JPH0289325A - 化合物半導体の構造体及びその形成方法 - Google Patents

化合物半導体の構造体及びその形成方法

Info

Publication number
JPH0289325A
JPH0289325A JP24166588A JP24166588A JPH0289325A JP H0289325 A JPH0289325 A JP H0289325A JP 24166588 A JP24166588 A JP 24166588A JP 24166588 A JP24166588 A JP 24166588A JP H0289325 A JPH0289325 A JP H0289325A
Authority
JP
Japan
Prior art keywords
compound semiconductor
layer
carrier
semiconductor layer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24166588A
Other languages
English (en)
Other versions
JP2501627B2 (ja
Inventor
Seiji Nishi
清次 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63241665A priority Critical patent/JP2501627B2/ja
Publication of JPH0289325A publication Critical patent/JPH0289325A/ja
Application granted granted Critical
Publication of JP2501627B2 publication Critical patent/JP2501627B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/802Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with heterojunction gate, e.g. transistors with semiconductor layer acting as gate insulating layer, MIS-like transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Bipolar Transistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ガリウム砒素(GaAs)、アルミニウム
ガリウム砒素(A(lGaAs)のような化合物半導体
を用いて素子を構成する際に、不純物を添加して高いキ
ャリア濃度を達成する技術に関する。
(従来の技術) 従来、化合物半導体を用いた種々の半導体素子が知られ
、広く実用に供されている。
上述した素子を作製するに当っては、高純度の化合物半
導体層を高精度な膜厚で得ることが可能であり、しかも
当該層を成長させる際に不純物を共存させて、例えば電
界効果トランジスタのチャネル領域やソース・トレイン
領域といった活性領域の形成、或いは、これら領域にオ
ーミック接合を達成する領域の形成が同時に行なえると
いった理由から、分子線エピタキシー(Molecul
ar BeamEpitaxy:MBE)法が用いられ
ている。
文献I:″^pplied Physics Lett
ers(アプライド フィジックス レターズ)″(v
ol、39(10)。
p、800〜803,1981年11月発行)では、上
述のMBE法を利用して、化合物半導体であるガリウム
砒素(GaAs)にシリコン(Si)を不純物として添
加した際の不純物濃度とキャリア濃度との関係につき開
示されでいる。
この文献Iに開示される実験では、閘旺法を用いる際、
Siセル温度を種々に変えることによってSiの蒸気圧
を変え、Si添加量の異なる試料を作製し、この試料の
キャリア濃度を測定している。
第3図は、この実験の結果を説明するための特性曲線図
であり、縦軸にキャリア濃度(個/cm3)を採り、横
軸には気相成長温度の逆数(XIQ’(K−’))を採
って示しである。
この図からも理解できるように、この実験で成されたS
iセル温度のうち、8.4 x 10−’ (K−’)
(約920(”C)に相当)〜6.6 Xl0−’(K
−’) (約1240(’C)に相当)の範囲内では、
Siセル温度を増加させるに従って、キャリア密度が増
加する。
しかしながら、上述の6.6 X 10−’ (K−’
)のSiセル温度として6XlO”(個/ am3)の
キャリア濃度を達成する条件から、さらに温度を増加さ
せた場合には、得られるキャリア濃度の減少を来たすこ
とが理解できる。
この文献工によれば、Siセル温度の増加に従って、不
純物として添加されるSiがドナーとして生成され、キ
ャリア濃度が増加する。これに対して、Siセル温度を
+240(”C)よりも大きくし、添加するSiを増し
た成長条件では、添加されたSiがドナーを生成すると
同時にアクセプタまたは中性不純物を生成する。これが
ため、図中、破線を付して示すように、上述した+24
0(’C)以上のSiセル温度であってもドナーは増加
するが、同時に起きるアクセプタ生成によって全体とし
てのキャリア濃度は、見掛は上、減少傾向を示すと考え
られている。
このように、化合物半導体であるGaAsにSiを不純
物添加する場合には、キャリア濃度が6×10” (個
/cm3)程度で飽和してしまう。
一方、電子機器の高速化、小型化及び省電力化等を図る
目的で半導体素子を高密度に集積することが要求されて
いる。このような要求に対処する技術として、例えば、
文献H: ” JapaneseJournal of
 Applied Physics (ジャパニーズジ
ャーナル オブ アプライド フィジックス)”(vo
l、24.p、L608〜1610.1985年8月発
行)には、電界効果トランジスタ(Field Eff
ectTransistor:FET) @構成するチ
ャネル領域ヲ薄く形成する技術が開示されている。
第4図は、文献IIに開示される従来技術を説明するた
め、素子断面を模式的に示す説明図であり、断面゛を示
すハツチングは一部省略しである。
この技術は、Ga、 As或いはSiの夫々をガス(蒸
気)として供給し得る装置(図示せず)を用い、前述し
たMBE法によって行なう。
まず、GaとAsとを反応室内に導入して、半絶縁性の
GaAsから成る基板11の表面に約350(nm)の
膜厚でGaAsを被着させ、第一の化合物半導体層13
とする。
続いて、SiとAsとを反応室内に導入し、上述した第
一の化合物半導体層13の表面に6−ドーピング層15
を被着させる。この6−ドーピング層15の被着は、S
i原子が単層と成るようにガスの導入を制御して行なわ
れ、さらに、Siの面密度(単位面積当りの被着M)は
4.5 X 1012(個/am2)とする。
然る後、前述した第一の化合物半導体層13の場合と同
様に、GaとAsとを反応室内に導入し、約30(nm
)の膜厚でGaAsを成長させて第二の化合物半導体層
17を得る。
このようにして、チャネル領域として機能する構成成分
を形成した後、ソース領域19及びトレイン領域21を
形成し、さらに、クロム−金(Cr−^U)合金から成
るゲート電極23、或いは金−ゲルマニウム(Au−G
e)合金とニッケル(Ni)との二層から成るソース電
極25とトレイン電極27とを形成して、第4図に示す
ような電界効果トラシジスクが得られる。
このような技術によって得られた6−ドーピング層15
は約7XIO”C個/cm3)のキャリア濃度を実現す
ることができる。
尚、上述した第一の化合物半導体層、6−ドーどジグ層
及び第二の化合物半導体層を含む構成成分は、チャネル
領域としで利用した場合にのみ効果が得られるものでは
なく、ソース電極やトレイン電極の下側に接して配設さ
れるオーミック接合を目的とした不純物領域としても好
適である。従って、以下の説明においては、6−ドーピ
ング層を含み、チャネル形成やオーミック接合を目的と
した構成成分を化合物半導体の構造体、または単に構造
体として包括的に表わすものとする。
(発明が解決しようとする課題) しかしながら、上述の6−ドーピング層を利用する技術
であっても、4.5 X 1012(個/cm2)以上
の面密度で不純物添加を添加した場合、前述の第3図と
同様にキャリア濃度の限界を生じる。
これがため、面密度を上述の値よりも高くすることによ
ってキャリアffi/l向上させ、構造体の膜厚の縮小
をより一層進めることが難しいという問題点か有った。
この発明の目的は、上述した従来の問題点に迄み、6−
ドーピング層の面密度を高くすることによってキャリア
密度の向上が可能な技術を提供し、延いては、半導体素
子の高速化、小型化及び省電力化を図ることに有る。
(課題を解決するための手段) この目的の達成を図るため、この出願の第一発明に係る
化合物半導体の構造体によれば、AuLxGal−XA
s (但し、Xは0≦X≦1の値を表わす、)から成る
第一の化合物半導体層と、AuyGa+−v^S(但し
、Y 1(tO≦Y≦1の+h=v表わす、)から成る
第二の化合物半導体層との間に、シリコン(Si)を不
純物としで含む6−ドーピング層を具えて成る化合物半
導体の構造体において、 上述した第一の化合物半導体層と上述の6ド一ピング層
との間に、InAs、 InGaAs及びIn1QAs
のうちから選ばれた1種類の化合物または2種類以上の
化合物の混晶から成る第一のキャリア安定化薄層を具え
、かつ前述した第二の化合物半導体層と上述の6−ドー
ピング層との間に、InAs、InGaAs及びInA
lAsのうちから選ばれた1種類の化合物または2種類
以上の化合物の混晶から成る第二のキャリア安定化薄層
を具えて成ることを特徴としている。
また、この出願の第二発明に係る化合物半導体の構造体
の形成方法によれば、 A9xGa+−XAs (但し、XはO≦X≦1の値を
表わす、)から成る第一の化合物半導体層を被着する工
程と、 上述した第一の化合物半導体層の表面に、InAs、 
InGaAs及びInAlAsのうちから選ばれた11
!類の化合物または2種類以上の化合物の混晶から成る
第一のキャリア安定化薄層を被着する工程と、 上述した第一のキャリア安定化薄層の表面に、不純物と
してシリコン(Si)を含む6−ドーピング層を被着す
る工程と、 上述の6−ドーピング層の表面に、InAS、InGa
As及びIn/1tAsのうちから選ばれた1種類の化
合物または2種類以上の化合物の混晶から成る第二のキ
ャリア安定化薄層を被着する工程と、上述した第二のキ
ャリア安定化薄層の表面に、AQvGa+−YAs (
但し、Yは0≦Y≦1の値を表わす、)から成る第二の
化合物半導体層を被着する工程と を含むことを特徴としでいる。
(作用) まず、この出願の第一発明に係る化合物半導体の構造体
の構成によれば、第−及び第二の化合物半導体層によっ
て挟まれ、かつインジウム(In)を含んで構成される
第−及び第二のキャリア安定化薄層の間に6−ドーどン
グ層を具えることにより、高いキャリア濃度を有する安
定な構造体を実現することができる。
また、この出願の第二発明に係る形成方法によれば、上
述した積層間係で、順次に、被着を行なうことによって
、6−ドーピング層を形成する際に、シリコンの面密度
を従来技術よりも高くした場合であっても、アクセプタ
の主成を抑制することができ、構造体のキャリア密度を
高くすることができる。
(実施例) 以下、図面を参照して、この発明の実施例につき詳細に
説明する。尚、以下に説明する実施例では、この発明の
理解を容易とするため、特定の条件を例示して説明する
が、この発明は、これら条件及び図示例にのみ限定され
るものではないことを理解されたい、また、以下の説明
では、この出願の構造tFEτに適用した場合につき、
方法発明の実施例に従って説明する。
第1図は、前述した第4図と同様に、素子断面を模式的
に示す説明図である。
まず始めに、例えば半絶縁性のGaAsから成る基板2
9ヲ下地として、前述の閘BE法により、約700(n
m)の膜厚で、GaAsから成る第一の化合物半導体層
31を被着する。
続いて、この実施例では、約0.5(nm)の膜厚でI
nAsから成る第一のキャリア安定化薄層33を被着す
る。
次に、上述した第一のキャリア安定化薄層33の表面(
こ、約1013(個/ cm2)の面密度でSiミラ有
する6−ドーピング層35を被着する。
この6−ドーピング層35の被着は、従来と同様に、S
i原子が単層と成るようにSi及びAsの導入を制御し
で行ない、しかも、上述の説明からも理解できるように
、Siの面密度は従来よりも大きな値を以って行なう。
続いて、前述した第一のキャリア安定化薄層33と同一
の材料及び膜厚を以って第二のキャリア安定化薄層37
を被着させ、ざらに、GaAsから成る第二の化合物半
導体層39ヲ約8(nm)の膜厚で被着し、チャネル領
域として機能させるための構造体41を得る。
このような構造体41を形成した後、従来と同様に、ソ
ース領域19とトレイン領域21とを形成し、さらに、
ゲート電極23、ソース電極25及びトレイン電極27
を形成する。
このようにして得られたFET !用いで、この実施例
の構造体41に具えられる6−ドーピング層35の特性
を測定したところ、面2度はSiの添加量に応じてIO
’3 (個/cm2)!示し、キャリア濃度は約10I
g(個/cm3)を実現することができた。
上述の実施例では、第一の化合物半導体層31及び第二
の化合物半導体層39が、共にGaAsから成る場合に
つき説明した。しかしながら、前述した組成に係る条件
、AlXGa1−xAsまたはA11yGa+−YAs
からも理解できるように、これら2つの化合物半導体層
のうちの一方がGaAsであり、他方が三元系のAQ−
Ga−^Sであっても良い。また、第一の化合物半導体
層と第二の化合物半導体層との双方を三元系で構成する
場合でも良く、係る構成では、化合物半導体の組成か互
いに異なる場合(上述の係数XとYとが異なる値である
場合)であっても良い。
ざらに、上述の実施例では、第一のキャリア安定化薄層
33と第二のキャリア安定化薄層37とがInAsから
成る場合につき説明したが、これらキャリア安定化薄層
を構成する材料は、少なくともInとAsとを含むもの
であれば良い。従って、キャリア安定化薄層は、InA
s、 InGaAs及びInAQAsのうちから選ばれ
た1種類の化合物である場合、或いはこれら3種類の化
合物のうちから選ばれた2種類以上の化合物の混晶から
成る場合のいずれかの条件を満たすのが好適である。
これに加えて、この発明の構造は、チャネル領域として
機能する場合にのみ適用されるものではない。
第2図は、第1図と同様に示す模式的な説明図である。
この図は、他の実施例として、この発明に係る構造をチ
ャネル領域に利用すると共に、良好なオーミック接合を
実現するための不純物領域にも適用した場合の素子の一
例を示している。
この図からも理解できるように、この実施例では、前述
した実施例と同様に、基板29上に、第一の化合物半導
体層31、第一のキャリア安定化薄層33.6−ドーピ
ング層35及び第二のキャリア安定化薄層37を順次被
着する。然る後、例えば10100(n程度の膜厚で化
合物半導体層43を成長させ、さら1こ、第一のキャリ
ア安定化薄層45.6−ドーピング層47、第二のキャ
リア安定化薄層49及び第二の化合物半導体層5Iを順
次に成長させる。
続いて、ゲート電極を形成するための領域に形成されて
いる第二の化合物半導体層51、第二のキャリア安定化
薄層49.6−ドーピング層47及び第一のキャリア安
定化薄層45を順次にエツチング除去し、さらに、化合
物半導体層43の一部分をエツチング除去する。
然る後、前述と同様に、ソース領域19、トレイン領域
21、ゲート電極23、ソース電極25及びトレイン電
極27を形成することにより、図示のFETが得られる
このように、ゲート電極を配設する部分にくぼみを設け
たFETの構造は、リセス(recess)構造と呼ば
れる。このリセス構造のFETにおいて、チャネル領域
として機能する構造体53を、既に説明した第一の化合
物半導体層31がら第二のキャリア安定化薄層37と、
ゲート電極23の下側の化合物半導体層43とによって
構成しでいる。
また、ソース電極25とトレイン電極27との、各々の
下側に形成され、良好なオーミック接合を実現するため
の構造体55も、上述した化合物半導体層43から第二
の化合物半導体層51に至る各層によって構成するもの
である。
このように、多層構造として複数の構造体を1つの素子
に作り込むことによって、チャネル領域と良好なオーミ
ック接合を実現するための不純物領域とを高いチャネル
密度で配設することができる。
以上、この出願に係る発明の実施例につき詳細に説明し
たが、この発明は、上述した実施例にのみ限定されるも
のではない。
例えば、この発明の技術は、ペテロ接合トランジスタ(
HBT)のオーミック電極形成やpnpトランジスタの
ベース層、またはその他種々のデバイスに応用した場合
であっても、上述と同様の効果を得ることができる。
これら材料、寸法、形状、配百問係、数値的条件及びそ
の他の条件は、この発明の目的の範囲内で、任意好適な
設計の変更及び変形を行ない得ること明らかである。
(発明の効果) 上述した説明からも明らかなように、まず、この発明の
化合物半導体の構造体によれば、第−及び第二の化合物
半導体層によって挟まれ、かつインジウム(In)V含
んで構成される第−及び第のキャリア安定化薄層の間に
6−ドーピング層を設けることにより、高いキャリア濃
度を有する安定な構造体を実現することができる。
また、この出願の第二発明に係る形成方法によれば、上
述した積層関係で、順次に、被着を行なうことによって
、6−ドーピング層を形成する際に、シリコンの面空度
を高くした場合であっても、キャリア密度の飽和を軽減
することができる。
従って、この出願に係る発明を実施することにより、6
−ドーどング層の面密度を高くすることによってキャリ
ア密度の向上を実現することができ、延いては、半導体
素子の高速化、小型化及び省電力化を図ることが期待で
きる。
【図面の簡単な説明】
第1図は、この出願に係る発明の詳細な説明するため、
模式的な素子断面によって示す説明図、 第2図は、他の実施例を説明するため、第1図と同様に
示す説明図、 第3図は、従来技術を説明するため、縦軸にキャリア密
度、及び横軸にSiセル温度の逆数を採って示す特性曲
線図、 第4図は、従来技術を説明するため、第1図及び第2図
と同様に示す説明図である。 19・・・・ソース領域、21・・・・トレイン領域2
3・・・・ゲート電極、25・・・・ソース電極27・
・・・トレイン電極 33、45・・・・・第一のキャリア安定化薄層37.
49・・・・・第二のキャリア安定化薄層41.53.
55・・・・構造体、43・・・・化合物半導体層。

Claims (2)

    【特許請求の範囲】
  1. (1)Al_XGa_1_−_XAs(但し、Xは0≦
    X≦1の値を表わす。)から成る第一の化合物半導体層
    と、Al_YGa_1_−_YAs(但し、Yは0≦Y
    ≦1の値を表わす。)から成る第二の化合物半導体層と
    の間に、シリコン(Si)を不純物として含むδ−ドー
    ピング層を具えて成る化合物半導体の構造体において、
    前記第一の化合物半導体層と前記δ−ドーピング層との
    間に、InAs、InGaAs及びInAlAsのうち
    から選ばれた1種類の化合物または2種類以上の化合物
    の混晶から成る第一のキャリア安定化薄層を具え、かつ
    前記第二の化合物半導体層と前記δ−ドーピング層との
    間に、InAs、InGaAs及びInAlAsのうち
    から選ばれた1種類の化合物または2種類以上の化合物
    の混晶から成る第二のキャリア安定化薄層を具えて成る ことを特徴とする化合物半導体の構造体。
  2. (2)下地上にAl_XGa_1_−_XAs(但し、
    Xは0≦X≦1の値を表わす。)から成る第一の化合物
    半導体層を被着する工程と、 前記第一の化合物半導体層の表面に、InAs、InG
    aAs及びInAlAsのうちから選ばれた1種類の化
    合物または2種類以上の化合物の混晶から成る第一のキ
    ャリア安定化薄層を被着する工程と、前記第一のキャリ
    ア安定化薄層の表面に、不純物としてシリコン(Si)
    を含むδ−ドーピング層を被着する工程と、 前記δ−ドーピング層の表面に、InAs、InGaA
    s及びInAlAsのうちから選ばれた1種類の化合物
    または2種類以上の化合物の混晶から成る第二のキャリ
    ア安定化薄層を被着する工程と、 前記第二のキャリア安定化薄層の表面に、 Al_YGa_1_−_YAs(但し、Yは0≦Y≦1
    の値を表わす。)から成る第二の化合物半導体層を被着
    する工程と を含むことを特徴とする化合物半導体の構造体の形成方
    法。
JP63241665A 1988-09-27 1988-09-27 化合物半導体の構造体及びその形成方法 Expired - Lifetime JP2501627B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63241665A JP2501627B2 (ja) 1988-09-27 1988-09-27 化合物半導体の構造体及びその形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63241665A JP2501627B2 (ja) 1988-09-27 1988-09-27 化合物半導体の構造体及びその形成方法

Publications (2)

Publication Number Publication Date
JPH0289325A true JPH0289325A (ja) 1990-03-29
JP2501627B2 JP2501627B2 (ja) 1996-05-29

Family

ID=17077698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63241665A Expired - Lifetime JP2501627B2 (ja) 1988-09-27 1988-09-27 化合物半導体の構造体及びその形成方法

Country Status (1)

Country Link
JP (1) JP2501627B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284434A (ja) * 1989-04-26 1990-11-21 Nec Corp 電界効果トランジスタ
EP0510705A2 (en) * 1991-04-26 1992-10-28 Sumitomo Electric Industries, Ltd. Field effect transistor
EP0523731A2 (en) * 1991-07-17 1993-01-20 Sumitomo Electric Industries, Limited Field effect transistor and method for manufacturing the same
JP2001185559A (ja) * 1999-12-27 2001-07-06 Natl Inst Of Advanced Industrial Science & Technology Meti 負性抵抗電界効果トランジスタ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108779A (ja) * 1987-10-22 1989-04-26 Fujitsu Ltd 電界効果半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108779A (ja) * 1987-10-22 1989-04-26 Fujitsu Ltd 電界効果半導体装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02284434A (ja) * 1989-04-26 1990-11-21 Nec Corp 電界効果トランジスタ
EP0510705A2 (en) * 1991-04-26 1992-10-28 Sumitomo Electric Industries, Ltd. Field effect transistor
EP0510705A3 (ja) * 1991-04-26 1995-05-24 Sumitomo Electric Industries
EP0523731A2 (en) * 1991-07-17 1993-01-20 Sumitomo Electric Industries, Limited Field effect transistor and method for manufacturing the same
EP0523731A3 (ja) * 1991-07-17 1995-05-17 Sumitomo Electric Industries
JP2001185559A (ja) * 1999-12-27 2001-07-06 Natl Inst Of Advanced Industrial Science & Technology Meti 負性抵抗電界効果トランジスタ
JP4528398B2 (ja) * 1999-12-27 2010-08-18 独立行政法人産業技術総合研究所 負性抵抗電界効果トランジスタ

Also Published As

Publication number Publication date
JP2501627B2 (ja) 1996-05-29

Similar Documents

Publication Publication Date Title
US5144379A (en) Semiconductor device having a group iii-v epitaxial semiconductor layer on a substrate
EP0097772B1 (en) Structure comprising a monocrystalline substrate supporting a device layer of semiconductor material
EP0008898B1 (en) Method of forming an oxide layer on a group iii-v compound
JPH0766366A (ja) 半導体積層構造体およびそれを用いた半導体装置
US5456206A (en) Method for two-dimensional epitaxial growth of III-V compound semiconductors
US5024967A (en) Doping procedures for semiconductor devices
JP2636840B2 (ja) 半導体デバイス
JPH0289325A (ja) 化合物半導体の構造体及びその形成方法
JPH0261151B2 (ja)
JPS6353711B2 (ja)
JP2000068497A (ja) GaN系化合物半導体装置
KR100519896B1 (ko) 고농도로도핑된반도체및그의제조방법
US8575595B2 (en) P-type semiconductor devices
JP2703885B2 (ja) 半導体装置
JP2808671B2 (ja) 電界効果トランジスタ
JP2980630B2 (ja) 化合物半導体装置
JPS6390861A (ja) 半導体装置
JP2844853B2 (ja) 半導体装置の製造方法
JPH025439A (ja) 半導体基板
JPH028450B2 (ja)
JPH04199507A (ja) 3―V族化合物半導体へのn型不純物固相拡散方法
JPS6068661A (ja) 半導体装置
JP2800457B2 (ja) 半導体装置
JP2614490B2 (ja) ヘテロ接合電界効果トランジスタ
JPS61241972A (ja) 化合物半導体装置

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13