JPH03196019A - Matrix type display device - Google Patents

Matrix type display device

Info

Publication number
JPH03196019A
JPH03196019A JP1337894A JP33789489A JPH03196019A JP H03196019 A JPH03196019 A JP H03196019A JP 1337894 A JP1337894 A JP 1337894A JP 33789489 A JP33789489 A JP 33789489A JP H03196019 A JPH03196019 A JP H03196019A
Authority
JP
Japan
Prior art keywords
divided
image element
electrode
pixel
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337894A
Other languages
Japanese (ja)
Inventor
Takashi Sugawara
隆 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1337894A priority Critical patent/JPH03196019A/en
Publication of JPH03196019A publication Critical patent/JPH03196019A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To reduce point defects occurring in each one of image elements on a display device and to make it difficult to find the occurring point defects by dividing the electrode of each image element into plural fractions distributed into the whole area of each one image element and alternately intruding it into the divided image element electrode without contacting with each other and connecting one or more switching element with each image element electrode. CONSTITUTION:The 2 switching elements are connected to each one image element electrode, and an amorphous silicon film or a multicrystalline silicon film or the like is used as a TFT active layer. The image element electrode is divided into 2 electrodes P11, P12 per one image element, and they are formed into a comb-like form, alternately intruding into each other, and designed so as to distribute on the whole area of the image element, thus permitting the remaining divided image element to cover point defect of the other divided image element, even if it causes point defect due to disconnection due to poor patterning or the like, and the point defect of the divided image element to be made difficult to be found, and accordingly, the point defects of the image elements to be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はマI・リクス型表示装置、特にマトリクスア
レイ基板の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a matrix type display device, particularly to the structure of a matrix array substrate.

〔従来の技術〕[Conventional technology]

従来のマトリクス表示装置は、−aに基板上に!数の行
′ra柵線と複数の列電極線とを交差させて配設し、各
々の交点にスイッチング素子及び画素電極を配設した構
造を有している。
Conventional matrix display devices have -a on the substrate! It has a structure in which a number of row lines and a plurality of column electrode lines are arranged to intersect with each other, and a switching element and a pixel electrode are arranged at each intersection.

第4図はこのようなマトリクス型表示装置のマトリクス
アレイ基板の一例を示しており、図において、(g 1
) (g z)−・(g、)は行電極線、(S、)(s
 =) −(S−)は列電極線であり、(1、) (1
、)(t3)・・は各々の電極配線の交点に接続された
スイッチング素子、(p□) (p =) (p =)
  は各スイッチング素子に接続された画素電極である
。液晶表示装置はこのような配列を少なくとも対向する
一対の基板の一方に構成し、透明電極を有するもう一方
の対向電極基板との間に液晶等の表示材料を挟持させる
ことにより構成している。
FIG. 4 shows an example of a matrix array substrate of such a matrix type display device, and in the figure, (g 1
) (g z)−・(g,) is the row electrode line, (S,)(s
=) -(S-) is the column electrode line, (1,) (1
, )(t3)... is a switching element connected to the intersection of each electrode wiring, (p□) (p =) (p =)
is a pixel electrode connected to each switching element. A liquid crystal display device is constructed by configuring such an arrangement on at least one of a pair of opposing substrates, and sandwiching a display material such as liquid crystal between the other opposing electrode substrate having a transparent electrode.

このマトリクス型表示装置においては、近年のテレビ受
像装置等の大画面化に伴い、画面サイズの大型化、すな
わちマトリクス画面表示部分の面積の拡大化が進んでい
る。この種の液晶表示装置の製造工程においては、フォ
トリソグラフィー技術で使用されるマスクに異物が付着
したりすることにより、パターニング欠陥が発生する。
In this matrix type display device, as the screens of television receivers and the like have become larger in recent years, the screen size has been increasing, that is, the area of the matrix screen display portion has been increasing. In the manufacturing process of this type of liquid crystal display device, patterning defects occur due to foreign matter adhering to a mask used in photolithography technology.

即ちスイッチング素子として、薄膜トランジスタ(以下
、TPTと省略)を用いた場合、例えば画素電極とT 
P Tのドレイン電極との接続部分で金属膜のパターン
が一部欠落して、電気的な接続がされなくなった場合、
液晶に映像信号電圧が印加されると光が透過する表示モ
ードにおいて(以下、同一モードについて説明)、その
画素が点灯しなくなる点欠陥が生じる。また、例えばド
レインTh極と画素電極とを、間に挾んだ絶縁膜にパタ
ーニングで穴を開けてコンタクトさせるような場合、穴
開は工程でパターニング欠陥により、穴がうまく開かな
かった場合にも、上記と同様な、点欠陥が発生する。こ
のような点欠陥は、マトリクス画面表示部分の面積が大
きくなるに従ってその画素数も増加し、ゴミ等が基板上
に付着する確率が大きくなるため、発生しやすくなる。
That is, when a thin film transistor (hereinafter abbreviated as TPT) is used as a switching element, for example, a pixel electrode and a TPT are used.
If part of the metal film pattern is missing at the connection part with the drain electrode of PT, and no electrical connection is made,
In a display mode in which light is transmitted when a video signal voltage is applied to the liquid crystal (the same mode will be described below), a point defect occurs in which the pixel does not light up. In addition, for example, when the drain Th electrode and the pixel electrode are brought into contact by patterning a hole in an insulating film sandwiched between them, the hole may not be formed properly due to a patterning defect during the process. , point defects similar to those described above occur. Such point defects are more likely to occur because as the area of the matrix screen display area increases, the number of pixels also increases, and the probability that dust or the like will adhere to the substrate increases.

このため、従来においては、一画素を二ドツト以上に分
割し、仮に一つのドツトが点欠陥で点灯しなくなっても
、残りのドツトでカバーすることにより、点欠陥を見え
にくくするような構造が採られている。
For this reason, in the past, one pixel was divided into two or more dots, and even if one dot stopped lighting due to a point defect, the remaining dots would cover it, making the point defect less visible. It is taken.

第5図は、画素電極を2ドツトに分割し、各ドツトの分
割画素電極(p +tL (p *2)にそれぞれ1個
のT P T (t 11)# (t st)を接続し
た場合のマトリクスアレイ基板の構成例を示したもので
ある。
Figure 5 shows the case where the pixel electrode is divided into two dots and one T P T (t 11) # (t st) is connected to each divided pixel electrode (p + tL (p * 2)) of each dot. This figure shows an example of the structure of a matrix array substrate.

なお、画素電極を3ドツトに分割した例として、特開昭
63−309921号公報に示された例もある。図にお
いて、たとえば片側のドツトの分割画素電極(p□、)
が点欠陥で点灯しなくなった場合においても、もう一方
の分割画素電極(pa□)が正常であれば画素全体の点
欠陥ではなくなるため、画素の点欠陥を低減することが
できる。
Note that an example in which a pixel electrode is divided into three dots is disclosed in Japanese Patent Application Laid-Open No. 63-309921. In the figure, for example, a dot divided pixel electrode (p□,) on one side
Even if the pixel does not turn on due to a point defect, if the other divided pixel electrode (pa□) is normal, it is not a point defect in the entire pixel, so the point defects in the pixel can be reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のマ)・リクス型液晶表示装置は以上のように構成
されており、一画素が複数のドツトに分割された冗長性
をもつ液晶表示装置において、特に第5図のように分割
ドツト数が2個程度で、かつ単純な矩形表示電極で構成
された場合、片側ドラ)・が例えば点灯しなくなったと
すれば、一つの画素の172の矩形部分が完全に熱状態
となるため、肉眼的にはやはりはっきりと識別できてし
まうという問題点があった。
Conventional matrix type liquid crystal display devices are constructed as described above, and in liquid crystal display devices with redundancy in which one pixel is divided into multiple dots, the number of divided dots is particularly large as shown in Fig. 5. In the case of a simple rectangular display electrode with about 2 display electrodes, if one side of the display electrode stops lighting up, the 172 rectangular part of one pixel becomes completely heated, so it cannot be seen with the naked eye. The problem was that they could be clearly identified.

この発明のマトリクス型表示装置は、表示部の画素全体
が不良となる点欠陥を低減すると共に、生じた点欠陥を
見にくくすることが可能な技術を提供するものである。
The matrix type display device of the present invention provides a technique that can reduce point defects in which all pixels of a display section are defective, and also make it possible to make the point defects that occur difficult to see.

〔課題を解決するtこめの手段〕[Comprehensive means to solve problems]

この発明に係わるマトリクス型表示装置は、画素電極が
複数に分割されると共に、分割された各分割画素電極が
、互いに接触しないで噛み合う形状を有し、一つの画素
内で全体に分布して構成され、かつ、各分割画素電極に
一個以」二のスイッチング素子を接続したものである。
The matrix type display device according to the present invention has a structure in which a pixel electrode is divided into a plurality of parts, each divided pixel electrode has a shape that meshes with each other without touching each other, and is distributed throughout one pixel. In addition, one or more switching elements are connected to each divided pixel electrode.

〔作用〕[Effect]

この発明においては、分割された画素電極で構成された
画素の一部が点灯しない点欠陥となっても、分割画素?
Hiが互いに噛み合うような形状で一つの画素の全体に
分布しているため、画素全体の輝度は抜けた分割画素T
i極の分だけ低下するものの、光の拡散性も加わって、
点灯していない画素の形状は肉眼ではほとんど判別でき
なくなるため、点欠陥が発生してもそれを見にくくする
乙とができる。
In this invention, even if a part of a pixel made up of divided pixel electrodes has a point defect in which it does not light up, the divided pixel still remains intact.
Since Hi is distributed over the entire pixel in a shape that interlocks with each other, the brightness of the entire pixel is reduced by the divided pixel T.
Although it decreases by the amount of i-pole, with the addition of light diffusivity,
Since the shape of a pixel that is not lit is almost impossible to discern with the naked eye, even if a point defect occurs, it can be made difficult to see.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例によるマトリクス型表示装置の
マトリクスアレイ基板の構成例を示す平面構成図であり
、図において、(g 1) (g z)・・・は画面表
示用の行電極線、 (S t) (s 、)・は画面表
示用の列電極線、((、□)(tin)はTPT等のス
イッチング素子であり、同図の場合、一画素に対し2個
のスイッチング素子が形成されており、該TPTの活性
層としてはアモルファスシリコン膜あるいは多結晶シリ
コン膜等が用いられている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a plan configuration diagram showing an example of the configuration of a matrix array substrate of a matrix type display device according to an embodiment of the present invention. In the figure, (g1) (gz)... are row electrode lines for screen display. , (S t) (s , )・ are column electrode lines for screen display, ((, □) (tin) are switching elements such as TPT, and in the case of the same figure, there are two switching elements for one pixel. is formed, and an amorphous silicon film, a polycrystalline silicon film, or the like is used as the active layer of the TPT.

また、(p 11) (p t□)は各々分割画素電極
であり、同図の場合、一画素は2個に分割されており、
かつその形状は各分割画素電極がクシ形に互いに噛み合
うような形であり、一つのクシ形をした分割画素電極は
できるだけ画素の全面に分布するように設計されている
In addition, (p 11) (p t□) are each divided pixel electrodes, and in the case of the same figure, one pixel is divided into two,
The shape is such that the divided pixel electrodes interlock with each other in a comb shape, and one comb-shaped divided pixel electrode is designed to be distributed over the entire surface of the pixel as much as possible.

このtこめ、仮に片方の分割画素がパターニング不良等
による断線で点欠陥となり点灯しなくなっても残りの分
割画素でカバーすることができ、更にその場合、fg5
図に示したような従来の単純な矩形で画素を二分割した
場合に比べ、一つの分割画素ができるだけ一画素全面に
わたって分布するような構造であるため、片側だけ点灯
した場合にも、光の拡散性を相俟って、より分割画素の
欠陥を見えにくくすることができる。また、欠陥が発生
した画素において、その画素のトータルの輝度は低下す
るものの、その画素全体が点灯しな(なるような点欠陥
ではなくなるため、画素の点欠陥を低減することができ
る。
In addition, even if one of the divided pixels becomes a point defect due to disconnection due to poor patterning, etc., and does not turn on, it can be covered by the remaining divided pixels, and in that case, fg5
Compared to the conventional case where a pixel is divided into two by a simple rectangle as shown in the figure, each divided pixel is distributed over the entire pixel as much as possible, so even if only one side is lit, the light Combined with the diffusivity, defects in divided pixels can be made more difficult to see. Furthermore, although the total brightness of a defective pixel decreases, it is no longer a point defect in which the entire pixel does not turn on, so it is possible to reduce point defects in the pixel.

また、上ではパターニング不良等により一つの分割画素
が点灯しなくなった場合について述べたが、パターン不
良あるいは金属の微細粒等により、TPT等のスイッチ
ング素子がショートして常に一方が点灯状態になった場
合に関しても、上記と同様に単純な矩形に分割した場合
に比べ、より点欠陥が見え難くなる。
In addition, above we talked about the case where one divided pixel does not turn on due to a patterning defect, etc., but due to a pattern defect or fine metal particles, a switching element such as a TPT shorts out and one of the pixels is always turned on. In this case as well, point defects become more difficult to see than in the case of dividing into simple rectangles as described above.

なお、マトリクスアレイ基板の冗長性の一手法として、
一つの画素に二個以上のスイッチング素子を接続するこ
とにより、一つのスイッチング素子がパターニング不良
等で開放状態となっても、残りの素子で画素電極を駆動
する方法があるが、同方法では一つのスイッチング素子
が短絡(TPTの場合、ソース電極とドレイン電極の短
絡)した場合、映像信号線(ソース信号)の入力が、走
査信号(ゲートパルス信号)の素子(ゲート電極)への
入力の有無にかかわらず常に画素電極に印加され、その
画素全体が常時点灯状態となる点欠陥となる。これに対
し、この発明による表示装置では、一つの分割画素が短
絡欠陥により常時点灯状態となっても、画素単位で比較
すると正常の画素に比べて全体の輝度は増加しコントラ
スト比は下がるものの、残りの分割画素が正常に作動す
れば映像イ3号の強弱に応じた輝度特性の変化はある程
度起きるため、分割画素の形状による光の拡散性も相俟
って常時点灯状態となっている欠陥画素も見えにクク、
肉眼でより点欠陥として見え難くなる。
In addition, as a method for redundancy of matrix array board,
There is a method in which two or more switching elements are connected to one pixel, so that even if one switching element becomes open due to poor patterning, the remaining elements drive the pixel electrode. If two switching elements are short-circuited (in the case of TPT, the source electrode and drain electrode are short-circuited), the input of the video signal line (source signal) is determined whether or not the scanning signal (gate pulse signal) is input to the element (gate electrode). Regardless of the voltage, the voltage is always applied to the pixel electrode, resulting in a point defect in which the entire pixel is constantly lit. In contrast, in the display device according to the present invention, even if one divided pixel is constantly turned on due to a short-circuit defect, the overall brightness increases and the contrast ratio decreases when compared pixel by pixel compared to a normal pixel. If the remaining divided pixels operate normally, the brightness characteristics will change to some extent depending on the strength of Image I3, so this together with the light diffusivity due to the shape of the divided pixels may cause the defect of the constant lighting state. You can even see the pixels,
It becomes more difficult to see as a point defect with the naked eye.

なお、上記実施例では分割画素が2個の場合に関し、分
割画素電極形状がクシ形のものを示したが、ドツト表示
電極の形状は第2図のように渦巻き状のものでも良く、
まtコ、分割画素が3個の場合は例えば第3図のような
構成であっても良く、上記実施例と同様の効果を奏する
Note that in the above embodiment, the shape of the divided pixel electrodes is comb-shaped in the case of two divided pixels, but the shape of the dot display electrodes may be spiral-shaped as shown in FIG.
If there are three divided pixels, for example, a configuration as shown in FIG. 3 may be used, and the same effects as in the above embodiment can be achieved.

また、上記実施例では例えばTPT等のスイッチング素
子を用いた場合のマトリクス型表示装置に関して説明し
たが、TPT等のスイッチング素子を用いない単純マト
リクス型の液晶表示装置に適用しても良く、上記実施例
と同様の効果を奏する。
Further, in the above embodiment, a matrix type display device using a switching element such as TPT has been described, but it may also be applied to a simple matrix type liquid crystal display device that does not use a switching element such as TPT, and the above embodiment may be applied to a simple matrix type liquid crystal display device that does not use a switching element such as TPT. It has the same effect as the example.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば一つの画素電極を複数
に分割し、かつ分割された各分割画素電極が、一つの画
素の中で全体の領域に分布し、互いに接触しないで噛み
合うような形状をもち、上記各分割画素電極に一個以上
のスイッチング素子が接続されるように構成したので、
一つの画素全体が点欠陥になる確率を下げることができ
、かつある分割画素電極が欠陥となった場合においても
、従来のような単純な矩形に分割された場合に比べ、よ
り欠陥を見え難くすることができるため、マトリクス型
表示装置の表示品位をより高品位化することができ、か
つ製造上の歩留まりを向上できる効果がある。
As described above, according to the present invention, one pixel electrode is divided into a plurality of parts, and each divided pixel electrode is distributed over the entire area within one pixel and meshes with each other without touching each other. shape, and is configured such that one or more switching elements are connected to each of the divided pixel electrodes,
The probability that an entire pixel becomes a point defect can be lowered, and even if a certain divided pixel electrode becomes defective, the defect is more difficult to see than when it is divided into simple rectangles as in the past. Therefore, the display quality of the matrix type display device can be further improved, and the manufacturing yield can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるマトリクス型表示装
置nマトリクスアレイ基板を示す平面構成図、第2図及
び第3図は各々この発明の他の実施例によるマトリクス
型表示装置のマトリクスアレイ基板を示す平面構成図、
第4図は従来のマi・リクス型表示装置のマトリクスア
レイ基板を示す構成図、並びに第5図は従来のマトリク
ス型表示装置のマトリクスアレイ基板を示す平面構成図
である。 (g +L (g +)  行電極線、(s 、)、 
(s工)列電極線、(LIIL(tl□)、(1,3)
・・スイッチング素子、(p t+)、 (p +t)
  (p ls)  分割画素電極なお、図中、同一符
号は同一、又は相当部分を示す。
FIG. 1 is a plan configuration diagram showing an n-matrix array substrate of a matrix type display device according to one embodiment of the present invention, and FIGS. 2 and 3 are respectively matrix array substrates of matrix type display devices according to other embodiments of the present invention. A plan configuration diagram showing
FIG. 4 is a configuration diagram showing a matrix array substrate of a conventional matrix type display device, and FIG. 5 is a plan configuration diagram showing a matrix array substrate of a conventional matrix type display device. (g +L (g +) row electrode line, (s,),
(s engineering) Column electrode wire, (LIIL(tl□), (1,3)
...Switching element, (p t+), (p +t)
(pls) Divided pixel electrodes In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上に、互いに平行な複数の行電極線、これら行
電極線と交差し、互いに平行な複数の列電極線、上記行
電極線と上記列電極線との交差部に接続されたスイッチ
ング素子、及び上記スイッチング素子に接続された画面
表示用の画素電極を配設し、上記絶縁基板上に表示材料
を介して対向電極を配置してなるマトリクス型表示装置
において、上記画素電極は複数に分割されると共に、分
割された各分割画素電極は、互いに接触しないで噛み合
う形状を有し、一つの画素内で全体に分布して構成され
、かつ各上記分割画素電極に一個以上のスイッチング素
子を接続したことを特徴とするマトリクス型表示装置。
On an insulating substrate, a plurality of row electrode lines parallel to each other, a plurality of column electrode lines intersecting these row electrode lines and parallel to each other, and a switching element connected to the intersection of the row electrode line and the column electrode line. and a matrix type display device comprising a pixel electrode for screen display connected to the switching element, and a counter electrode arranged on the insulating substrate via a display material, wherein the pixel electrode is divided into a plurality of parts. At the same time, each of the divided pixel electrodes has a shape that meshes with each other without contacting each other, and is configured to be distributed throughout one pixel, and one or more switching elements are connected to each of the divided pixel electrodes. A matrix type display device characterized by:
JP1337894A 1989-12-25 1989-12-25 Matrix type display device Pending JPH03196019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337894A JPH03196019A (en) 1989-12-25 1989-12-25 Matrix type display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337894A JPH03196019A (en) 1989-12-25 1989-12-25 Matrix type display device

Publications (1)

Publication Number Publication Date
JPH03196019A true JPH03196019A (en) 1991-08-27

Family

ID=18313001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337894A Pending JPH03196019A (en) 1989-12-25 1989-12-25 Matrix type display device

Country Status (1)

Country Link
JP (1) JPH03196019A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333004A (en) * 1990-11-23 1994-07-26 Thomson-Lcd Active matrix flat display
JPH08328043A (en) * 1995-02-01 1996-12-13 Seiko Epson Corp Liquid crystal display device
JP2006091274A (en) * 2004-09-22 2006-04-06 Hitachi Displays Ltd Liquid crystal display device
KR101240644B1 (en) * 2005-08-09 2013-03-11 삼성디스플레이 주식회사 Thin film transistor array panel
CN103995406A (en) * 2013-02-19 2014-08-20 群创光电股份有限公司 Liquid crystal display panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333004A (en) * 1990-11-23 1994-07-26 Thomson-Lcd Active matrix flat display
JPH08328043A (en) * 1995-02-01 1996-12-13 Seiko Epson Corp Liquid crystal display device
JP2006091274A (en) * 2004-09-22 2006-04-06 Hitachi Displays Ltd Liquid crystal display device
JP4606103B2 (en) * 2004-09-22 2011-01-05 株式会社 日立ディスプレイズ Liquid crystal display device
KR101240644B1 (en) * 2005-08-09 2013-03-11 삼성디스플레이 주식회사 Thin film transistor array panel
CN103995406A (en) * 2013-02-19 2014-08-20 群创光电股份有限公司 Liquid crystal display panel

Similar Documents

Publication Publication Date Title
CA2054935C (en) Method of manufacturing flat panel backplanes including redundant gate lines and displays made thereby
US6128051A (en) Method for forming and apparatus including a liquid crystal display having shorting bar connector
JPH06160904A (en) Liquid crystal display device and its production
JPH08179351A (en) Array substrate for display device
JPH1152427A (en) Liquid crystal display device
JPH03196019A (en) Matrix type display device
JP3102819B2 (en) Liquid crystal display device and driving method thereof
JPH10170946A (en) Liquid crystal display device
JP2867455B2 (en) Active matrix type liquid crystal display panel
KR100621533B1 (en) Array substrate for Liquid crystal display and method for fabricating thereof
JPH04225317A (en) Active matrix liquid crystal display element
JPH0750278B2 (en) Liquid crystal display
JPH11174970A (en) Thin-film device
JPH05273595A (en) Electrooptical device
JPS614018A (en) Device and method for display
JP2003043509A (en) Liquid crystal display device
JP2605346B2 (en) Display device manufacturing method
JPH03212620A (en) Active matrix type liquid crystal display device
JP3418684B2 (en) Active matrix type liquid crystal display
JPH08234235A (en) Liquid crystal matrix display device
JPH01227128A (en) Liquid crystal display device
KR950008938B1 (en) Liquid crystal display device
JP3418683B2 (en) Active matrix type liquid crystal display
KR19990051226A (en) LCD
KR100476040B1 (en) LCD and its manufacturing method