JPH03122017A - 超電導材料 - Google Patents

超電導材料

Info

Publication number
JPH03122017A
JPH03122017A JP1255285A JP25528589A JPH03122017A JP H03122017 A JPH03122017 A JP H03122017A JP 1255285 A JP1255285 A JP 1255285A JP 25528589 A JP25528589 A JP 25528589A JP H03122017 A JPH03122017 A JP H03122017A
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting material
composition
superconducting
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1255285A
Other languages
English (en)
Inventor
Kiyoyuki Esashi
清行 江刺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITOCHU SHOJI KK
NIPPON HAIBURITSUDO TECHNOL KK
Itochu Corp
Original Assignee
ITOCHU SHOJI KK
NIPPON HAIBURITSUDO TECHNOL KK
Itochu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITOCHU SHOJI KK, NIPPON HAIBURITSUDO TECHNOL KK, Itochu Corp filed Critical ITOCHU SHOJI KK
Priority to JP1255285A priority Critical patent/JPH03122017A/ja
Publication of JPH03122017A publication Critical patent/JPH03122017A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は液体窒素の沸点(77K )以上の超電導臨界
温度を有する新規な組成の超電導材料に関するものであ
る。
〔従来の技術〕
既に上記温度以上の超電導臨界温度(Tc)を有する酸
化物超電導材料としては、RをY及びSm。
Eu、Gd、Dy、Er、Ybなどの希土類元素として
、R1BaaCuaO+s、sto、s+ R1B82
CLI3O6.sl:o、sあるいは、Bi25rzC
azCu3O+o+  TI!、zBazcazc+J
so+o、  Tl+BazCa3CuaO□などの組
成物が開発されて来た。
〔発明が解決しようとする課題〕
しかしながら、最高のTcの値としてそれぞれ125に
、122にと優れた特性を有する上記Tf系の材料はT
1が猛毒性を有するために実際に製造困難である。又、
次に高いTcの値を有する上記Bi系の材料はTcが1
10にであり良い特性を示すにもかかわらず、残念なが
ら100%純粋な上記組成の材料を焼成して得ることが
困難である。さらに上記のRをYとするY系材料はTc
がそれぞれ90に、94にとこれらに次いで液体窒素冷
却条件下で用い易い組成物であるにもかかわらず、酸素
、○、が結晶構造中で着脱し易いために特性の劣化を招
き易いなどの問題が残存している。
本発明はこれら酸化物超電導材料の中でY系が最も製造
容易な材料であるので、Y系材料の特性の改良を口論み
、研究を重ねた結果完成されたものであり、さらに−段
と容易に、緻密な焼成体を製造出来る新規な組成の酸化
物超電導材料を提供することを目的としている。
〔課題を解決するための手段及び作用〕本発明の液体窒
素の沸点以上の温度の冷却条件下で電気抵抗が無くなり
、超電導状態となることを特徴とする酸化物超電導材料
は、原子数の比でCdを0.01以上6.5以下、Ca
を1.0以下、RをY及びSm、Eu、Gd、Dy、E
r、Ybの希土類元素の単独又は混合とし、Rを1.0
を越え10.2以下、Baを2.0を越え11.0以下
、Cuを3.0を越え21.1以下、酸素を6.0を越
え53,5以下の範囲で含む単相又は複相よりなる酸化
物であることを特徴としている。
本発明の組成物中のR,Ba、Cuの各元素は前記公知
の酸化物超電導材料に必須の構成元素である。未だ、理
論的には解明されていないがR元素の層とBa−0の層
との間にCu−0の2次元ネットワーク様の層が介在し
て、この層を伝導電子が一部となって走行することによ
って超電導状態が出現すると考えられているので、第4
、第5の他の金属元素を配合させる場合にはこのCu−
0ネツトワークを崩すことがない元素とその配合比率を
選択する必要がある。
本発明における配合元素のCdはこの条件を満足する極
めてまれな元素であり、これほど多量に含有させても臨
界温度(Tc)を低下させない元素は他に無い。Cdは
Cd0O形で混合配合させるが、700°C以上の温度
では昇華性を有し、900°C以上では分解すると言わ
れている。本発明材料の焼成温度の920°C程度の大
気中の条件下で単独にCdOを炉中に7時間保持したと
ころその減量は4.3%であった。その為配合原料粉末
中には4.3%分CdOのみ余分に配合しておけばこの
問題は解決できる。一方、他のYZO:l、 Cub、
 BaC0:++ CaC0,、などの原料粉末と混合
して焼成する場合には、同程度の温度でCdOが容易に
分解して反応性が強くなる為、他と混じり合い易く焼結
を促進するのに有効である。この事は、焼成温度がやや
高くなり過ぎた場合に、液相が滲んだ様な模様が、高純
度のアルミナ基板上に観察される事とも密接に関係して
おり、通常の焼成温度でも極く一部液相が出現しかけて
いる可能性が有る。
公知の前記R系超電導材料の中でも特に代表的なY系の
Y1Ba2Cu3O7,5f6. sは焼成温度925
〜940°Cで合計9時間程度焼成することによって製
造されている。これを、今、電流密度を向上させるとか
、雰囲気による経時劣化の低減をはかるなどのために結
晶粒界をより緻密にしようとして、焼成温度を上記温度
範囲以上に上げる場合には、正常な場合には黒色の焼成
体のはずのものが、緑色の絶縁相を形成させてしうので
、目的を果すことは困難であり、まして液相を極少間形
成させて焼結性を高めることなどは全く不可能である。
この点において、本発明のCdの配合は有効である。
さらに本発明のCdの配合は、R−Ba−Cu、−0系
超電導体の結晶構造に画期的な変化をもたらし、全く独
自の、Cu−0ネツトワークを有する結晶構造を形成さ
せ、Tcが公知のYIBazCu−rOb、 sho、
 sと同等の優れた特性を有する新規な酸化物超電導材
料を形成することが、マイスナー効果の強弱の判定の結
果や室温抵抗、臨界温度Tcなどの測定の結果から推論
出来た。厳密には結晶構造の解析の結果を待たねばなら
ないが、上記一連の実験測定の結果その構造の化学式を
おおよそ次式で表示することが出来ると考えられる。
Cd1ITu RB−prpBa+++ +CapCu
zn+o、 5f701%44.5n−1,sp++、
5+/但し、m=1〜6の整数値、n=2〜10の整数
値、O≦p≦1.0≦α≦0.5.0≦β≦0.2.0
≦γ≦0.6.0≦δ≦1.0.0≦ε≦0.5、特許
請求の範囲第3項の化学式は、実測の結果中心組成のT
cの測定値よりも士数度にの変動を生じる範囲として上
記の化学式中のCd、R,Cuの比の変動幅のα、β、
γの値に各々、±0.5、±0.2、±0.6の幅をも
たせ、さらに公知のY−BaCu−0系の如く酸素欠陥
、ホールの存在することも予想して、0の比率の変動幅
δに±1.0の幅をもたせたものである。
本発明の組成物中、Rとしての例えばYとBaは、各々
+3、+2価で、価電子数が異なるばかりでなく、イオ
ン半径も異り、互いに、非常に性質の異なる元素であり
結晶中で異った位置を占める。Cuイオンはおおよそ+
2価となってYとBaの間にCu−0の2次元ネットワ
ーク層を形成する。本発明の材料の特色はY、Ba、の
各−層の間にCu−0の層が介在し、Ba層同志が重複
することは無い。つまりBa−+Y−+Ba−+Y−+
Ba−+Y→Baという繰り返しのBa−+Yの間にC
u→0ネットワーク層が繰り返し介在するという構造を
取るものと考えられる。この点が13 B −+ Y−
)B a−+Ba−+ Y −) 3 a−+ 8;3
→Y−+B aのYlBazCu:+Oi+、 sfo
、 sの構造の場合と明らかに異なるであろう。Cdは
電気陰性度が1.7であり、Yの1.2、Baの0.9
に比較してはるかにCuの1.9の値に近い値を取り、
どちからと言えば結晶構造中ではCu″2を引き付けに
くい元素である。その為、上記Ba−+Y−+Ba−+
Y−+Baの繰り返し序列の端末にYとではなく、Ba
と隣接して位置するものと考えられる。Cd42のイオ
ン半径は0.97人、Y”は0.92人、Ba”は1.
34人 Cu+2は0.72人であり、Yと類似した値
を取るために、結晶構造中で原子の充填のバランス上C
dとYはBaを境にして、各々反対側に位置するものと
考えられる。又、Cdの比率mは1.2,3.4゜5.
6の整数値を取るものと考えられる。CdとBaとの間
の層とか、CdとCdとの間の層に、結晶構造を安定化
させる為に序列よりはみ出して全体の価電子数を整えて
零とする為に存在するCu原子が入ることが出来る。し
かし、Tcの実測の結果は、Cuを+2価として計算さ
れる0の比率よりも若干Cuの比率を多口に配合した試
料の方が、超電導遷移開始温度、Tc、、、と超電導遷
移終了温度、Tc OFF 、の温度差が小さく、TC
OFF温度も数度高い傾向がある。この事は、試料が、
超電導材料の純粋な結晶に近づくことと考えられるので
、実際の超電導材料は前記の本発明の構造より若干ずれ
た成分のものであろう。その比率は前記Cuの比率の変
動の幅、T、±0.5、の範囲におさまるであろう。こ
のことは結晶中にホールが形成されていて、超電導を生
じさせる一因子となっているものと考えられる。同様の
ことは+3価のYなどのR元素を±βの範囲内で変化さ
せる場合にも生じるものと考えられ、Cdの変動幅、±
αについても同様の要素が働らくかも知れない。
本発明組成物材料の構成元素であるCaは、Y+Baz
Cu+Ob、 sto、 s系の材料に配合する場合に
比較して多量に含有させてもTcをそれ程低下させない
。Caは+2価であるがイオン半径が0.99人であり
、Ylの0.92よりもCd”の0.97人に近いが、
電気陰性度力月、0とYの1.2にCdの1.7よりも
はるかに近い値を取るため+3価のYと置換することが
出来る。しかし、本発明構造ではBaの対称位置にCd
とYが存在するため、Y側によりイオン半径の大きなC
aが入ることは、より結晶構造を安定なものにすると考
えられる。但し、全体の価電子数のバランスを崩し、ホ
ールを存在させにくくする様な場合には超電導特性を損
うのであまり多量に含有させることは出来ないので、そ
の比率ρは1.0以下とする。
本発明材料中の酸素の含有量の正確な値については、精
密な分析を実施する必要があるが、各成分の価電子数よ
り、計算しておおよその見当を付けることが出来、その
比の値はm + 4.5n  1 、5p +1.5と
考えられる。しかしながら、前記の如く酸素欠陥、ホー
ルの存在が確実と考えられるので、同様にその比率にあ
る一定の幅、0≦δ≦1.0、を持たせておいた。
なおCdの比率mは6を越えてはるかに大きな整数値ま
で含めても、安定な構造を取るのかも知れないが、Cd
−00層の比率が増大するにつれて超電導電流密度の増
大に寄与しない部分が増えてゆくものと考えられるので
6以下の整数値とした。
又Rの比率nについてもωの整数値まで含むことが出来
るかも知れないがn−+ωにつれて、R,−Ba。
Cuzの比率の構造とはなれずR+ −Baz−Cu2
系あるいはR1Bag  Cu4系など公知の超電導相
と超電導でない不純物相との混合した材料となるはずな
のでnを10以下の整数とした。
以上の成分範囲を取りまとめて請求項とし−たものが第
3項であるが、既に公知のRIBazCLI3Ob、 
sto、 sの系と本発明の組成の構造物を混合させて
複相とした超電導材料も存在するはずであるから、請求
項第2項に記載の一般式、 (Ca2((y Rg−p  Bay1*+CapC1
1zn+o、5f−Y−I 011144、 sn−+、 5pat、 5J)x(
R+BazCu+06. s!/)y但し、x+y=1
、O<x≦1.0≦y<1.0≦ε≦0.5、 その他の記号は前記同様、 で表示可能な材料も有効な超電導材料となり得る。
本発明材料を製造するには、希土類元素、R、バリウム
、B1カドミニウム、Cd、カルシウム、Ca、銅、C
u、などの金属、酸化物、炭酸塩、水素化物、窒化物、
炭化物、などの単独又は混合粉を用い、大気中、酸素気
流中、不活性ガス混入の大気又は酸素気流中、あるいは
これらのガスの加圧、高圧、気体中で905〜935°
Cで焼成して造る。形を有する材料を仮焼なしに直接、
これら原料粉よりこの温度範囲で焼成して造ることも可
能である。もちろん薄膜材料とするために、スパンタ法
、蒸着法、C,V、D、法、スプレーパイロリンス法、
反応蒸着法、などの方法を用い、これら元素の金属や酸
化物より製造することも可能である。
又、原料についても、ゾルゲル法や共沈法などの様な、
製造に有利、あるいは特性の向上につながるような方法
を採用することも可能である。
焼成時間についてはCdが若干蒸発するので極力短時間
の方が好ましいが、0.5〜50時間の間で焼成可能で
あり、−船釣には3〜15時間程度で充分である。もち
ろん高圧ガスを用いて加圧焼結する場合にはこの時間は
より短時間側へ移行するものと思われる。
冷却方法はCdの高温での蒸発を避ける為に炉中冷却程
度の一般的な冷却速度で充分であるが、700”C以下
の蒸発しない温度範囲では徐冷することも酸素の含有量
をコントロールする為に有効と思われる。
〔発明の効果] 本発明によって、従来公知のR−Ba−Cu系酸化物超
電導材料と臨界温度特性において同等の優れた特性を持
ち、緻密に焼結し易く、はるかに広い成分範囲で、安定
に、液体窒素沸点温度以上の温度で超電導状態となる材
料を提供することが出来るようになった。又、この材料
は、従来のR−Ba−Cu系において経時変化の不安定
性の原因となっている結晶構造中にBaの重なった層間
の酸素配列のかなりの不完全性を有する構造とは異った
結晶構造を取るため、より経時変化の少ない安定な材料
となっている可能性が大きい優れた材料と考えられるの
で本発明の効果は極めて大きい。
したがって、従来より液体窒素温度以上の臨界温度を有
する超電導材料の用途と考えられて来た各種の用途、例
えば、磁気浮上列車、超電導モーター、MHD発電、核
融合、超電導送電、超電導推進船舶、超電導電力貯蔵、
核磁気共鳴診断装置、ジョセフソン素子、軸受け、など
の実用化へ本発明材料を適用して効果を上げることが出
来る。
〔実施例〕
次に本発明の詳細な説明する。
実施例1゜ 第1表に記載の組成物となる様に、CdO,yzo:+
BaC0,、CaC0=、 CuOの粉末を配合後、乳
鉢中でよく混合し、数10kg程度の荷重をかけて直径
12.5111111の1〜2.5gr程度の円盤状の
成型体を造った。さらに915〜93O°Cの温度範囲
、大気中5〜9時間焼成後600°Cまで3時間、60
0°Cから100°Cまで8時間の目安で炉中冷却して
焼成体を作製した。
次にこれらの円盤型材料をそのまま4端子法の間接He
ガス冷却型の電気抵抗測定装置にかけて超電導臨界温度
として、その開始温度TCONと終了温度TCOFFを
測定し、同表に記載の如き良好な結果を得た。なお同表
中*印のNo、 4は請求項第2項に対応するものでY
IBazCu=系とCdzY3Ba4Cu、系とを2対
1の比率で混合するように配合したものを示す。又、同
表中において、酸素の組成の比率は確定出来ないので省
略したがCuを+2価として、概算値を算出することが
出来る。
第 ■ 表(続き) 表(続き) 手 続 補 正 書 (方式) 補正の対象 明 細 書 平成2年 7月5 日 7゜ 補正の内容 明細書の浄書 (内容に変更なし)

Claims (3)

    【特許請求の範囲】
  1. (1)原子数の比でそれぞれ、Cdを0.01以上6.
    5以下、Caを1.0以下、RをY及びSm、Eu、G
    d、DyEr、Ybの希類元素の単独又は混合とし、R
    を1.0を越え10.2以下、Baを2.0を越え11
    .0以下、Cuを3.0を越え21.1以下、酸素を6
    .0を越え53.5以下の範囲で含む組成物を主体とし
    、少なくとも液体窒素の沸点以上の温度の冷却条件下で
    、電気抵抗が無くなり、超電導状態となることを特徴と
    する単相又は複相の結晶よりなる酸化物超電導材料。
  2. (2)一般式、 (Cd_m_±_αR_m_−_p_±_βBa_n_
    +_1Ca_pCu_2_n_+_0_._5_±_γ
    O_m_+_4_._5_m_−_1_._5_p_+
    _1_._5_+_δ)_x(R_1Ba_2Cu_3
    O_6_._5_±_ε)_y但し、x+y=1、0<
    x≦1、0≦y≦1、m=1〜6の整数値、n=2〜1
    0の整数値、0≦p≦1.0、0≦α≦0.5、0≦β
    ≦0.2、0≦γ≦0.6、0≦δ≦1.0、0≦ε≦
    0.5で表わされる組成物であることを特徴とする請求
    第1項記載の酸化物超電導材料。
  3. (3)化学式、 Cd_m_±_αR_n_−_p_±_βBa_n_+
    _1Ca_pCu_2_n_+_0_._5_±_γO
    _m_+_4_._5_n_−_1_._5_p_+_
    1_._5_+_δ但し、m=1〜6の整数値、n=2
    〜10の整数値、0≦p≦1.0、0≦α≦0.5、0
    ≦β≦0.2、0≦γ≦0.6、0≦δ≦1.0、0≦
    ε≦0.5で表される組成物であることを特徴とする請
    求第1項及び第2項記載の酸化物超電導材料。
JP1255285A 1989-10-02 1989-10-02 超電導材料 Pending JPH03122017A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255285A JPH03122017A (ja) 1989-10-02 1989-10-02 超電導材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255285A JPH03122017A (ja) 1989-10-02 1989-10-02 超電導材料

Publications (1)

Publication Number Publication Date
JPH03122017A true JPH03122017A (ja) 1991-05-24

Family

ID=17276637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255285A Pending JPH03122017A (ja) 1989-10-02 1989-10-02 超電導材料

Country Status (1)

Country Link
JP (1) JPH03122017A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318949A (en) * 1991-10-25 1994-06-07 Gec-Marconi Limited Superconducting ceramic composition comprising (Pb,Cd)-Sr-(Y,Q)-Cu-O wherein Q is Ca OR Sr

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318949A (en) * 1991-10-25 1994-06-07 Gec-Marconi Limited Superconducting ceramic composition comprising (Pb,Cd)-Sr-(Y,Q)-Cu-O wherein Q is Ca OR Sr

Similar Documents

Publication Publication Date Title
EP0330305B1 (en) High-temperature oxide superconductor
JPH02289424A (ja) 酸化物超電導体とその製造方法および応用製品
JPH03122017A (ja) 超電導材料
JPH0764560B2 (ja) 層状銅酸化物
JP3219563B2 (ja) 金属酸化物とその製造方法
JP2593475B2 (ja) 酸化物超電導体
JPS63285812A (ja) 酸化物超電導線材の製造方法
JP3034267B2 (ja) 酸化物超電導体
JP2523928B2 (ja) 酸化物超伝導体およびその製造方法
EP0413581B1 (en) Superconducting material
US5536705A (en) Superconductor with 1212 phase of Hg,Pb,Sr,Ba,Ca,Y,Cu oxide
JP2698689B2 (ja) 酸化物超伝導材料およびその製造方法
JPH04124032A (ja) 超電導体及びその合成法
JP2760999B2 (ja) 酸化物超電導焼結体およびその製造方法
JPH01290530A (ja) 複合酸化物系超電導材料およびその製造方法
JP2854338B2 (ja) 銅系酸化物超電導体
JP2855127B2 (ja) 酸化物超電導体
KR930002579B1 (ko) 후막초전도체와 그 제조방법
JP2838312B2 (ja) 酸化物超伝導物質
JP3247914B2 (ja) 金属酸化物材料
JP3338461B2 (ja) 酸化物超電導体及びその製造方法
JP2971504B2 (ja) Bi基酸化物超電導体の製造方法
JPS63230524A (ja) 超伝導性素材
JPS63230525A (ja) 超伝導性素材
JPH04292418A (ja) 酸化物超伝導体およびその製造方法