JPS6065559A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS6065559A
JPS6065559A JP58172931A JP17293183A JPS6065559A JP S6065559 A JPS6065559 A JP S6065559A JP 58172931 A JP58172931 A JP 58172931A JP 17293183 A JP17293183 A JP 17293183A JP S6065559 A JPS6065559 A JP S6065559A
Authority
JP
Japan
Prior art keywords
substrate
capacitor
insulating film
plate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58172931A
Other languages
Japanese (ja)
Inventor
Hideo Sunami
英夫 角南
Tokuo Kure
久礼 得男
Osamu Okura
理 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58172931A priority Critical patent/JPS6065559A/en
Publication of JPS6065559A publication Critical patent/JPS6065559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain the desired capacitor capacity by burying the electrodes of the capacitor via an interval at an insulating film in a groove bored on an Si substrate, thereby increasing the area of the electrodes without increasing the area of the surface. CONSTITUTION:A lower resistance layer 8 of the same conductive type as an Si substrate is formed on the side wall of a groove 17 digged on the substrate 10, the electrodes 19 of the capacitor are buried in the groove, a plate 22 is further buried through an insulating film 15 to form a memory cell. The capacity is formed on a capacity insulating film 18, which is interposed between a capacitor electrode 19 and a plate 8, and a capacitor insulating film 15 interposed between the capacitor electrode 19 and the plate 22. When N type is used for the substrate and a P type epitaxial layer 21 is formed on the surface, the isolated plates 8 are all connected to the substrate 10 of N type. Since this Si substrate can be disposed at the ground potential, the influence of the remaining sound voltage is small.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体メモリに係り、特に平面面積を増大する
ことなく大容量を実現し、大規模化に適する1トランジ
スタ型ダイナミックMOSメモリに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor memory, and particularly to a one-transistor type dynamic MOS memory that achieves a large capacity without increasing the planar area and is suitable for large scale.

〔発明の背景〕[Background of the invention]

MOSダイナミックメモリは1970年初頭に1Kbの
ダイナミックランダムアクセスメモリ(以下dRAMと
略す)が発売されてから、3年に4倍の大規模化が達成
されてきた。しかるに、このメモリチップを入れるパッ
ケージはそのチップを入れるキャピテイサイズも制限さ
nていることから、メモリチップも4倍の大規模化に伴
ってもたかだか1.4倍程度にしか増大していない。(
またdRAMは大量に用いられることから、コスト面で
もチップ増大をおさえる必要がある。)従って、1記憶
容量率位たる1ピット分のメモリセル面積も大きく減少
しておシ、4倍の大規模化に伴って、約1/3に微小化
している。キャパシタ容量CはC=εA/T+(ここで
ε:絶縁膜の誘電率、A:キャパシタ面積、Tl :絶
縁膜厚)で表わされるので、面積Aが1/3になれば6
とTが同じである限シCもまた1/3になる。記憶容量
としての信号量Sは、貯えられる電荷量Q、に比例して
おり、Q、はCと記憶電圧■8との積であることから、
Nが小さくなれば比例してQaも小さくなル、信号Sは
それに伴って小さくなる。
Since 1Kb dynamic random access memory (hereinafter abbreviated as dRAM) was released in the early 1970s, MOS dynamic memory has quadrupled in size in three years. However, since the package into which this memory chip is placed has a limit on the size of the cavity into which the chip can be placed, even if the size of the memory chip becomes four times larger, it will only increase by about 1.4 times at most. . (
Furthermore, since dRAM is used in large quantities, it is necessary to suppress the increase in chip size in terms of cost. ) Therefore, the memory cell area for one pit, which corresponds to one storage capacity, has been greatly reduced, and as the scale has increased four times, it has become smaller to about 1/3. Capacitor capacitance C is expressed as C=εA/T+ (where ε: dielectric constant of insulating film, A: capacitor area, Tl: insulating film thickness), so if area A becomes 1/3, then 6
As long as and T are the same, C is also 1/3. The signal amount S as the storage capacity is proportional to the stored charge amount Q, and since Q is the product of C and the storage voltage ■8,
As N decreases, Qa decreases in proportion, and the signal S decreases accordingly.

雑音電圧をNとすれば信号対雑音比(S/N比)はSの
減少に伴って小さくなシ、回路動作上大きな問題となる
。従って通常はAの減少分をTIの減少で補ってきてお
シ、4Kb、16Kb、64KbとdRAMが大規模化
されるに伴い、絶縁膜としての5ioz膜の典屋的な厚
さTIは、1000m* 75Ωm、50Ωmと小さく
なってきた。
If the noise voltage is N, the signal-to-noise ratio (S/N ratio) decreases as S decreases, which poses a serious problem in circuit operation. Therefore, normally, the decrease in A is compensated for by the decrease in TI.As dRAM becomes larger in size from 4Kb to 16Kb to 64Kb, the standard thickness TI of a 5ioz film as an insulating film becomes 1000m* It has become smaller to 75Ωm and 50Ωm.

さらに最近、パッケージなどに含まれる重金属(U、T
h等)から放射されるα粒子によってSi基板内に敢犬
約200fCの電荷が発生して、これが雑音となること
が確認され高信頼動作上信号量としての電荷もほぼ20
0fC以下にすることが困難となってきた。
Furthermore, heavy metals (U, T) contained in packaging, etc.
It has been confirmed that the α particles emitted from the Si substrate generate a charge of about 200 fC in the Si substrate, and this becomes noise.
It has become difficult to reduce the temperature to below 0 fC.

従って絶縁膜をさらに加速して薄くすることが実行され
ておシ、この場合には絶縁膜の絶縁破壊が問題となって
きた。5102膜の絶縁耐圧電界は、最大107V/c
rnでアシ、従ってlQnmの5jCh膜はIOV印加
によってほとんど永久破壊を起すか、あるいは劣化する
。また永久破壊を起さないまでも最大電界付近で使用す
ることは、長期信頼上大きな問題である。
Therefore, attempts have been made to further accelerate the thinning of the insulating film, and in this case, dielectric breakdown of the insulating film has become a problem. The dielectric strength electric field of 5102 film is maximum 107V/c
Therefore, the 5jCh film of lQnm is almost permanently destroyed or deteriorated by the application of IOV. Further, even if permanent damage does not occur, using it near the maximum electric field is a big problem in terms of long-term reliability.

〔発明の目的〕[Purpose of the invention]

本発明の目的はこれらのメモリセルの微小化に伴うα粒
子による擾乱、S/N比の悪化、絶縁耐圧の問題の深刻
化に対処し、メモリセルを微小化しても、キャパシタ面
積Aを保つか、あるいは増大できる方法を提供すること
である。
The purpose of the present invention is to deal with the problems of disturbance caused by α particles, deterioration of the S/N ratio, and dielectric breakdown voltage that occur with the miniaturization of memory cells, and to maintain the capacitor area A even when the memory cells are miniaturized. Or, to provide a method that can increase it.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、Sl基板に掘シ込んだ溝の側壁部を第
1のプレートとし、この溝に絶縁膜でへたてて埋め込ん
だ電極をキャパシタ電極とし、さらにこのキャパシタ電
極上に絶縁膜を介して埋め込んだ第2のプレートを形成
することにより、平面面積を増大することなく電極面積
を増大することにある。これによシ、所望のキャパシタ
容量を得ることができる。
The gist of the present invention is to use the side wall portion of a groove dug in the Sl substrate as a first plate, to use an electrode buried in this groove with an insulating film flattened as a capacitor electrode, and to further form an insulating film on the capacitor electrode. By forming the second plate embedded through the electrode, the electrode area can be increased without increasing the planar area. With this, a desired capacitor capacity can be obtained.

〔発明の実施例〕[Embodiments of the invention]

第1図に従来のメモリセルの断面図を示す。 FIG. 1 shows a cross-sectional view of a conventional memory cell.

以後説明の便のためトランジスタはnチャネル型を用い
た例を示す。nチャネル型にするには、一般にSi基板
と拡散層の導電型をそれぞれnチャネルの場合と逆にす
ればよい。
Hereinafter, for convenience of explanation, an example using an n-channel type transistor will be shown. In order to make an n-channel type, generally the conductivity types of the Si substrate and the diffusion layer should be reversed to those for the n-channel type.

第1図に示した従来のメモリセルは、p型、10Ω−口
程度のSi基板10上に、通常は100〜11000n
厚程度のフィールドS io、膜11をS i s N
 4を熱酸化マスクとして用いるいわゆる1、0CO8
法によって選択的に被着する。この後リンやAs添加し
た多結晶Si(以下polySiと略す)に代表される
プレート8を選択的に被着し、と(D poly S 
iのプレート8を酸化して、第1層間酸化膜13を形成
する。しかる後に、polysiやMoシリサイド、あ
るいはりフラクトリー金属(MO−?W等)に代表され
るワード線4を被着し、リンやAsをイオン打込みする
と、プレート8とワード線4の被着されていない活性領
域にnlの拡散層15が形成されて、スイッチトランジ
スタ2のソースとドレインとなる。この後リンを含んだ
いわゆるCVD法によるP ’S G(phosoho
−silicate glass)を200〜1100
0n厚に被着して第2層間絶縁膜14を形成しA7電極
で代表されるビット線3の拡散層15への接続を行う部
分にコンタクト孔9を形成してビット線3を選択的に被
着する。
The conventional memory cell shown in FIG.
Field S io of about thickness, film 11 S i s N
The so-called 1,0CO8 using 4 as a thermal oxidation mask
selectively deposited by method. After this, a plate 8 typified by polycrystalline Si (hereinafter abbreviated as polySi) doped with phosphorus or As is selectively deposited, and (D polyS
The first interlayer oxide film 13 is formed by oxidizing the plate 8 of i. After that, the word line 4, which is typically made of polysi, Mo silicide, or a factory metal (MO-?W, etc.), is deposited, and phosphorus or As is ion-implanted. An Nl diffusion layer 15 is formed in the active region where the active region is not present, and becomes the source and drain of the switch transistor 2. After this, P'SG (phosoho
-silicate glass) from 200 to 1100
A second interlayer insulating film 14 is deposited to a thickness of 0n, and a contact hole 9 is formed in a portion where the bit line 3, represented by the A7 electrode, is connected to the diffusion layer 15, thereby selectively connecting the bit line 3. to adhere to.

上記説明では、便宜上、プレート8とワード線4(すな
わちスイッチトランジスタ2のゲート)下の絶縁膜は同
じ5i02膜12としたが、メモリセルのキャパシタの
値CI+を大きくすることを主目的とし、プレート8下
の絶縁膜は、5jOzと5isN4のどちらか一方ある
いは両方を用いて1層〜3層構造の絶縁膜が用いられる
こともある。
In the above explanation, for convenience, the insulating film under the plate 8 and the word line 4 (that is, the gate of the switch transistor 2) is the same 5i02 film 12, but the main purpose is to increase the capacitor value CI+ of the memory cell. The insulating film under 8 may be an insulating film having a one-layer to three-layer structure using either or both of 5jOz and 5isN4.

本発明は従来の上記構造の欠点を補い、平面面積を拡大
することなくCsを増大することを目的としている。
The present invention aims to compensate for the drawbacks of the above conventional structure and increase Cs without increasing the planar area.

以下実施例を用いて本発明の詳細な説明する。The present invention will be described in detail below using Examples.

まず第2図に本発明の1つの実施例の断面図を示す。第
1図に示した従来のメモリセルと対比して異なる点は8
i基板10に掘り込んだ溝17の側壁部にSi基板と同
導型の低い抵抗層を設け、これを第1プレート8とし、
この溝に埋め込んだ電極をキャパシタ電極19としさら
にこれに絶R膜25を介して埋め込んだ電極を第2プレ
ート22としたところにある。
First, FIG. 2 shows a sectional view of one embodiment of the present invention. There are 8 differences compared to the conventional memory cell shown in Figure 1.
A low resistance layer of the same conductivity type as the Si substrate is provided on the side wall of the groove 17 dug into the i-substrate 10, and this is used as the first plate 8.
The electrode embedded in this groove is used as a capacitor electrode 19, and the electrode embedded in this via an insulating film 25 is used as a second plate 22.

以下本発明にかかる半導体メモリの製造工程を詳細に記
す。1ず第3図に示すように、p型、1〜20Ω−釧の
Si基板10に前述のLOCO8法でフィールド酸化膜
11を形成した後FやCtを含むガス例えばSF6やC
Ct4等を主成分とした平行平板型プラズマエツチング
で所定の大きさの溝17を形成する。通常は1〜5μm
深さのエツチング溝を形成するので、通常のホトレジス
トで一旦CVD5iOz膜に溝のパターンを転写し、こ
のCV D S iOz膜をマスクとして溝17を形成
する。この後よく知られた拡散法等によってSi基板と
異なる導電型の導電率1Ω−m以下のn+層8を溝の側
壁と下部に形成し第1プレート8とする。その後第4図
に示すように、5iOzや5jsN<の単層あるいはそ
れらの複合膜、あるいはTag’s等で代表されるキャ
パシタ絶縁膜18を被着する。このキャパシタ絶縁膜1
8の所定の部分に81基板10に達するキャパシタ電極
接続孔20を形成し、この接続孔2oを介して、pol
y S i LDキャパシタz極19をSi基板1゜に
接続されるように所定の部分に被着する。
The manufacturing process of the semiconductor memory according to the present invention will be described in detail below. 1. As shown in FIG. 3, after forming a field oxide film 11 on a p-type, 1-20Ω Si substrate 10 by the LOCO8 method described above, a gas containing F or Ct, such as SF6 or C
Grooves 17 of a predetermined size are formed by parallel plate plasma etching using Ct4 or the like as a main component. Usually 1-5μm
Since a deep etching groove is to be formed, the pattern of the groove is first transferred to the CVD 5iOz film using an ordinary photoresist, and the groove 17 is formed using this CVD SiOz film as a mask. Thereafter, by a well-known diffusion method or the like, an n+ layer 8 having a conductivity of 1 Ω-m or less and having a conductivity type different from that of the Si substrate is formed on the side walls and the lower part of the groove to form the first plate 8. Thereafter, as shown in FIG. 4, a capacitor insulating film 18 typified by a single layer of 5iOz or 5jsN or a composite film thereof, or Tag's is deposited. This capacitor insulating film 1
A capacitor electrode connection hole 20 reaching the 81 substrate 10 is formed in a predetermined portion of the 81 substrate, and the pol
A y Si LD capacitor z pole 19 is attached to a predetermined portion so as to be connected to the Si substrate 1°.

polysi19は導電性を持たせるため、PやASを
添加するので結果としてsi基板lo中にn+の拡散層
15が形成される。さらに絶縁膜18と同種の第2キヤ
パシタ絶縁膜25を被着しさらにpolysIの第2プ
レート22を被着する。
In order to make the polysilicon 19 conductive, P and AS are added to it, and as a result, an n+ diffusion layer 15 is formed in the Si substrate lo. Further, a second capacitor insulating film 25 of the same type as the insulating film 18 is deposited, and a second plate 22 of polysI is further deposited.

その後第5図に示すように、poly Si 19の一
部及び、22を800〜1100tl’の乾燥あるいは
湿式酸化法で酸化し、100〜200 nmの第1層間
絶縁膜13を形成し、スイッチトランジスタ2を形成す
べき部分に10〜5Qnm厚のゲート酸化膜12を形成
しさらにその上にpoly siや、M oシリサイド
、あるいはM o i W等のゲート(ワード線4)を
被着する。その後イオン打込み法でAS等を打込み、n
+拡散層15を形成する。
Thereafter, as shown in FIG. 5, a part of the polySi 19 and 22 are oxidized by a dry or wet oxidation method at 800 to 1100 tl' to form a first interlayer insulating film 13 with a thickness of 100 to 200 nm, and a switch transistor is formed. A gate oxide film 12 with a thickness of 10 to 5 Qnm is formed on the portion where the gate 2 is to be formed, and a gate (word line 4) made of poly si, Mo silicide, Mo i W, etc. is deposited thereon. After that, AS etc. are implanted using the ion implantation method, and n
+ Form the diffusion layer 15.

さらにCVDPSGで代表される第2層間絶縁膜14を
被着してn+拡散層15へのコンタクト孔9を形成し、
A、7に代表されるビット線3を被着する。
Furthermore, a second interlayer insulating film 14 typified by CVDPSG is deposited to form a contact hole 9 to the n+ diffusion layer 15.
A bit line 3 represented by A and 7 is deposited.

このようにすることによって、キャパシタは、キャパシ
タ絶縁膜18とそれをはさんだ二つの電極すなわちキャ
パシタ電極19とプレート8および第2キヤパシタ絶縁
膜25をはさんだ二つの電極すなわちキャパシタ電極1
9と第2プレート22によって形成される。
By doing so, the capacitor consists of the capacitor insulating film 18 and the two electrodes sandwiching it, that is, the capacitor electrode 19, and the plate 8 and the second capacitor insulating film 25, that is, the two electrodes that are sandwiched therebetween, that is, the capacitor electrode 1.
9 and the second plate 22.

プレート8はn+層で1、溝17の周辺にn+層が離間
して設けられているので、これらを接続する必要があp
、第6図に示すようにSi基板にn型を用い、この表面
上にp型のエピタキシャル層21t−形成すれば離間し
たプレート8はすべてn型のSi基板10に接続される
。このSi基板は接地電位にしうるので雑音電圧の影響
も小さい。製造法は第3図〜第5図で説明した前実施例
のS1基板のかわりに、エピタキシャル層21を積層し
たSi基板10を用いればよい。
The plate 8 is an n+ layer 1, and the n+ layer is provided at a distance around the groove 17, so it is necessary to connect these layers.
As shown in FIG. 6, if an n-type Si substrate is used and a p-type epitaxial layer 21t is formed on the surface thereof, all of the separated plates 8 are connected to the n-type Si substrate 10. Since this Si substrate can be set to ground potential, the influence of noise voltage is also small. As for the manufacturing method, a Si substrate 10 on which an epitaxial layer 21 is laminated may be used instead of the S1 substrate of the previous embodiment described in FIGS. 3 to 5.

以上の本発明の実施例はスイッチトランジスタをSi基
板10かエピタキシャル層21衣面上に形成したもので
ある。第7図に本発明の他の実施例を示す。
In the embodiments of the present invention described above, a switch transistor is formed on the Si substrate 10 or the epitaxial layer 21. FIG. 7 shows another embodiment of the present invention.

すでに上記実施例で説明したようにキャパシタ絶縁膜1
8を被着した後に84の単結晶膜を形成し、後の工程で
キャパシタ電極19と拡散層部15になる部分を含む8
0 I (Silicon QnJsulatorの略
)構造を形成する。これは全面あるいは一部の面に多結
晶あるいは無定形(amo −rphous)のSi膜
を被着しておき、全面あるいは一部の面をレーザー光や
熱ヒーターで加熱し、一度溶解するかあるいは同相のま
まで絶縁膜上に単結晶層23を成長させるものである。
As already explained in the above embodiment, the capacitor insulating film 1
After depositing 8, a single crystal film 84 is formed, including a portion that will become the capacitor electrode 19 and the diffusion layer portion 15 in a later step.
0 I (abbreviation for Silicon QnJsulator) structure is formed. This is done by depositing a polycrystalline or amorphous (amo-rphous) Si film on the entire surface or a part of the surface, heating the entire surface or a part of the surface with a laser beam or a thermal heater, and melting it once. A single crystal layer 23 is grown on the insulating film while remaining in the same phase.

(第7図には示していないが、SOI構造のs(膜の一
部を81基板10に接触しておくと、単結晶化が容易に
行えるので利点が太きい。)さらに第2キヤパシタ絶縁
膜25を被着し、その上部にpoly f9 iの第2
プレート22を被着する。このpoly siを熱酸化
して第1層間絶縁膜13を形成する。
(Although not shown in FIG. 7, the SOI structure has a great advantage because it can easily be made into a single crystal by keeping a part of the film in contact with the 81 substrate 10.) Furthermore, the second capacitor insulator A film 25 is deposited, and a second layer of poly F9 i is deposited on top of the film 25.
Plate 22 is applied. This poly-Si is thermally oxidized to form a first interlayer insulating film 13.

その後SOI部2部上3上−ト酸化膜12さらにはゲー
ト4を被着し、n1層を形成して一方はキャパシタ電極
19とし、能力はビット線3に接続される拡散層15と
する。その後の工程は前実施例と同様である。本実施例
は、スイッチトランジスタ2が84基板11上にないの
で、基板11は任意の導′wL型をとシうる。すなわち
n型にすれば特に第1プレート8を設けなくてもSi基
板10そのものがプレートとなる。
Thereafter, an oxide film 12 and a gate 4 are deposited on the upper part of the SOI part 2, and an n1 layer is formed, one of which is used as a capacitor electrode 19, and the other is made into a diffusion layer 15 connected to the bit line 3. The subsequent steps are similar to those in the previous example. In this embodiment, since the switch transistor 2 is not on the 84 substrate 11, the substrate 11 can be of any conductive type. That is, if the Si substrate 10 is made of n-type, the Si substrate 10 itself becomes a plate even if the first plate 8 is not particularly provided.

一般に本ダイナミックメモリはメモリセルの周辺に様々
な機能をもった周辺回路を形成するのでSi基板10全
体をn型にはし難いが、この場合には第1プレート8を
設ければよいし、メモリセルの部分だけn型にすればよ
い。
Generally, in this dynamic memory, peripheral circuits with various functions are formed around the memory cells, so it is difficult to make the entire Si substrate 10 n-type, but in this case, it is sufficient to provide the first plate 8, It is sufficient to make only the memory cell portion n-type.

上記実施例では、本発明を、ワードff54がメモリセ
ルアレー内で連続的なゲートとして説明したが、メモリ
セル内のスイッチングトランジスタ2のpolysiの
トランスファーゲート4をメモリセル間で連続して形成
することなく離間して形成し、新たなコンタクト孔を介
してAtのワード線4で接続することもできる。こうす
ると従来がら多くの実績のある多結晶siゲートの信頼
性と、人tの抵抗の低いことから、高速のメモリのスイ
ッチング時間をうろことができる。
In the above embodiment, the present invention has been described in which the word ff54 is a continuous gate within the memory cell array, but the polysi transfer gate 4 of the switching transistor 2 within the memory cell may be formed continuously between memory cells. It is also possible to form them separately and connect them with the At word line 4 through a new contact hole. In this way, due to the reliability of the polycrystalline Si gate, which has a long track record, and the low resistance of the transistor, the switching time of the high-speed memory can be reduced.

また、本発明は冒頭にも述べたように、nチャネル型M
OSトランジスタを用いて説明したが、pチャネル型に
するにはすべての不純物の導電型を逆にする不純物を用
いることで達成できる。リンやAsはBやAtに、Bは
り7.AS、8bなどに置換すればよい。
Furthermore, as stated at the beginning, the present invention also provides an n-channel type M
Although the explanation has been made using an OS transistor, a p-channel type can be achieved by using impurities that reverse the conductivity types of all impurities. Phosphorus and As become B and At, B beam7. It may be replaced with AS, 8b, etc.

壕だ本発明の溝は直線的なものとしたが、表面積がキャ
パシタ面となるのでひだがある方がよ多容量が大きくな
る。また溝の上面パターンも示してはいないが、単純な
ものよシ、凹形や凸形やリング状の牌などの方がよシ表
面積を増大することができる。
Grooves Although the grooves of the present invention are straight, the surface area becomes the capacitor surface, so the capacitance will be larger if there are corrugations. Although the upper surface pattern of the grooves is not shown, it is possible to increase the surface area by using a concave, convex, or ring-shaped tile rather than a simple one.

〔発明の効果〕〔Effect of the invention〕

以上本発明を詳細な実施例によって説明してきたが、ス
イッチトランジスタを基板面に形成したものでは同平面
面積で従来型のメモリセルよりキャパシタ容量C11で
5〜10倍、SOI層中に形成したものは10〜20倍
のCs増加が可能である。夾際には、溝の形状の完全に
直平面で構成されるわけではなく、多少丸みを帯び、ま
た微細部でのリングラフィの解像力低下のため設計形状
が正方形でめったとしても、円形になる場合があるが、
この場合でもCsの減少は10〜20%にとどまる。
The present invention has been described above with reference to detailed embodiments, but in the case of a switch transistor formed on the substrate surface, the capacitor capacitance C11 is 5 to 10 times that of a conventional memory cell with the same plane area, and it is formed in the SOI layer. can increase Cs by 10 to 20 times. In some cases, the shape of the groove is not completely straight, but is somewhat rounded, and even if the designed shape is square, it will become circular because the resolution of phosphorography decreases in minute parts. In some cases,
Even in this case, the decrease in Cs remains at 10 to 20%.

α線によるダイナミックメモリの誤動作は、C6が10
%増加しても1桁以上改醤される場仕が多いので%C8
の2倍以上の増加はその規模のメモリの信頼性を上昇す
るばかシでなく、さらに大規模のメモリ実現を可能とす
る。
Malfunction of dynamic memory due to alpha rays is caused by C6 being 10
Even if it increases by %, there are many places where it is changed by more than 1 digit, so %C8
An increase of more than 2 times does not necessarily increase the reliability of a memory of that size, but also makes it possible to realize an even larger memory.

また本発明は構造上、α線によってSi基板内に発生す
る大量の電子−正孔対は、直接キャパシタ電極19に流
入することが極めて少なく、特にSOIを用いたもので
は全く流入しないので特に・α線に対して強い特長を有
する。
Furthermore, due to the structure of the present invention, a large amount of electron-hole pairs generated in the Si substrate by α rays rarely flows directly into the capacitor electrode 19, and in particular, in the case of using SOI, they do not flow at all. It has the feature of being strong against alpha rays.

また、本発明のメモリセルは、微小化しても絶縁膜厚を
減少させる必要なく、メモリ容量を増加できる効果をも
有する。
Furthermore, the memory cell of the present invention also has the effect of increasing memory capacity without requiring a reduction in insulating film thickness even when miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のメモリセルを説明する断面図、第2図は
本発明の実施例のlli面図、第3図乃至第5図は本発
明の実施例の製造工程を工程順に示す断面図、第6図は
本発明の他の実施例の最初の工程を示す断面図、第7図
は本発明の鉋に他の実施例の断面図である。 3・・・ビット線、4・・・ワード線、5・・・センス
アンプ、6・・・存生容量、7・・・活性懺域、8・・
・第1プレート、9・・・コンタクト孔、10・・・S
i基板、11・・・フィールド酸化膜、12・・・ゲー
ト酸化膜、13・・・第1層間絶縁膜、14・・・第2
層間絶縁膜、15・・・拡散層、16・・・キャパシタ
領域、17・・・縛、18・・・キャパシタ絶縁膜、1
9・・・キャパシタ電極、20・・・キャパシタ電極接
続孔、21・・・エピタキシャル層、22・・・第2プ
レート、23・・・SOI部、24・・・トランジスタ
チャネル部、25・・・第2キャパシタ絶第 1 図 第 2 図 第3図 第4図 葛 5 図 5 第 Z 図 第7図
FIG. 1 is a cross-sectional view explaining a conventional memory cell, FIG. 2 is a lli side view of an embodiment of the present invention, and FIGS. 3 to 5 are cross-sectional views showing the manufacturing process of an embodiment of the present invention in order of process. , FIG. 6 is a cross-sectional view showing the first step of another embodiment of the present invention, and FIG. 7 is a cross-sectional view of another embodiment of the plane of the present invention. 3...Bit line, 4...Word line, 5...Sense amplifier, 6...Survival capacitance, 7...Active area, 8...
・First plate, 9... contact hole, 10...S
i-substrate, 11... field oxide film, 12... gate oxide film, 13... first interlayer insulating film, 14... second
Interlayer insulating film, 15... Diffusion layer, 16... Capacitor region, 17... Binding, 18... Capacitor insulating film, 1
9... Capacitor electrode, 20... Capacitor electrode connection hole, 21... Epitaxial layer, 22... Second plate, 23... SOI part, 24... Transistor channel part, 25... 2nd capacitor disconnected Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 5 Figure Z Figure 7

Claims (1)

【特許請求の範囲】[Claims] 情報蓄積部がある容量と絶縁ゲート形電界効果トランジ
スタを営んでなシ、上記容量は、半導体基板に形成され
た溝の側壁を用いる第1のプレートの主部と、上記側壁
上に絶縁膜を介して形成され上記電界効果トランジスタ
のソースもしくはドレインと電気的に接続されたキャパ
シタ電極と、さらに該キャパシタ電極上に絶縁膜を介し
て被着された第2のプV−ト間で構成される容量とを有
することを特徴とする半導体メモリ。
An insulated gate field effect transistor is operated with a capacitor having an information storage part. A capacitor electrode formed through the capacitor electrode and electrically connected to the source or drain of the field effect transistor, and a second V-platform further deposited on the capacitor electrode with an insulating film interposed therebetween. A semiconductor memory characterized by having a capacity.
JP58172931A 1983-09-21 1983-09-21 Semiconductor memory Pending JPS6065559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58172931A JPS6065559A (en) 1983-09-21 1983-09-21 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58172931A JPS6065559A (en) 1983-09-21 1983-09-21 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS6065559A true JPS6065559A (en) 1985-04-15

Family

ID=15951002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58172931A Pending JPS6065559A (en) 1983-09-21 1983-09-21 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS6065559A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207055A (en) * 1985-03-11 1986-09-13 Nec Corp Semiconductor memory device
JPS61280651A (en) * 1985-05-24 1986-12-11 Fujitsu Ltd Semiconductor memory unit
JPS61287258A (en) * 1985-06-14 1986-12-17 Hitachi Ltd Semiconductor memory device
JPS6249650A (en) * 1985-08-28 1987-03-04 Nec Corp Semiconductor device
JPS62156855A (en) * 1985-12-28 1987-07-11 Toshiba Corp Semiconductor device
JPS6329968A (en) * 1986-07-23 1988-02-08 Nec Corp Semiconducotr memory cell
JPH0265271A (en) * 1988-08-31 1990-03-05 Toshiba Corp Dynamic type memory
JPH02188955A (en) * 1989-01-17 1990-07-25 Sanyo Electric Co Ltd Semiconductor storage device and manufacture thereof
US5250458A (en) * 1987-02-25 1993-10-05 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing semiconductor memory device having stacked memory capacitors
US5427972A (en) * 1987-02-13 1995-06-27 Mitsubishi Denki Kabushiki Kaisha Method of making a sidewall contact

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583260A (en) * 1981-06-29 1983-01-10 Fujitsu Ltd Vertical type buried capacitor
JPS58139461A (en) * 1982-01-25 1983-08-18 Yokogawa Hewlett Packard Ltd Semiconductor memory cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583260A (en) * 1981-06-29 1983-01-10 Fujitsu Ltd Vertical type buried capacitor
JPS58139461A (en) * 1982-01-25 1983-08-18 Yokogawa Hewlett Packard Ltd Semiconductor memory cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207055A (en) * 1985-03-11 1986-09-13 Nec Corp Semiconductor memory device
JPS61280651A (en) * 1985-05-24 1986-12-11 Fujitsu Ltd Semiconductor memory unit
US4791610A (en) * 1985-05-24 1988-12-13 Fujitsu Limited Semiconductor memory device formed of a SOI-type transistor and a capacitor
JPS61287258A (en) * 1985-06-14 1986-12-17 Hitachi Ltd Semiconductor memory device
JPS6249650A (en) * 1985-08-28 1987-03-04 Nec Corp Semiconductor device
JPS62156855A (en) * 1985-12-28 1987-07-11 Toshiba Corp Semiconductor device
JPS6329968A (en) * 1986-07-23 1988-02-08 Nec Corp Semiconducotr memory cell
US5427972A (en) * 1987-02-13 1995-06-27 Mitsubishi Denki Kabushiki Kaisha Method of making a sidewall contact
US5250458A (en) * 1987-02-25 1993-10-05 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing semiconductor memory device having stacked memory capacitors
JPH0265271A (en) * 1988-08-31 1990-03-05 Toshiba Corp Dynamic type memory
JPH02188955A (en) * 1989-01-17 1990-07-25 Sanyo Electric Co Ltd Semiconductor storage device and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS5982761A (en) Semiconductor memory
JPS61280651A (en) Semiconductor memory unit
JPH0775247B2 (en) Semiconductor memory device
JPH01198065A (en) Semiconductor memory device
JPS6065559A (en) Semiconductor memory
JPS60152056A (en) Semiconductor memory device
JPS60189964A (en) Semiconductor memory
JPS63310162A (en) Mis type semiconductor memory device
JPH02312270A (en) Dram cell and its manufacture
JPS62193273A (en) Semiconductor memory
JPH0638485B2 (en) Semiconductor memory
JPH03185757A (en) Ultra-high integrated dram and manufacture thereof
JP3489090B2 (en) Semiconductor device and manufacturing method thereof
JPH0691216B2 (en) Semiconductor memory device
JPS62131563A (en) Semiconductor memory device
JPH0529574A (en) Manufacture of semiconductor device
JPH0320906B2 (en)
JPH0577342B2 (en)
JP2827377B2 (en) Semiconductor integrated circuit
JPH04216666A (en) Semiconductor device and its manufacture
JPH06232372A (en) Semiconductor storage device
JPS6281752A (en) Semiconductor memory device
JPS62133755A (en) Semiconductor device
JPH0191449A (en) Semiconductor memory device
JPH0323663A (en) Semiconductor memory device