JPH03138310A - 溶鉄浴面下への酸素吹込み手段の保護方法 - Google Patents

溶鉄浴面下への酸素吹込み手段の保護方法

Info

Publication number
JPH03138310A
JPH03138310A JP27577189A JP27577189A JPH03138310A JP H03138310 A JPH03138310 A JP H03138310A JP 27577189 A JP27577189 A JP 27577189A JP 27577189 A JP27577189 A JP 27577189A JP H03138310 A JPH03138310 A JP H03138310A
Authority
JP
Japan
Prior art keywords
molten iron
flow rate
oxygen
cooling
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27577189A
Other languages
English (en)
Inventor
Nozomi Tamura
望 田村
Hiroshi Nishikawa
廣 西川
Hiroshi Kondo
寛 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27577189A priority Critical patent/JPH03138310A/ja
Publication of JPH03138310A publication Critical patent/JPH03138310A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、転炉の溶鉄浴面下の酸素ガス吹込み手段(羽
目)の保護方法に関するものである。 〈従来の技術〉 転炉における酸素ガス底吹あるいは横吹き羽口の冷却保
護方法として、該羽口を二重管、三重管、群管でとりか
こむ形で単管内に挿着したような種々の多重管構造とし
、その最外環状流路に冷却ガスとしてN8、^へC01
CO,%Pr、メタノール等のガスを供給し、酸素吹出
し角管の溶損を防止する技術が一般的である。 該技術の作用は、冷却ガスにより酸素吹込み手段、すな
わち羽口自体を低温化することはもとより、羽口先端に
冷却ガスの顕熱、分解熱等により多孔質の凝固地金(以
下マツシュルームと称す)を形成させ、溶鉄中の吹込酸
素と溶鉄中炭素等との反応により発生する欠点と称する
高温の反応界面から羽目先端への輻射熱、熔鉄問拌流に
よる摩耗、溶鉄の対流熱伝達等から羽目先端及び羽目周
辺耐火物表面を保護するものである。 底吹羽口の冷却方法として、特開昭61−34114号
公報に開示されたように羽口温度に応じて冷却ガス流量
を吹錬中変化させる技術がある。しかしながら、羽目の
tJi耗は実際ぼはゼロとはならないため、また熱電対
等の測定センサも溶鉄と接触すると断絶してしまうため
、羽口の長さ方向に多点挿入する必要がある。したがっ
て羽口数が多くなるき測定が非常に困難であり、また測
定用センサコストが高いため実用には耐えない。 さらに、冷却ガスにCOtを用いた場合に限ったもので
あるが、特開昭58−067816号公報に開示の技術
がある。すなわち、この技術は鋼中の炭素濃度によりc
otWkを変化させるものであるが、冷却ガス量を変化
させる目的は鋼中炭素濃度によって鋼中での炭素反応率
、火点温度が変化し、火点から羽口−・の輻射熱伝達量
が変化し、必要冷却能力が変化するためである。しかし
ながら、火点温度は鋼l扛炭素濃度だけではなく、脱炭
速度、送酸流量によっても変化する。よって必要冷却能
力を把握するためには鋼中炭素濃度、脱炭速度(加炭な
どがある場合は、加炭量を考慮に入れた真の脱炭速度)
および送酸流量を考慮に入れる必要がある。 従って前記特開昭58 067816号開示の技術では
、CO,等の冷却ガス量の変更を行っても羽目の損耗速
度はそれ程は向上しないという問題がある。 〈発明が解決しようとする課題〉 本発明は、前述のような問題に鑑み、火点温度への影響
因子や溶鉄の攪拌強度を考慮し、冷却流体量および/ま
たは流体種類を変化させて、酸素ガス吹込み手段、すな
わち羽目の損耗速度を改善できるような酸素吹込み手段
の保護方法を促供するためになされたものである。 く課題を解決するための手段〉 本発明は、■溶鉄浴面下に酸素ガスを吹込む手段を有す
る転炉において、酸素ガス吹込み手段を冷却保護するた
めの冷却流体通路を該手段の周囲に接するように周設し
、溶鉄中炭素濃度、送酸流量とを断続的に好ましくは連
続的に測定し、該溶鉄中炭素濃度、送酸流量および脱炭
速度に応じて冷却流体量および/または流体種類を変化
させることを特徴とする溶鉄浴面下への酸素吹込み手段
の保護方法で、かつ■前項■記載の酸素吹込み手段の保
護方法において、脱炭速度は転炉排ガス中のCOおよび
CO,濃度の連続測定結果および転炉排ガス流量の連続
測定結果から求め、溶鉄中炭素濃度は初期炭素濃度測定
結果と前記脱炭速度の時間積分値とから求める溶鉄浴面
下への酸素吹込み手段の保護方法である。 〈作 用〉 以下に発明をなすに至った背景および作用について説明
する。 溶鉄中の脱炭、脱酸反応速度は次の式で示される。 d  (C) −=に、(Cゴ  ・  (0)   −−−−(+)
d 【 d 〔0〕 =に+(c)  ・ to) +kz [01・−(2
) ここで、 〔C〕 ・ 〔0〕 :溶鉄中の炭素および酸素濃度、
k6、k、:見かけの反応速度定数で、吹込み酸素ガス
の攪拌力、気泡 径の関数である、 L:時間。 また、大気圧下がっ溶鉄温度一定の下で脱炭反応式につ
いてはっぎのように表される。 (C) + (0) −Co      −・−曲・ 
(3)〔C〕 ・ (0)   (C)  ・ [0]
(4) 二こで、K′ :平衡定数。 P、。:COの分圧。 (11〜(4)式から(5)式が得られる。 t t k’  (C) (5) L 一方、火点温度Tは大略(6)弐で表される。 比熱)×(燃焼ガス流量)) (6) ここで、口、:Feの燃焼熱、 口z : FeOトC−+Fe+COの吸熱量、(6)
式に(5)弐を代入すると(7)式が得られる。 /((火点発生ガス比熱)×(火点発 生ガス量) l        −一一一一(7)(7
)式において輻射熱攪はT4に比例し、また火点発生ガ
ス量は、吹込酸素ガス流ffi Qozと溶鉄中炭素濃
度(C)によって決まるので脱炭速度dCC)、’at
、吹込み酸素ガス流量Qo、、溶鉄中炭素濃度EC)が
決まると、火点温度Tが一義的に決定されることは明ら
かである。 また、溶鉄流との摩擦による羽目周辺耐火物表面および
先端損耗速度は溶鉄の撹拌力に比例し、対流熱伝達によ
る熱量は溶鉄温度すなわち火点温度に比例し、かつ撹拌
力に比例する。 溶鉄量がほぼ同じであれば、脱炭速度d (C)/dt
、吹込み酸素ガス流110oz、溶鉄中炭素濃度(C)
によって火点温度Tが決まり、さらに火点温度Tによっ
て輻射伝達熱量、対流伝達熱量が決まり、従って本発明
方法によると羽目の冷却流体里は、(輻射伝達熱■)+
(対流伝達熱量)に対する必要冷却能力に基づいて決め
られるので、従来方法に比べて適確にコントロールされ
る。 ここで羽目の損耗の残る因子としては溶鉄との機械的摩
擦のみとなるが、これは酸素ガス流量と関係が深いので
、酸素ガス流量を目安に、必要冷却能力以上の冷却流体
の供給によって、溶鉄とのFi!mによる羽口の摩耗量
に見合ったマツシュルーム量を余剰に生じさせて、羽目
の損耗速度を確実にかつ大幅に減少させることができる
。 〈実施例〉 (実施例1) 230T/chの純酸素底吹転炉を用いて、炭素濃度4
.5重量%(以下%と略す)の溶銑230Tを受銑し、
底吹酸素tel約1約1000公/吹錬を行った。 吹止め炭素濃度は0.05%とし、脱炭吹錬途中にコー
クスを添加するヒートもテストした。吹錬時間はIO分
/ヒートを守った。溶銑中炭素濃度はサブランスを1分
ピッチで用い溶銑の凝固点より逆算して求めるという従
来技術を利用した。また送酸流量はオリフィス型流量計
を用いて連続的に測定する方法をとり、底吹冷却ガスと
してはプロパン(以下Prと略す)とN2ガスとを単独
あるいは混合で用いた。 本発明の実施例として、冷却ガスがPr単味の場合(本
発明実施例1−■)流量QPrを変化させることとし次
の数式モデルを用いた。 t 十CX 1 / (C) + d   −〜−−−(8
)ここで、      Qrr : Pr流量、a、 
b、 c、、d :定数。 r’rとNgガスの混合ガスの場合(本発明実施例1−
■)、P「とNtガスの冷却能力は、Prガスの方は分
解吸熱反応があるためN、の7倍程度冷却能力が大きい
ため、N2ガス流量を01とすると冷却能力を考慮した
等価N2ガス流量は、口□−1/701.。 と書け(9)式を用いて変化させた。 L 1/(C)+a’       −・−・−・−(9)
に選ぶ。 (実施例2) 230T/chの純酸素底吹転炉を用いて、炭素濃度4
.5%の溶銑230Tを受銑し、底吹酸素流盟約100
0M/分で吹錬を行った。吹止め炭素濃度は0.05%
とし、実施例1と同様に、脱炭吹錬途中コークスを添加
するヒートもテストした。吹錬時間は10分/ヒートを
守った。 発生する排ガスのC01COt濃度は排ガス回収装置ダ
クト内より連続的に排ガスをサンプリングし赤外分析計
(市販品)により求めた。排ガス流量は回収装置に付属
しているベンチュリータイプの流量計により連続的に求
めた。送酸流量はオリフィス型流量針により求め記録し
た。 底吹冷却ガスとしては、PrとN、ガスを単独あるいは
混合で用いた。脱炭速度d(C)/dtは、排ガス中(
CO+COg)濃度(−%) x (1/100)×〔
排ガス流量〕により脱炭量が連続的に求められるために
脱炭量の時間微分値として求められる。 また、刻々の炭素濃度[C]は初期炭素濃度と脱炭d(
C)/dtの積分値とより計算で求められる。よって冷
却ガスがP「単味の場合、Prの流量は次の数式モデル
を用いて変化させた(本発明実施例2−■)。 +cx 1/ (c)+D  ・・・−・・・・・・0
0ここで、A、B、C,D:定数。 また、PrとNアガスの混合ガスの場合(本発明実施例
2−■)、本発明実施例1−■と同様の考え方にて、冷
却ガス流量は次の数式モデルを用いて変化させた。 i 1/(C)+D’        −−・・・−(In
ここで、A’ B’ C’ D’  !定数。 (比較例:従来法) 本発明1−■および2−■に対応する従来法■では02
1式、 QP−−b ”  Qot+ d ’      −−
−−−−021本発本発明実施例び2−■に対応する従
来法■では0■式、 Qrr+QN*−b ”  Qot+ d ”    
  (13)ここで、b″、d″、b9、d″:定数。 を用いて冷却ガス流量を変化させた。その他の条件は実
施例I、実施例2と同様とした。 前述の本発明実施例、従来法■、■各々の条件で50ヒ
ートずつ吹錬を行い、50ヒートの前後の底吹羽口残存
長さを測定比較し、用耗速度(m/ヒート〕を算出した
。但し、全ての実施例、比較例で底吹羽口周辺の条件を
同じとするため、常にワライニング後の新炉から50ヒ
ート連続テストを実施した。 第1表に本発明実施例1−■、1−■、2−■、2−■
と従来法■、■の50ヒート毎の平均の羽口…比速度(
鋪/ヒー日を比較して示した。 小さいことが明らかで、本発明方法の効果が確認された
。 〈発明の効果〉 本発明方法によると、溶銑中炭素濃度、排ガス中炭素量
を断続的又は連続的に測定し、ある時刻における溶銑中
炭素濃度、送酸流量および脱炭速度によって、羽口冷却
ガスの流量を適確にコントロールでき、羽口損耗速度が
大幅に改善される。

Claims (1)

  1. 【特許請求の範囲】 1、溶鉄浴面下に酸素ガスを吹込む手段を有する転炉に
    おいて、 酸素ガス吹込み手段を冷却保護するための冷却流体通路
    を該手段の周囲に接するように周設し、溶鉄中炭素濃度
    、送酸流量とを断続的に好ましくは連続的に測定し、該
    溶鉄中炭素濃度、送酸流量および脱炭速度に応じて冷却
    流体量および/または流体種類を変化させることを特徴
    とする溶鉄浴面下への酸素吹込み手段の保護方法。 2、請求項1記載の酸素吹込み手段の保護方法において
    、脱炭速度は転炉排ガス中のCOおよびCO_2濃度の
    連続測定結果および転炉排ガス流量の連続測定結果から
    求め、溶鉄中炭素濃度は初期炭素濃度測定結果と前記脱
    炭速度の時間積分値とから求める溶鉄浴面下への酸素吹
    込み手段の保護方法。
JP27577189A 1989-10-25 1989-10-25 溶鉄浴面下への酸素吹込み手段の保護方法 Pending JPH03138310A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27577189A JPH03138310A (ja) 1989-10-25 1989-10-25 溶鉄浴面下への酸素吹込み手段の保護方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27577189A JPH03138310A (ja) 1989-10-25 1989-10-25 溶鉄浴面下への酸素吹込み手段の保護方法

Publications (1)

Publication Number Publication Date
JPH03138310A true JPH03138310A (ja) 1991-06-12

Family

ID=17560167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27577189A Pending JPH03138310A (ja) 1989-10-25 1989-10-25 溶鉄浴面下への酸素吹込み手段の保護方法

Country Status (1)

Country Link
JP (1) JPH03138310A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959621B1 (ko) * 2008-12-30 2010-05-27 한기성 전산볼트용 면취가공기
JP2019039668A (ja) * 2013-04-12 2019-03-14 リフラクトリー・インテレクチュアル・プロパティー・ゲーエムベーハー・ウント・コンパニ・カーゲー 特に溶融金属用の冶金容器の耐火物ライニングの状態を決定するための方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959621B1 (ko) * 2008-12-30 2010-05-27 한기성 전산볼트용 면취가공기
JP2019039668A (ja) * 2013-04-12 2019-03-14 リフラクトリー・インテレクチュアル・プロパティー・ゲーエムベーハー・ウント・コンパニ・カーゲー 特に溶融金属用の冶金容器の耐火物ライニングの状態を決定するための方法

Similar Documents

Publication Publication Date Title
Li et al. Numerical simulation of off-gas formation during top-blown oxygen converter steelmaking
JPH03138310A (ja) 溶鉄浴面下への酸素吹込み手段の保護方法
Wu et al. A temperature prediction model of converters based on gas analysis
JPH0689393B2 (ja) 含鉄冷材溶解法における溶鉄c濃度推定方法
JP5014555B2 (ja) 溶鉄精錬炉の炉内観察方法
SU817065A1 (ru) Способ регулировани кислородно- КОНВЕРТОРНОгО пРОцЕССА
JP3858150B2 (ja) 転炉における吹錬終点Mn濃度の推定方法
JPH03183720A (ja) 冷鉄源溶解法における二次燃焼率検出方法
US3847593A (en) Process for refining metals, in particular liquid pig iron, in oxygen converters with continuous control of the operative procedure
JP2684209B2 (ja) 溶融還元炉の操業方法
JPH036312A (ja) 転炉吹錬制御法
RU2037528C1 (ru) Способ контроля температуры металла в конвертере
JP3697944B2 (ja) 転炉吹錬方法
SU876728A1 (ru) Способ контрол расхода отход щих газов в газоотвод щем тракте конвертора
SU872564A1 (ru) Способ контрол температуры металла в конвертере
JPH05179332A (ja) 転炉内溶鉄浴面下への酸素吹込み羽口の冷却保護方法
JPS60215705A (ja) 溶融還元炉の操業方法
SU947195A1 (ru) Способ продувки жидкого металла
JPS6335716A (ja) 溶融還元における二次燃焼率の測定方法及び測定装置
Zhu Application of CO2 Injection in the Steelmaking Process
Mei et al. Real-Time Carbon and Temperature Model of Converter Based on the Weights of Elemental Reaction Rate
JPS5877515A (ja) 酸素上吹転炉における吹止鋼浴温度の制御法
Jacobs Certain procedures in utilizing Kansas natural gas as a carburizing agent
RU2037527C1 (ru) Способ контроля температуры металла в конвертере
SU711108A1 (ru) Способ управлени кислородно-конверторным процессом