulating films having different dielectric constants. In this embodiment, the interlayer insulating film is an oxide film/
Consists of nitride film/oxide film.

半導体基板31に素子分離絶縁膜32形成後、基板を熱
酸化して、所望の膜厚の高耐圧系のゲート絶縁膜33を
形成する(第3図(a))。
After forming the element isolation insulating film 32 on the semiconductor substrate 31, the substrate is thermally oxidized to form a high-voltage gate insulating film 33 having a desired thickness (FIG. 3(a)).

次に、フォトリソグラフィ技術を用いて、トンネル窓領
域のみ基板31が露出するまで開孔する。
Next, using photolithography technology, holes are opened until the substrate 31 is exposed only in the tunnel window region.

熱酸化によってトンネル絶縁膜34を形成後、LPCV
D法(減圧化学的気相成長法)等により第1の導電膜3
5を形成する。続いて熱処理後、層間絶縁膜36として
、酸化膜、窒化膜、酸化膜を熱酸化またはCVD法によ
り順次形成する。その後、再びフォトリソグラフィ技術
を用いて、5V領域に延在する上記3層よりなる層間絶
縁膜36及び第1の導電膜35及び高耐圧系のゲート絶
縁膜34を順次エツチング除去し、5V系領域における
素子能動領域の基板31の表面を露出させる(第3図(
b))。
After forming the tunnel insulating film 34 by thermal oxidation, LPCV
The first conductive film 3 is formed by D method (low pressure chemical vapor deposition method) or the like.
form 5. Subsequently, after heat treatment, an oxide film, a nitride film, and an oxide film are sequentially formed as the interlayer insulating film 36 by thermal oxidation or CVD. Thereafter, using the photolithography technique again, the interlayer insulating film 36, the first conductive film 35, and the high voltage gate insulating film 34 consisting of the three layers extending in the 5V region are sequentially removed by etching. The surface of the substrate 31 in the element active region is exposed (see FIG. 3 (
b)).

次に、5v系領域のゲート絶縁膜37を熱酸化により所
望の膜厚に形成し、引き続き第2の導電膜38を堆積し
、熱処理する(第3図(C))。
Next, the gate insulating film 37 in the 5V region is formed to a desired thickness by thermal oxidation, and then the second conductive film 38 is deposited and heat treated (FIG. 3(C)).

このように、高耐圧系領域よりも5V系領域のゲート絶
縁膜を薄膜化したことにより、通常の5vの電源電圧で
動作するメモリセル周辺回路及び大規模論理回路を構成
するロジック系トランジスタの動作時、ドレイン電流が
増加し、動作速度の向上が達成される。また、縮小化に
よる短チヤネル効果も抑えられ、高集積化が実現される
という利点がある。
By making the gate insulating film in the 5V region thinner than in the high-voltage region, the operation of logic transistors that constitute memory cell peripheral circuits and large-scale logic circuits that operate on a normal 5V power supply voltage is improved. At this time, the drain current increases and an improvement in operating speed is achieved. Further, there is an advantage that the short channel effect due to miniaturization can be suppressed, and high integration can be achieved.

[発明の効果] 以上説明したようにこの発明の方法によれば、適当なゲ
ート絶縁膜をもって、メモリセル周辺回路及び大規模論
理回路を構成するロジック系トランジスタが構成される
ので、動作速度を向上させることができる。しかも、短
チヤネル効果を抑えつつ、集積度を向上させることかで
きる。よって、信頼性の高い半導体装置が提供できる。
[Effects of the Invention] As explained above, according to the method of the present invention, logic transistors constituting memory cell peripheral circuits and large-scale logic circuits are configured with an appropriate gate insulating film, thereby improving operating speed. can be done. Moreover, the degree of integration can be improved while suppressing the short channel effect. Therefore, a highly reliable semiconductor device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)はそれぞれこの発明の一実施例に
係るEEFROMを構成する各トランジスタ構造を示す
断面図、第2図(a)〜(c)はそれぞれ上記第1図に
おける各トランジスタの製造工程を順次示す一実施例の
断面図、第3図(a)〜(C)はそれぞれ上記第1図に
おける各トランジスタの製造工程を順次示す他の実施例
による断面図、第4図(a)は従来のE E FROM
の1個のメモリセル構造を示すパターン平面図、第4図
(b)は同図(a)のx−x’線に沿った断面図、第4
図(c)は同図(a)のY−Y’線に沿った断面図、第
4図(d)は上記メモリセルと同一基板内の大規模論理
回路を構成するロジック系トランジスタを示す断面図で
ある。 11・・・半導体基板、12・・・拡散領域、13−1
.13−2・・・ゲート電極、14・・・層間絶縁膜、
15−・・ゲート側壁部、1B・・・トンネル絶縁膜、
17・・・5v系絶縁膜、18・・・高耐圧系絶縁膜。
FIGS. 1(a) to (C) are sectional views showing each transistor structure constituting an EEFROM according to an embodiment of the present invention, and FIGS. 2(a) to (c) are sectional views showing each transistor structure in FIG. 3(a) to (C) are sectional views of another embodiment sequentially showing the manufacturing process of each transistor in FIG. 1, and FIG. (a) is the conventional E E FROM
FIG. 4(b) is a pattern plan view showing the structure of one memory cell in FIG.
Figure (c) is a cross-sectional view taken along the Y-Y' line in figure (a), and Figure 4 (d) is a cross-sectional view showing a logic transistor that constitutes a large-scale logic circuit on the same substrate as the memory cell. It is a diagram. 11... Semiconductor substrate, 12... Diffusion region, 13-1
.. 13-2... Gate electrode, 14... Interlayer insulating film,
15-...Gate side wall part, 1B...Tunnel insulating film,
17...5V type insulating film, 18...High voltage type insulating film.

Claims (3)

【特許請求の範囲】[Claims] (1)第1の膜厚の第1のゲート絶縁膜を有し、第1の
電源電圧で動作する第1のMOS型トランジスタと、 上記第1のゲート絶縁膜とこの絶縁膜の一部内で第1の
膜厚よりも薄い第2の膜厚の第2のゲート絶縁膜とを有
し、上記第1の電源電圧で動作する第2のMOS型トラ
ンジスタと、 上記第1のゲート絶縁膜よりも薄く第2のゲート絶縁膜
より厚い第3の膜厚の第3のゲート絶縁膜を有し、上記
第1の電源電圧よりも低い第2の電源電圧で動作する第
3のMOSトランジスタとを具備したことを特徴とする
半導体装置。
(1) A first MOS transistor having a first gate insulating film having a first thickness and operating at a first power supply voltage; a second MOS transistor having a second gate insulating film having a second thickness thinner than the first film thickness and operating at the first power supply voltage; a third MOS transistor having a third gate insulating film having a third thickness that is thinner than the second gate insulating film and operating at a second power supply voltage lower than the first power supply voltage; A semiconductor device characterized by comprising:
(2)前記第2のMOS型トランジスタは電気的に記憶
情報の消去、書き込みが可能な不揮発性半導体記憶装置
のメモリセルとして構成されるセルトランジスタであり
、 前記第1のMOS型トランジスタは上記メモリセル周辺
の高耐圧系トランジスタであり、 前記第3のMOS型トランジスタは上記不揮発性半導体
記憶装置における周辺の大規模論理回路を構成するロジ
ック系トランジスタであることを特徴とする請求項1記
載の半導体装置。
(2) The second MOS type transistor is a cell transistor configured as a memory cell of a nonvolatile semiconductor storage device in which stored information can be electrically erased and written, and the first MOS type transistor is a cell transistor configured as a memory cell of a nonvolatile semiconductor storage device in which stored information can be electrically erased and written. 2. The semiconductor according to claim 1, wherein the semiconductor is a high-voltage transistor in the periphery of a cell, and the third MOS transistor is a logic transistor constituting a large-scale logic circuit in the periphery of the nonvolatile semiconductor memory device. Device.
(3)前記第2の膜厚をA、第3の膜厚をB、第1の膜
厚をCとした場合、 A:B:C=1:2.1:4.2なる比例関係を有し、
右辺側各項について±25%の膜厚関係内にあることを
特徴とする請求項2記載の半導体装置。
(3) When the second film thickness is A, the third film thickness is B, and the first film thickness is C, the proportional relationship is A:B:C=1:2.1:4.2. have,
3. The semiconductor device according to claim 2, wherein each term on the right side has a film thickness relationship of ±25%.
JP2042888A 1990-02-23 1990-02-23 Semiconductor device Pending JPH03245567A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2042888A JPH03245567A (en) 1990-02-23 1990-02-23 Semiconductor device
US07/658,699 US5101248A (en) 1990-02-23 1991-02-21 Semiconductor device
EP19910102621 EP0443603A3 (en) 1990-02-23 1991-02-22 Semiconductor device
KR1019910002887A KR940005900B1 (en) 1990-02-23 1991-02-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2042888A JPH03245567A (en) 1990-02-23 1990-02-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03245567A true JPH03245567A (en) 1991-11-01

Family

ID=12648573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2042888A Pending JPH03245567A (en) 1990-02-23 1990-02-23 Semiconductor device

Country Status (4)

Country Link
US (1) US5101248A (en)
EP (1) EP0443603A3 (en)
JP (1) JPH03245567A (en)
KR (1) KR940005900B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151610A (en) * 2000-10-27 2002-05-24 Samsung Electronics Co Ltd Nonvolatile memory element and its manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048769A (en) * 1997-02-28 2000-04-11 Intel Corporation CMOS integrated circuit having PMOS and NMOS devices with different gate dielectric layers
JP4614481B2 (en) * 1999-08-30 2011-01-19 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device
WO2001047012A1 (en) * 1999-12-21 2001-06-28 Koninklijke Philips Electronics N.V. Non-volatile memory cells and periphery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245165A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH01119070A (en) * 1987-10-31 1989-05-11 Toshiba Corp Semiconductor device and manufacture thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120166A (en) * 1980-02-27 1981-09-21 Hitachi Ltd Semiconductor ic device and manufacture thereof
JPS57113278A (en) * 1980-12-30 1982-07-14 Fujitsu Ltd Manufactue of eprom device
JPS58197776A (en) * 1982-05-12 1983-11-17 Mitsubishi Electric Corp Semiconductor memory storage
JPS5916371A (en) * 1982-07-19 1984-01-27 Nec Corp Nonvolatile semiconductor memory
JPS60226181A (en) * 1984-04-25 1985-11-11 Nec Corp Non-volatile semiconductor memory device
JPS6276668A (en) * 1985-09-30 1987-04-08 Toshiba Corp Semiconductor memory device
JPH07101713B2 (en) * 1988-06-07 1995-11-01 三菱電機株式会社 Method of manufacturing semiconductor memory device
US5008721A (en) * 1988-07-15 1991-04-16 Texas Instruments Incorporated Electrically-erasable, electrically-programmable read-only memory cell with self-aligned tunnel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245165A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JPH01119070A (en) * 1987-10-31 1989-05-11 Toshiba Corp Semiconductor device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151610A (en) * 2000-10-27 2002-05-24 Samsung Electronics Co Ltd Nonvolatile memory element and its manufacturing method
JP4588276B2 (en) * 2000-10-27 2010-11-24 三星電子株式会社 Method for manufacturing nonvolatile memory device

Also Published As

Publication number Publication date
EP0443603A2 (en) 1991-08-28
US5101248A (en) 1992-03-31
EP0443603A3 (en) 1992-02-12
KR940005900B1 (en) 1994-06-24
KR920000144A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
US6809966B2 (en) Non-volatile semiconductor memory device and fabricating method thereof
JPH0864699A (en) Nonvolatile semiconductor storage device
JP2002231830A (en) Semiconductor integrated circuit device including nonvolatile semiconductor memory
JPH10189776A (en) Nonvolatile semiconductor memory and fabrication thereof
JPH0536991A (en) Semiconductor storage device
JP2000150676A (en) Non-volatile semiconductor memory and its manufacture
US20080149995A1 (en) Nonvolatile memory device and methods of fabricating the same
JP4027656B2 (en) Nonvolatile semiconductor memory device and operation method thereof
JPH04348072A (en) Manufacture of nonvolatile semiconductor memory device
US6144064A (en) Split-gate EEPROM device having floating gate with double polysilicon layer
JPH03245567A (en) Semiconductor device
US7084453B2 (en) Method of forming different oxide thickness for high voltage transistor and memory cell tunnel dielectric
JP3173907B2 (en) Nonvolatile memory element and method of manufacturing the same
US5888871A (en) Methods of forming EEPROM memory cells having uniformly thick tunnelling oxide layers
JP2989205B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JP3856559B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JPS6158272A (en) Manufacture of non-voltile semiconductor memory
EP1146562A2 (en) Cell array, operating method of the same and manufacturing method of the same
JPH04253375A (en) Non-voltatile semiconductor memory device and its manufacture
JP3137091B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH02262376A (en) Non-volatile semiconductor memory and manufacture thereof
JPH08204031A (en) Manufacture of nonvolatile semiconductor memory element
JP3546896B2 (en) Nonvolatile semiconductor memory device
JPH01179369A (en) Manufacture of nonvolatile semiconductor memory
JPH0277169A (en) Nonvolatile memory device