JPH0320906B2 - - Google Patents

Info

Publication number
JPH0320906B2
JPH0320906B2 JP56060889A JP6088981A JPH0320906B2 JP H0320906 B2 JPH0320906 B2 JP H0320906B2 JP 56060889 A JP56060889 A JP 56060889A JP 6088981 A JP6088981 A JP 6088981A JP H0320906 B2 JPH0320906 B2 JP H0320906B2
Authority
JP
Japan
Prior art keywords
film
semiconductor
semiconductor layer
electrode
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56060889A
Other languages
Japanese (ja)
Other versions
JPS57176757A (en
Inventor
Mitsuru Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56060889A priority Critical patent/JPS57176757A/en
Publication of JPS57176757A publication Critical patent/JPS57176757A/en
Publication of JPH0320906B2 publication Critical patent/JPH0320906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Description

【発明の詳細な説明】 本発明は半導体装置に係り、特に集積回路は半
導体装置に於けるトランジスター及び電気的容量
の形成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices, and more particularly to integrated circuits and the formation of transistors and electrical capacitors in semiconductor devices.

半導体基板、特にシリコン半導体基板上に形成
する集積回路は、高集積化、大容量化の方向をた
どり、写真蝕刻法を用いた半導体表面の微細加工
技術の開発が種々なされている。この様な中にあ
つて、ICメモリを搭載した半導体ペレツト寸法
の縮少化の可能性及び該ICメモリの大容量化の
可能性も種々追求されている。これ等の目的達成
のために、回路面からの情報蓄積方法の開発又は
製造材料物質からの種々の情報蓄積方法の検討が
進められ、現在ダイナミツクRANのようなICメ
モリに於いては、情報蓄積部(以下セルと称す)
を1個のトランジスタと1個の情報蓄積容量部で
構成するのが最も上記目的に適したものと考えら
れている。該方法での情報蓄積方式では、該半導
体ペレツトの大部分を占めるのは前記セル部の情
報蓄積容量部面積である。この理由からこの方式
によるダイナミツクRANのペレツト面積の縮少
化又は該RANの大容量化を計るためには、該情
報蓄積容量部面積の縮少が最も有効な手段とな
る。しかし、この情報蓄積容量部面積を縮少し当
容量の値を減少させることは、この容量部に蓄積
される情報小信号量を減少させることになり、現
在考えられているセル構造では小信号の回路上の
感知が困難となる。
2. Description of the Related Art Integrated circuits formed on semiconductor substrates, particularly silicon semiconductor substrates, are becoming more highly integrated and larger in capacity, and various microfabrication techniques for semiconductor surfaces using photolithography have been developed. Under these circumstances, various efforts are being made to reduce the size of a semiconductor pellet on which an IC memory is mounted and to increase the capacity of the IC memory. In order to achieve these objectives, research is progressing on the development of information storage methods from the circuit side and various information storage methods from manufacturing materials.Currently, in IC memories such as Dynamic RAN, information storage (hereinafter referred to as cell)
It is considered that the most suitable configuration for the above purpose is to configure the circuit with one transistor and one information storage capacitor section. In the information storage system of this method, the area of the information storage capacitor portion of the cell section occupies most of the semiconductor pellet. For this reason, in order to reduce the pellet area of the dynamic RAN or increase the capacity of the RAN using this method, reducing the area of the information storage capacity section is the most effective means. However, reducing the area of this information storage capacitor and reducing the value of the equivalent capacitance will reduce the amount of small information signals stored in this capacitor. Sensing on the circuit becomes difficult.

本発明はかかる点を改良し、セル部の容量を減
少することなく該セル部の占める面積の縮少を可
能とし、情報蓄積の大容量化、ペレツト寸法の縮
少化に適したダイナミツクRAN等に用いられる
半導体装置を提供せんとするものである。
The present invention improves this point and enables the area occupied by the cell section to be reduced without reducing the capacity of the cell section, and is suitable for increasing the capacity of information storage and reducing pellet size. The present invention aims to provide a semiconductor device for use in

本発明の特徴は、半導体基板の一主面に設けら
れた絶縁膜上に単結晶の半導体層を設け、この半
導体層に絶縁ゲート電界効果トランジスタのソー
ス、ドレインおよびチヤンネル部を設け、この絶
縁ゲート電界効果トランジスタのソース又はドレ
イン領域のうち一方を前記半導体基板の一主面の
第1の領域と電気的に接続し、他方の領域と前記
半導体基板の一主面の第2領域およびこの領域と
接続され前記他方の領域上に絶縁膜を介して設け
た電極とで容量部を形成した半導体装置にある。
そして、容量部の電極として用いられるソース又
はドレイン領域の少なくとも一部が多結晶半導体
層または無定形半導体層で構成されることが好ま
しい。このために本発明に於いては、前記セル部
の1ケのトランジスタ、情報蓄積部のストレージ
領域を、それぞれ半導体基板上の絶縁物質表面上
に形成した単結晶半導体薄膜上、及び多結晶半導
体薄膜又は単結晶半導体薄膜に形成する。斯くし
て、情報蓄積容量部は折半し重ね合わせた縦構造
姿態に形成でき、該情報蓄積容量部の有効な面積
利用が可能となる。
The present invention is characterized in that a single-crystal semiconductor layer is provided on an insulating film provided on one main surface of a semiconductor substrate, a source, a drain, and a channel portion of an insulated gate field effect transistor are provided on this semiconductor layer, and the insulated gate One of the source and drain regions of the field effect transistor is electrically connected to a first region of one main surface of the semiconductor substrate, and the other region and a second region of one main surface of the semiconductor substrate are connected to this region. There is provided a semiconductor device in which a capacitive portion is formed by an electrode that is connected and provided on the other region via an insulating film.
Preferably, at least a portion of the source or drain region used as the electrode of the capacitor portion is formed of a polycrystalline semiconductor layer or an amorphous semiconductor layer. For this purpose, in the present invention, one transistor of the cell section and a storage region of the information storage section are formed on a single crystal semiconductor thin film formed on the surface of an insulating material on a semiconductor substrate, and a polycrystalline semiconductor thin film formed on the surface of an insulating material on a semiconductor substrate, respectively. Alternatively, it is formed on a single crystal semiconductor thin film. In this way, the information storage capacity section can be formed into a vertical structure in which the two halves are stacked one on top of the other, and the area of the information storage capacity section can be effectively utilized.

以下の発明の一実施例について、図面を用いて
詳細な説明を行う。以下、導電型がP型半導体基
体にNチヤネンル型のMOS電界効果トランジス
タを形成し、セル部を構成する場合についてのみ
説明するが、半導体基体がN型のPチヤンネル型
MOS電界効果トランジスタを形成する場合に関
しても全く同様な手法となることに前以つて言及
しておく。
An embodiment of the invention below will be described in detail with reference to the drawings. In the following, only the case where an N-channel type MOS field effect transistor is formed on a P-type semiconductor substrate to form a cell part will be explained.
It should be mentioned before that the method is exactly the same when forming a MOS field effect transistor.

第1図は、本発明の1実施例を示すセル部の断
面図である。図面に於いて、例えばその比抵抗が
0.1乃至100Ω・cmのP型シリコン基板101の表
面部に、高温熱酸化等にて厚いシリコン酸化膜1
02を選択的に形成する。斯くして、次にセル部
のMOS電界効果トランジスタは、シリコン酸化
膜上に形成した有効不純物を含有する単結晶シリ
コン膜103,104をそれぞれソース側、ドレ
イン側とし、同様に単結晶シリコン膜105の一
部表面部をチヤンネル領域とし、薄い絶縁物質1
06(例えばシリコン酸化膜)及び有効不純物を
含有する多結晶又は無定形シリコンあるいはアル
ミ等の純金属107をそれぞれMOS電界効果ト
ランジスタのゲート膜、ゲート電極とする姿態で
形成する。次に情報蓄積容量部は、シリコン基体
表面のうち、厚いシリコン酸化膜102以外の表
面に形成された第1の薄い絶縁膜108と、前記
MOS電界効果トランジスタのドレイン領域10
4の表面部に形成された第2の薄い絶縁物質10
9(例えばシリコン窒化膜)を共に誘電物質と
し、シリコン基板101表面と第2の薄い絶縁物
質109表面上に形成された容量部電極110を
一電極とし、前記単結晶シリコン膜で形成された
ドレイン側電極104を対電極とする姿態に形成
される。以上の構造に於いて、前記MOS電界効
果トランジスタのゲート電極107は、ソース側
領域103及び容量部電極110に形成された厚
いシリコン被覆酸化膜111を一部被覆する姿態
に形成される。斯くして本セル部構造は完成す
る。本実施例の構造に於いて、シリコン基板10
1上に形成された厚いシリコン酸化膜102及
び、第1の薄い絶縁膜108上の単結晶シリコン
膜は初め、該厚いシリコン酸化膜、第1の薄い絶
縁膜上にポリシリコン又は無定形シリコン膜を形
成した後、該シリコン膜をアルゴン、YAG、ル
ビー等から発する0.4乃至2μm波長のレーザ光を
使用し、レーザアニールすることで形成される。
当ポリシリコン又は無定形シリコン膜のレーザア
ニールによる結晶成長は、シリコン基板101表
面の露出部112を結晶種として横方向に進行
し、50乃至100μm程度の横方向にわたりポリシ
リコン膜、無定形シリコン膜は単結晶シリコン膜
に変換する。又本発明実施例に於いては、ドレイ
ン側104の一部、即ちMOS電界効果トランジ
スタのチヤンネル領域から遠ざかつた領域は、ポ
リシリコン膜又は無定形シリコン膜であつても同
様の効果がある。
FIG. 1 is a sectional view of a cell portion showing one embodiment of the present invention. In the drawing, for example, the specific resistance is
A thick silicon oxide film 1 is formed on the surface of a P-type silicon substrate 101 with a resistance of 0.1 to 100 Ω・cm by high-temperature thermal oxidation.
02 is selectively formed. In this way, next, the MOS field effect transistor in the cell section uses the single crystal silicon films 103 and 104 containing effective impurities formed on the silicon oxide film as the source side and drain side, respectively, and similarly the single crystal silicon film 105 as the source side and the drain side, respectively. A part of the surface of
06 (for example, a silicon oxide film) and polycrystalline or amorphous silicon containing effective impurities, or a pure metal 107 such as aluminum, are formed to serve as a gate film and a gate electrode of a MOS field effect transistor, respectively. Next, the information storage capacitor section includes a first thin insulating film 108 formed on the surface of the silicon substrate other than the thick silicon oxide film 102;
Drain region 10 of MOS field effect transistor
A second thin insulating material 10 formed on the surface of 4
9 (for example, a silicon nitride film) are both dielectric materials, a capacitor electrode 110 formed on the surface of the silicon substrate 101 and the surface of the second thin insulating material 109 is used as one electrode, and a drain formed of the single crystal silicon film is used as one electrode. The side electrode 104 is formed as a counter electrode. In the above structure, the gate electrode 107 of the MOS field effect transistor is formed to partially cover the thick silicon-coated oxide film 111 formed on the source side region 103 and the capacitor electrode 110. In this way, the main cell structure is completed. In the structure of this embodiment, the silicon substrate 10
The thick silicon oxide film 102 formed on the first insulating film 108 and the single crystal silicon film on the first thin insulating film 108 are initially formed by forming a polysilicon or amorphous silicon film on the thick silicon oxide film and the first thin insulating film. After forming the silicon film, the silicon film is laser annealed using a laser beam with a wavelength of 0.4 to 2 μm emitted from argon, YAG, ruby, or the like.
Crystal growth of the polysilicon or amorphous silicon film by laser annealing proceeds laterally using the exposed portion 112 on the surface of the silicon substrate 101 as a crystal seed, and grows the polysilicon film or amorphous silicon film over a width of about 50 to 100 μm in the lateral direction. is converted into a single crystal silicon film. Further, in the embodiment of the present invention, the same effect can be obtained even if a portion of the drain side 104, that is, a region remote from the channel region of the MOS field effect transistor, is a polysilicon film or an amorphous silicon film.

なお、本発明の実施例に於いて、MOS電界効
果トランジスタのゲート電極107が容量部電極
110の一部を厚い被覆シリコン酸化膜を介在し
て覆う場合について説明したが、該ゲート電極1
07、容量部電極110が同一金属層で形成され
且つ互いに電気的に分離された姿態に形成された
場合、並びに該容量部電極110が該ゲート電極
107の一部を、厚い被覆シリコン酸化膜を介在
して覆う姿態に形成された場合であつても、同様
の効果がある。
In the embodiment of the present invention, a case has been described in which the gate electrode 107 of the MOS field effect transistor covers a part of the capacitor electrode 110 with a thick silicon oxide film interposed therebetween.
07. When the capacitor electrodes 110 are formed of the same metal layer and are electrically isolated from each other, and when the capacitor electrodes 110 cover a part of the gate electrode 107 with a thick silicon oxide film, A similar effect can be obtained even when the film is formed in a state where it is interposed and covered.

斯くの如く本発明に於いては、セル部の情報蓄
積容量部を縦構造に折り重ねた形態に形成してい
るため、単位平面内に従来の約2倍の容量を形成
できる。このことから情報蓄積容量部面積を従来
の平分迄減少できる。
As described above, in the present invention, since the information storage capacitor section of the cell section is formed in a vertically folded configuration, it is possible to form a capacity approximately twice as large as that of the conventional device within a unit plane. As a result, the area of the information storage capacity can be reduced to the level of the conventional one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の断面構造図を示
す。 なお図において、101……シリコン基板、1
02……厚いシリコン酸化膜、103……MOS
電界トランジスタのソース側領域、104……
MOS電界効果トランジスタのドレイン側領域、
105……単結晶シリコン膜、106……ゲート
膜、107……ゲート電極、108……第1の薄
い絶縁膜、109……第2の薄い絶縁膜、110
……容量部電極、111……シリコン被覆酸化
膜、112……シリコン基板表面の露出部、であ
る。
FIG. 1 shows a cross-sectional structural diagram of an embodiment of the present invention. In the figure, 101...silicon substrate, 1
02...Thick silicon oxide film, 103...MOS
Source side region of field transistor, 104...
Drain side region of MOS field effect transistor,
105... Single crystal silicon film, 106... Gate film, 107... Gate electrode, 108... First thin insulating film, 109... Second thin insulating film, 110
. . . capacitor electrode, 111 . . . silicon-covered oxide film, 112 . . . exposed portion of silicon substrate surface.

Claims (1)

【特許請求の範囲】 1 半導体基板の一主面に設けられた開口部を有
する絶縁膜上に単結晶の半導体層が設けられ、該
半導体層は前記開口部を介して該半導体基板と接
触するとともに、前記開口部上部の前記半導体層
には絶縁ゲート電界効果トランジスタのソース、
ドレインの一方が設けられ、前記絶縁膜上部の前
記半導体層には前記絶縁ゲート電界効果トランジ
スタのチヤンネル部及び前記ソース又はドレイン
の他方が設けられ、前記ソース又はドレイン領域
の前記他方を容量部の一電極としたことを特徴と
する半導体装置。 2 容量部の電極として用いられるソース又はド
レイン領域の少なくとも一部が多結晶半導体層で
構成されたことを特徴をする特許請求の範囲第1
項記載の半導体装置。 3 容量部の電極として用いられるソース又はド
レイン領域の少なくとも一部が無定形半導体層で
構成されたことを特徴とする特許請求の範囲第1
項記載の半導体装置。
[Claims] 1. A single crystal semiconductor layer is provided on an insulating film having an opening provided on one main surface of a semiconductor substrate, and the semiconductor layer is in contact with the semiconductor substrate through the opening. In addition, the semiconductor layer above the opening includes a source of an insulated gate field effect transistor;
One of the drains is provided, the other of the channel part and the source or drain of the insulated gate field effect transistor is provided in the semiconductor layer above the insulating film, and the other of the source or drain region is provided as a capacitor part. A semiconductor device characterized by having an electrode. 2. Claim 1, characterized in that at least a part of the source or drain region used as the electrode of the capacitive part is composed of a polycrystalline semiconductor layer.
1. Semiconductor device described in Section 1. 3. Claim 1, characterized in that at least a part of the source or drain region used as the electrode of the capacitive part is composed of an amorphous semiconductor layer.
1. Semiconductor device described in Section 1.
JP56060889A 1981-04-22 1981-04-22 Semiconductor device Granted JPS57176757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56060889A JPS57176757A (en) 1981-04-22 1981-04-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56060889A JPS57176757A (en) 1981-04-22 1981-04-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS57176757A JPS57176757A (en) 1982-10-30
JPH0320906B2 true JPH0320906B2 (en) 1991-03-20

Family

ID=13155368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56060889A Granted JPS57176757A (en) 1981-04-22 1981-04-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS57176757A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982761A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Semiconductor memory
JPS59138377A (en) * 1983-01-28 1984-08-08 Agency Of Ind Science & Technol Metal insulator semiconductor transistor and manufacture thereof
DE10248722A1 (en) * 2002-10-18 2004-05-06 Infineon Technologies Ag Integrated circuit arrangement with capacitor and manufacturing process
DE10248723A1 (en) * 2002-10-18 2004-05-06 Infineon Technologies Ag Integrated circuit arrangement with capacitors and preferably planar transistors and manufacturing processes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350985A (en) * 1976-10-20 1978-05-09 Fujitsu Ltd Semiconductor memory device
JPS5519820A (en) * 1978-07-27 1980-02-12 Nec Corp Semiconductor device
JPS5562763A (en) * 1978-11-02 1980-05-12 Nec Corp Semiconductor device
JPS56107571A (en) * 1980-01-30 1981-08-26 Fujitsu Ltd Semiconductor memory storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350985A (en) * 1976-10-20 1978-05-09 Fujitsu Ltd Semiconductor memory device
JPS5519820A (en) * 1978-07-27 1980-02-12 Nec Corp Semiconductor device
JPS5562763A (en) * 1978-11-02 1980-05-12 Nec Corp Semiconductor device
JPS56107571A (en) * 1980-01-30 1981-08-26 Fujitsu Ltd Semiconductor memory storage device

Also Published As

Publication number Publication date
JPS57176757A (en) 1982-10-30

Similar Documents

Publication Publication Date Title
KR950009890B1 (en) Semiconductor memory device
JP3251778B2 (en) Semiconductor storage device and method of manufacturing the same
JPH0345550B2 (en)
JPH0682800B2 (en) Semiconductor memory device
JPH05152537A (en) Manufacture of self-alignment contact region and stacked capacitor using said method
JPH03209868A (en) Manufacture of ic capacitor and semiconductor ic device
JPS6321351B2 (en)
JPH04598B2 (en)
US4513304A (en) Semiconductor memory device and process for producing the same
JPS63310162A (en) Mis type semiconductor memory device
JPH046106B2 (en)
JPS6065559A (en) Semiconductor memory
JPH0320906B2 (en)
JPS58212161A (en) Semiconductor memory device
JPS6138620B2 (en)
JPS61107768A (en) Semiconductor memory device
JPS6113388B2 (en)
JPS596068B2 (en) semiconductor memory device
JPS62293756A (en) Semiconductor memory device
JPS63226955A (en) Manufacture of capacitive element
JPH0691216B2 (en) Semiconductor memory device
JP2943268B2 (en) Semiconductor memory and manufacturing method thereof
JPH05136363A (en) Semiconductor memory device
JPS6110271A (en) Semiconductor device
JPS63148A (en) Semiconductor device