JPH0278575A - Heat-resistant insulating substrate and thermal head - Google Patents

Heat-resistant insulating substrate and thermal head

Info

Publication number
JPH0278575A
JPH0278575A JP22981988A JP22981988A JPH0278575A JP H0278575 A JPH0278575 A JP H0278575A JP 22981988 A JP22981988 A JP 22981988A JP 22981988 A JP22981988 A JP 22981988A JP H0278575 A JPH0278575 A JP H0278575A
Authority
JP
Japan
Prior art keywords
layer
heat
resistant
protective layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22981988A
Other languages
Japanese (ja)
Inventor
Katsuhisa Honma
克久 本間
Katsumi Yanagibashi
柳橋 勝美
Masaru Nikaido
勝 二階堂
Hideji Yoshizawa
吉澤 秀二
Mutsuki Yamazaki
六月 山崎
Toshiaki Tanno
丹野 利明
Yoshinori Hayakawa
義則 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Device Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Device Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP22981988A priority Critical patent/JPH0278575A/en
Publication of JPH0278575A publication Critical patent/JPH0278575A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads

Abstract

PURPOSE:To prevent damage to a heat-resistant resin layer in a production process and simplify the control of a value of resistance by a method wherein an amorphous substance layer containing at least one of hydrogen and halogen and mainly composed of silicon and at least one of nitrogen, carbon, and oxygen is provided as a resin protective layer, and thereon an amorphous silicon carbide layer is provided. CONSTITUTION:On a metal substrate 1, a heat-resistant resin layer 2 serving as a heat-accumulation layer and also an insulating layer is formed. On the heat resistant resin layer 2, a resin protective layer 3 made of a first layer of an amorphous substance containing at least one of hydrogen and halogen and mainly composed of silicon and at least one selected from among nitrogen, carbon, and oxygen and a second layer formed on the first layer and made of an amorphous silicon carbide containing silicon carbide as a main component and having a specific resistance value of 10''OMEGAcm or more at room temperature is provided to form a heat-resistant insulating substrate 4. In this manner, the possibility of damaging the heat-resistant resin layer 2 is eliminated when an electrode substance and a heating resistor substance are dissolved and removed into a required circuit pattern, and a gas generation can be prevented when the heating resistor substance is formed in vacuum, which stabilizing a resistance value.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ファクシミリやプリンタなどの感熱記録装置
に用いられるサーマルヘッドとこのサーマルヘッドや各
種電子機器に用いられる耐熱性絶縁基板に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a thermal head used in a thermal recording device such as a facsimile or a printer, and a heat-resistant insulation used in this thermal head and various electronic devices. Regarding the board.

(従来の技術) 最近、ポリイミド樹脂のような耐熱樹脂を各種基板上に
絶縁層や蓄熱層などとして設けた耐熱性絶縁基板が、サ
ーマルヘッドの高抵抗基体やハイブリッドIC用の多層
回路基板などのような熱に対して高い信頼性が要求され
る各種電子機器の支持基板などとして多用されるように
なってきている。
(Prior Art) Recently, heat-resistant insulating substrates in which heat-resistant resins such as polyimide resins are provided as insulating layers or heat storage layers on various substrates have been developed for use in high-resistance substrates for thermal heads, multilayer circuit boards for hybrid ICs, etc. They are increasingly being used as support substrates for various electronic devices that require high reliability against such heat.

たとえばサーマルヘッドにおいては、高抵抗基体として
従来のアルミナなどのセラミック基板上にグレーズガラ
ス層を熱の放散および蓄熱をコントロールする保温層と
して形成してなるものに代えて、セラミックス基板や金
属基板上にポリイミド樹脂層のような耐熱樹脂層を形成
した耐熱性絶縁基板が用いられている。
For example, in thermal heads, instead of the conventional high-resistance substrate formed by forming a glazed glass layer on a ceramic substrate such as alumina as a heat-retaining layer to control heat dissipation and heat accumulation, a ceramic substrate or a metal substrate is used as a high-resistance substrate. A heat-resistant insulating substrate on which a heat-resistant resin layer such as a polyimide resin layer is formed is used.

このポリイミド樹脂層を保温層として設けたサーマルヘ
ッドとしては、たとえば以下のような構成を有するもの
が知られている。
As a thermal head provided with this polyimide resin layer as a heat insulating layer, for example, one having the following structure is known.

すなわち、Fe合金などからなる金属基板上に蓄熱層と
絶縁層とを兼ねるポリイミド樹脂などからなる耐熱樹脂
層を形成し、この上にTa−5in、、Ti−5iO□
などからなる発熱抵抗体をスパッタリング法などにより
膜形成する。さらに、この発熱抵抗体の上に発熱部とな
る開口を形成する如<AQやAQ −3i −Cuなど
からなる個別電極および共通電極を形成し、少なくとも
この発熱部を被覆するようシリコンオキシナイトライド
(SL−0−N)などからなり耐酸化膜を兼ねる耐摩耗
層を形成したものである。
That is, a heat-resistant resin layer made of polyimide resin or the like, which serves as a heat storage layer and an insulating layer, is formed on a metal substrate made of an Fe alloy or the like, and Ta-5in, Ti-5iO□
A heat-generating resistor made of the following is formed into a film by sputtering or the like. Furthermore, an opening that becomes a heat generating part is formed on this heat generating resistor, and individual electrodes and a common electrode made of AQ, AQ-3i-Cu, etc. are formed, and silicon oxynitride is formed so as to cover at least this heat generating part. (SL-0-N) or the like, and has a wear-resistant layer that also serves as an oxidation-resistant film.

このようなサーマルヘッドは、保温層としてポリイミド
樹脂層を使用することによって、ポリイミド樹脂の熱拡
散率が従来のグレーズガラス層に比べて1/3〜1/6
と低いことから、熱効率に非常に優れたものとなる。ま
た、金属基板のような可撓性を有する支持基板を使用す
ることが可能になることから、曲げ加工を行うことも可
能になり、よって小型で安価で高性能なサーマルヘッド
として注目されている。しかし、このようなサーマルヘ
ッドは、その製造工程において以下のような問題点を有
していた。
By using a polyimide resin layer as a heat insulating layer, such a thermal head has a thermal diffusivity of polyimide resin that is 1/3 to 1/6 that of a conventional glazed glass layer.
Because of its low thermal efficiency, it has excellent thermal efficiency. In addition, since it is possible to use a flexible support substrate such as a metal substrate, it is also possible to perform bending processing, so it is attracting attention as a small, inexpensive, and high-performance thermal head. . However, such a thermal head has the following problems in its manufacturing process.

たとえば、発熱抵抗体や電極の形成の際に行うエツチン
グ処理時やマスキング膜のアッシング時に、耐熱樹脂層
に損傷を与えてしまう。
For example, the heat-resistant resin layer is damaged during etching processing performed when forming heating resistors and electrodes, or during ashing of a masking film.

また、真空中で発熱抵抗体物質を着膜させる際に、ポリ
イミド樹脂層内からのガス放出が多く、このガスの影響
により抵抗値の制御が難しいという問題が生じる。
Further, when depositing the heating resistor material in a vacuum, a large amount of gas is released from within the polyimide resin layer, and the influence of this gas causes a problem in that it is difficult to control the resistance value.

さらに、ワイヤーボンディング法により配線する際に、
ポリイミド樹脂層の弾性によりボンディングを行いにく
いという問題が生じる。
Furthermore, when wiring using the wire bonding method,
A problem arises in that bonding is difficult to perform due to the elasticity of the polyimide resin layer.

このような問題点を解決するための一手段として、本出
願人は先に耐熱樹脂層と発熱抵抗体層との間に、アルミ
ナ、シリコンオキシナイトライド。
As a means to solve these problems, the present applicant has previously developed a method using alumina and silicon oxynitride between the heat-resistant resin layer and the heat-generating resistor layer.

サイアロンなどの無機絶縁物からなる樹脂保護層を形成
したサーマルヘッドを提案している(特願昭62−21
428号、同62−134326号、同62−1916
55号)。
We have proposed a thermal head with a protective resin layer made of an inorganic insulator such as Sialon (Japanese Patent Application No. 1986-21).
No. 428, No. 62-134326, No. 62-1916
No. 55).

このように耐熱樹脂層と発熱抵抗体層との間に樹脂保護
層を形成することによって、その製造工程においてポリ
イミド樹脂層の損傷やポリイミド樹脂層からのガス放出
が防止され、また全体の剛性もある程度高まるために実
装工程を安定して行えるなどの効果が得られている。
By forming a resin protective layer between the heat-resistant resin layer and the heating resistor layer in this way, damage to the polyimide resin layer and gas release from the polyimide resin layer are prevented during the manufacturing process, and the overall rigidity is also improved. Since this increases to a certain extent, effects such as being able to perform the mounting process stably are obtained.

このように耐熱樹脂層上に樹脂保護層を形成することは
、サーマルヘッドの高抵抗基体としてだけではなく、他
の電子機器における絶縁基板としても、実装工程を安定
して行えるなど、有効な手段である。
Forming a resin protective layer on a heat-resistant resin layer in this way is an effective means not only as a high-resistance base for thermal heads, but also as an insulating substrate for other electronic devices, allowing the mounting process to be performed stably. It is.

(発明が解決しようとする課題) 上述したように、ポリイミド樹脂のような耐熱樹脂層上
にアルミナ、シリコンオキシナイトライドやサイアロン
などの無機絶縁物からなる樹脂保護層を設けた耐熱性絶
縁基板を、たとえばサーマルヘッドの高抵抗基体として
用いることによって様々な利点が得られるものの、上述
したような無機絶縁物層では充分な膜強度が得られてお
らず。
(Problem to be Solved by the Invention) As described above, a heat-resistant insulating substrate is provided in which a resin protective layer made of an inorganic insulating material such as alumina, silicon oxynitride, or sialon is provided on a heat-resistant resin layer such as polyimide resin. Although various advantages can be obtained by using it as a high-resistance substrate of a thermal head, for example, the above-mentioned inorganic insulating layer does not have sufficient film strength.

たとえば以下に示すような問題が発生している。For example, the following problems occur.

すなわち1本発明者らが上記した樹脂保護層を有するサ
ーマルヘッドをプリンタに組込んで実際に印字走行試験
を行ったところ、走行中に異常な抵抵値変化を示し、印
字に悪影響を及ぼす現象が多々認められた。この異常な
抵抗値変化を示す点について詳細に調べたところ、サー
マルヘッドと感熱紙あるいは感熱紙とローラの間に巻き
込まれたゴミなどの異物がサーマルヘッドの表面層とな
る耐摩耗層にクラックが生じさせ、このクラックが発熱
抵抗体まで達した場合に印字特性に悪影響を及ぼしてい
ることが判明した。
In other words, when the present inventors installed the thermal head having the resin protective layer described above into a printer and actually conducted a printing running test, it showed abnormal resistance value changes during running, a phenomenon that adversely affected printing. was frequently recognized. A detailed investigation into this abnormal resistance change revealed that foreign matter such as dust caught between the thermal head and the thermal paper or between the thermal paper and the roller caused cracks in the wear-resistant layer that forms the surface layer of the thermal head. It has been found that when these cracks reach the heating resistor, they have an adverse effect on printing characteristics.

このような問題は、従来のセラミックス基板上にグレー
ズガラス層を形成した高抵抗基体や金属基板上にガラス
層を形成した高抵抗基体を用い、それ以外を同一構造と
したサーマルヘッドにおいては、見られなかった現象で
ある。
Such problems cannot be seen in thermal heads that use conventional high-resistance substrates with a glazed glass layer formed on a ceramic substrate or high-resistance substrates with a glass layer formed on a metal substrate, and which otherwise have the same structure. This is a phenomenon that was not possible.

これは、グレーズガラス層やガラス層を保温層として用
いた高抵抗基体を用いたサーマルヘッドでは基体全体の
硬度が大きく、これにより耐摩耗層に局所的な圧力が加
わっても耐摩耗層が基体と同様な変形しかしないため1
局部的な変形が阻止されて上述したようなりラックが生
じないものと考えられる。
This is because the hardness of the entire substrate is large in thermal heads that use a high-resistance substrate that uses a glazed glass layer or a glass layer as a heat-retaining layer. Because it only causes the same deformation as 1
It is thought that local deformation is prevented and racks as described above do not occur.

一方、これに対してポリイミド樹脂のような耐熱樹脂を
用いた高抵抗基体の場合、前述したように樹脂保護層に
よっである程度基体の剛性が高められているものの、樹
脂の変形態が耐摩耗層に比べて著しいため、耐摩耗層に
局所的な集中荷重が゛加わった際に耐熱樹脂層の変形を
樹脂保護層や耐摩耗層によって防止することができない
ためである。そして、耐熱樹脂層の変形に樹脂保護層や
耐摩耗層の変形が追随できなくなってクラックが生じて
しまうものと考えられる。
On the other hand, in the case of a high-resistance substrate made of a heat-resistant resin such as polyimide resin, although the rigidity of the substrate is increased to some extent by the resin protective layer as described above, the deformation of the resin makes it difficult to wear. This is because the deformation of the heat-resistant resin layer cannot be prevented by the resin protective layer or the wear-resistant layer when a locally concentrated load is applied to the wear-resistant layer. It is thought that the deformation of the resin protective layer and wear-resistant layer cannot follow the deformation of the heat-resistant resin layer, resulting in cracks.

このような問題はサーマルヘッドに限らず、たとえば前
述したようにハイブリッドIC用多層回路基板などにお
いても、実装工程などで耐熱樹脂層の変形によってその
上に設けられた配線層の断線やボンディング不良などを
招いてしまう。
Such problems are not limited to thermal heads, but also occur in multilayer circuit boards for hybrid ICs as mentioned above, where deformation of the heat-resistant resin layer during the mounting process causes disconnection of the wiring layer provided on top of it, defective bonding, etc. It invites.

本発明は、このような従来技術の課題に対処するべくな
されたもので、剛性を高め実装工程などにおける不良発
生率を減少させた耐熱性絶縁基板と、プリンタなどに組
み込んで走行させた際の耐摩耗層のクラックを防止し、
信頼性を向上させたサーマルヘッドを提供することを目
的とする。
The present invention was made in order to address the problems of the prior art, and includes a heat-resistant insulated substrate that has increased rigidity and reduced the incidence of defects in the mounting process, and a Prevents cracks in the wear-resistant layer,
The purpose is to provide a thermal head with improved reliability.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の耐熱性絶縁基板は、高熱伝導性の支持基板と、
この支持基板上に形成された耐熱樹脂層と、この耐熱樹
脂層上に設けられた水素およびハロゲン元素の少なくと
も一種を含有し、窒素、炭素、酸素の中から選ばれた少
なくとも一種と硅素からなる非晶質体の第1の層と、こ
の第1の層上に炭化硅素を主成分とし室温での比抵抗値
が10″ΩS■以上である非晶質炭化硅素からなる第2
の層とからなる樹脂保護層とを少なくとも具備すること
を特徴とするものである。なお、室温は約25℃とする
(Means for Solving the Problems) A heat-resistant insulating substrate of the present invention includes a highly thermally conductive support substrate,
a heat-resistant resin layer formed on this support substrate; and a heat-resistant resin layer provided on this heat-resistant resin layer that contains at least one of hydrogen and halogen elements and is made of at least one selected from nitrogen, carbon, and oxygen and silicon. A first layer made of an amorphous material, and a second layer made of amorphous silicon carbide, which is mainly composed of silicon carbide and has a resistivity value of 10"ΩS or more at room temperature, is formed on the first layer.
The invention is characterized by comprising at least a resin protective layer consisting of a layer and a resin protective layer. Note that the room temperature is approximately 25°C.

また、本発明のサーマルヘッドは、高熱伝導性の支持基
板と、この支持基板上に形成された耐熱樹脂層と、この
耐熱樹脂層上に設けられた樹脂保護層と、この樹脂保護
層上に形成された多数の発熱抵抗体と、これら各発熱抵
抗体に接続された導電体と、前記発熱抵抗体の少なくと
も発熱部を被覆するように設けられた耐摩耗層とを少な
くとも具備するサーマルヘッドにおいて。
Further, the thermal head of the present invention includes a highly thermally conductive support substrate, a heat-resistant resin layer formed on the support substrate, a resin protective layer provided on the heat-resistant resin layer, and a resin protective layer formed on the resin protective layer. A thermal head comprising at least a large number of formed heating resistors, a conductor connected to each of the heating resistors, and a wear-resistant layer provided to cover at least a heat generating part of the heating resistor. .

前記樹脂保護層が、水素およびハロゲン元素の少なくと
も一種を含有し、窒素、炭素、酸素の中から選ばれた少
なくとも一種と硅素からなる非晶質体の第1の層と、こ
の第1の層上に炭化硅素を主成分とし室温での比抵抗値
が10′″Ω#1以上である非晶質炭化硅素からなる第
2の層とからなる樹脂保護層とを少なくとも具備するこ
とを特徴とするものである。
The resin protective layer includes an amorphous first layer containing at least one of hydrogen and a halogen element and consisting of silicon and at least one selected from nitrogen, carbon, and oxygen; At least a resin protective layer consisting of a second layer made of amorphous silicon carbide containing silicon carbide as a main component and having a resistivity value of 10'''Ω#1 or more at room temperature is provided thereon. It is something to do.

(作  用) 本発明のサーマルヘッドにおいては樹脂保護層や耐熱摩
耗層として、また耐熱性絶縁基板においては樹脂保護層
として、水素およびハロゲン元素の少なくとも一種を含
有し珪素と窒素、炭素、酸素のうち少なくとも一種とを
主成分とする非晶質体層が形成され、さらにその上に非
晶質炭化珪素が形成されている。これらの非晶質体層は
膜中の水素やハロゲン元素によって非常に安定な状態に
保たれており、また転移など多く含むため非常に靭性が
大きい。また、無機質膜であるため、ポリイミド等に比
べると格段に硬度が大きくなっている。
(Function) In the thermal head of the present invention, the resin protective layer and heat-resistant wear layer, and in the heat-resistant insulating substrate as the resin protective layer, contain at least one of hydrogen and halogen elements, and are composed of silicon, nitrogen, carbon, and oxygen. An amorphous layer containing at least one of these as a main component is formed, and amorphous silicon carbide is further formed thereon. These amorphous layers are kept in a very stable state by the hydrogen and halogen elements in the film, and also have a high toughness because they contain many dislocations. Furthermore, since it is an inorganic film, it has much higher hardness than polyimide or the like.

ところで、たとえばサーマルヘッドにおける耐熱樹脂層
の変形の防止のみを考えると、耐摩耗層の膜厚を増大さ
せることによっても達成できる。
By the way, if we only consider preventing deformation of the heat-resistant resin layer in a thermal head, for example, this can also be achieved by increasing the thickness of the wear-resistant layer.

しかし、この方法では発熱抵抗体と感熱紙との間の距離
が大きくなるため、効率の低下、解像度の低下など、性
能上の著しい欠点が生ずるのみならず、量産性も著しく
低下する。これに対して、本発明においては、上記性質
を有する非晶質体を使用しているので、膜厚を厚くする
ことなく基板全体の強度を向上させることができる。
However, in this method, the distance between the heating resistor and the thermal paper becomes large, which not only causes significant performance disadvantages such as decreased efficiency and resolution, but also significantly reduces mass productivity. In contrast, in the present invention, since an amorphous material having the above properties is used, the strength of the entire substrate can be improved without increasing the film thickness.

また非晶質炭化珪素を積層しであることでデバイス製造
上不可欠である耐ドライエツチング性が確保される。さ
らに前記非晶質炭化珪素の比抵抗値がt ol+Ω′―
以上確保されることにより、絶縁基板としての役割りを
充分に果たす。
Furthermore, by laminating amorphous silicon carbide, dry etching resistance, which is essential for device manufacturing, is ensured. Furthermore, the resistivity value of the amorphous silicon carbide is tol+Ω′−
By ensuring the above conditions, the role of the insulating substrate is fully fulfilled.

(実 施 例) 次に2本発明の実施例を図面を参照して説明する。(Example) Next, two embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例のサーマルヘッドの要部の構
成図であり、1はFe −Cr合金などからなる厚さ0
 、5mm程度の金属基板を示している。 この金属基
板1上には、蓄熱層と絶縁層を兼ねるポリイミド樹脂や
ポリアミドイミド樹脂、あるいはこれらの混合物や積層
物からなる耐熱樹脂層2が20−程度の厚さで形成され
ており、この耐熱樹脂層2の上に厚さ1趣〜10連で窒
素、炭素、酸素のうち少なくとも一種と珪素とを主成分
とし、水素またはハロゲン元素を含む非晶質体からなる
樹脂保護層3が形成されて、耐熱性絶縁基板4が構成さ
れている。
FIG. 1 is a configuration diagram of the main parts of a thermal head according to an embodiment of the present invention, and 1 is a 0-thickness film made of Fe-Cr alloy.
, shows a metal substrate of about 5 mm. On this metal substrate 1, a heat-resistant resin layer 2 made of polyimide resin, polyamide-imide resin, or a mixture or laminate thereof, which serves as a heat storage layer and an insulating layer, is formed to a thickness of about 20 mm. A resin protective layer 3 is formed on the resin layer 2 to a thickness of 1 to 10 layers, and is made of an amorphous material mainly composed of at least one of nitrogen, carbon, and oxygen and silicon, and containing hydrogen or a halogen element. Thus, a heat-resistant insulating substrate 4 is constructed.

この耐熱性絶縁基板4上には、Ta −SiO□、Ti
 −3iO,などからなる発熱抵抗体5が形成されてお
り、この発熱抵抗体5の上に発熱部となる開口を形成す
る如<AffやAQ−3i−Cuなどからなる厚さ0.
7−〜1℃程度の個別電極6および共通電極7が形成さ
れ、少なくともこの発熱部となる開口を独習するように
SiO□からなる接着層8および5i−0−Nからなる
耐酸化膜を兼ねる耐摩耗層9が形成されている。
On this heat-resistant insulating substrate 4, Ta-SiO□, Ti
A heat generating resistor 5 made of -3iO, etc. is formed, and an opening serving as a heat generating portion is formed on the heat generating resistor 5.
Individual electrodes 6 and common electrodes 7 having a temperature of about 7-1°C are formed, and at least the openings serving as the heat-generating parts also serve as an adhesive layer 8 made of SiO□ and an oxidation-resistant film made of 5i-0-N. A wear-resistant layer 9 is formed.

そしてこのサーマルヘッドは、個別電極6と共通電極7
との間に所定の時間間隔でパルス電圧を印加することに
より発熱部となる開口部に相当する発熱抵抗体が発熱し
印字記録が行われる。
This thermal head has an individual electrode 6 and a common electrode 7.
By applying a pulse voltage at predetermined time intervals between the two, the heating resistor corresponding to the opening serving as the heating section generates heat, and printing is performed.

このサーマルヘッドは、たとえば次のようにして製造さ
れる。
This thermal head is manufactured, for example, as follows.

まず、第2図に示すように、Fe−16重量%Cr合金
からなる金属基板1を所定の寸法に切断し、脱脂洗浄し
て乾燥後、乾水素雰囲気中において600℃〜800℃
で熱処理を行う(第2図−イ)。次いで、この金属基板
1上に、たとえばポリイミドワニスやポリアミドイミド
ワニスをロールコータやスピンコータを用いて、焼成後
に20即〜30μsの膜厚となるように所定量塗布し、
乾燥、焼成を行い耐熱樹脂層2を形成する(第2図−口
)。
First, as shown in FIG. 2, a metal substrate 1 made of an Fe-16 wt% Cr alloy is cut into predetermined dimensions, degreased, cleaned, dried, and heated at 600°C to 800°C in a dry hydrogen atmosphere.
Heat treatment is performed (Fig. 2-A). Next, a predetermined amount of polyimide varnish or polyamide-imide varnish, for example, is applied onto this metal substrate 1 using a roll coater or a spin coater so that the film thickness will be 20 to 30 μs after baking.
Drying and baking are performed to form a heat-resistant resin layer 2 (Fig. 2 - opening).

次に、この耐熱樹脂層2表面を洗浄した後に(第2図−
ハ)、たとえばスパッタ法、イオンブレーティング法、
真空蒸着法、プラズマCVD法、ECRプラズVCVD
法、熱CVD法、光CVD法などによって樹脂保護層3
を形成する(第2図−二)、これらの方法の中でも、膜
の密着性が良いこと、比較的低温で処理でき基板の特性
を損わないこと、並びに膜の物性すなわち電気的特性や
光学的特性が容易に制御できることなどの点からプラズ
マCVD法が好適である。特に本発明においては被着基
板が耐熱樹脂であるために基板温度を、たとえば耐熱樹
脂としてポリイミド樹脂を用いた場合においても、一般
的なポリイミド樹脂の耐熱温度である550℃以上にで
きないため、 この耐熱温度未満の低温で処理可能な方
法が必要となる。
Next, after cleaning the surface of this heat-resistant resin layer 2 (Fig. 2-
c), such as sputtering method, ion blating method,
Vacuum deposition method, plasma CVD method, ECR plasma VCVD
The resin protective layer 3 is formed by
(Figure 2-2).Among these methods, it is important that the adhesion of the film is good, that it can be processed at a relatively low temperature without damaging the properties of the substrate, and that the physical properties of the film, such as electrical and optical properties, are The plasma CVD method is suitable because the physical characteristics can be easily controlled. In particular, in the present invention, since the substrate to be adhered is made of a heat-resistant resin, the substrate temperature cannot exceed 550°C, which is the heat-resistant temperature of general polyimide resin, even when polyimide resin is used as the heat-resistant resin. A method that can process at low temperatures below the heat-resistant temperature is required.

このプラズマCVD法は、原料ガスのうちSi成分とし
てSiH4ガスやSiF4ガスなどを用い、他方の成分
としてN2ガス、CH4ガス、N、Oガスなどを用いて
、真空中でこれらのガスをプラズマ化し、基板上に目的
とするセラミックスの薄膜を形成する方法である。そし
てこの際に、膜中には原料ガス中の水素やフッ素のよう
なハロゲン元素が吸蔵され、これら元素の影響で非晶質
状態を安定して保つことが可能な薄膜が得られる。
This plasma CVD method uses SiH4 gas, SiF4 gas, etc. as the Si component of the raw material gas, and N2 gas, CH4 gas, N, O gas, etc. as the other component, and converts these gases into plasma in a vacuum. This is a method of forming a desired ceramic thin film on a substrate. At this time, hydrogen and halogen elements such as fluorine in the source gas are occluded in the film, and a thin film that can stably maintain an amorphous state due to the influence of these elements is obtained.

なお、この実施例では以下に示す手順に従って、第3図
に示す平行平板型の容量結合型プラズマCVD装置を用
いて樹脂保護層3を形成して耐熱性絶縁基板4を作製し
た。
In this example, a heat-resistant insulating substrate 4 was produced by forming a resin protective layer 3 using a parallel plate type capacitively coupled plasma CVD apparatus shown in FIG. 3 according to the procedure shown below.

第3図において、11は真空チャンバであり、この真空
チャンバ11内には平板状接地電極12と高周波電極1
3とが対向して設置されており、この平板状接地電極1
2上に処理基板14、すなわち耐熱樹脂層が形成された
金属基板を載置する。次いで、図示を省略した真空ポン
プにより真空チャンバ11内を10−’ Torr程度
に排気した後、接地電極12に取り付けたヒータ15に
より処理基板14を150℃〜450℃程度に加熱する
。次いで、ガス導入口16から原料ガスを真空チャンバ
ll内に供給しつつ0.05Torr〜1 、0Tor
r程度の真空度を保つように排気口17から排気しなが
ら、高周波電極13にマツチングボックス18を介して
、高周波電源19からの電力を投入することにより、電
極間でグロー放電を起こさせて原料ガスをプラズマ化し
、処理基板14上に目的とする薄膜を形成する。
In FIG. 3, 11 is a vacuum chamber, and inside this vacuum chamber 11 there is a flat ground electrode 12 and a high frequency electrode 1.
3 are installed facing each other, and this flat ground electrode 1
A processing substrate 14, that is, a metal substrate on which a heat-resistant resin layer is formed, is placed on the substrate 2. Next, the inside of the vacuum chamber 11 is evacuated to about 10-' Torr by a vacuum pump (not shown), and then the processing substrate 14 is heated to about 150° C. to 450° C. by the heater 15 attached to the ground electrode 12. Next, while supplying the raw material gas into the vacuum chamber 11 from the gas inlet 16, the temperature is set at 0.05 Torr to 1,0 Torr.
While evacuating from the exhaust port 17 so as to maintain a degree of vacuum of approximately The raw material gas is turned into plasma, and a target thin film is formed on the processing substrate 14.

ここで、成膜の条件として具体的な例を次の第1表に示
す。
Here, specific examples of film forming conditions are shown in Table 1 below.

(販T−+ b) 第1表 従来のスパッタリング法でたとえばSiO□を成膜する
場合、4000人/時間、5i−0−N膜をつけた場合
、5ooo人/時間であったのに比較して、プラズマC
VD法を用いる場合は第1表に示す様に成膜速度が大幅
に向上する。
(Sales T-+ b) Table 1: For example, when depositing a film of SiO□ using the conventional sputtering method, it took 4000 people/hour, compared to 500 people/hour when depositing a 5i-0-N film. Then, plasma C
When using the VD method, as shown in Table 1, the film formation rate is significantly improved.

よって、工程時間を短縮することができるので。Therefore, the process time can be shortened.

コストの低減に有利である。This is advantageous in reducing costs.

ここで、樹脂保護層としては、たとえばa −3in。Here, the resin protective layer has a thickness of, for example, a-3 inches.

5/ffiとa−3iC0,3−との組み合わせなどが
考えられる。
A combination of 5/ffi and a-3iC0,3- can be considered.

実験結果よりa−3iCは0.2/7+1程度の膜厚で
充分に耐CDE性を有することがわかった。また下層膜
がa−5iOの様に、ヌープ硬度500〜600Kgf
/m”程度の比較的硬度の低い膜であっても上層膜とし
てa−3iOを0.3虜程度積層することによりヌープ
硬度1300にgflrrxm2以上に硬度がアップす
ることがわかった・ 次に、この耐熱性絶縁基板4の樹脂保護層3上にスパッ
タリング法やその他の公知の方法によりTa−3iO□
、Ti−3in、などからなる発熱抵抗体物質を膜形成
しく第2図−ホ)、次いで電極物質のlIやAQ−3i
−Cu、あるいはAuなどをスパッタリング法などによ
り膜形成した後(第2図−へ)、発熱部となる開口が形
成されるような所望の回路パターンのマスキング膜を形
成し、たとえばケミカルドライエツチング処理を行い、
個々の発熱抵抗体5、個別電極6および共通電極7を形
成する(第2図−ト)。
From the experimental results, it was found that a-3iC has sufficient CDE resistance with a film thickness of about 0.2/7+1. Also, like a-5iO, the lower layer has a Knoop hardness of 500 to 600 Kgf.
It was found that even if the film has a relatively low hardness of about 1/m", by layering about 0.3 μm of a-3iO as the upper layer, the hardness can be increased to a Knoop hardness of 1300 and more than gflrrxm2. Next, Ta-3iO□ is deposited on the resin protective layer 3 of the heat-resistant insulating substrate 4 by sputtering or other known methods.
, Ti-3in, etc., to form a film.
- After forming a film of Cu, Au, etc. by a sputtering method (see Fig. 2), a masking film with a desired circuit pattern in which openings that will become heat generating parts are formed is formed, and then, for example, a chemical dry etching process is performed. and
Individual heating resistors 5, individual electrodes 6 and common electrode 7 are formed (FIG. 2-g).

この後、SiO□からなる接着層8および5L−(1−
Nからなる耐酸化膜を兼ねる耐摩耗層9をスパッタリン
グ法やその他公知の方法で形成しく第2図−チ)、サー
マルヘッドを完成させる。
After this, adhesive layers 8 and 5L-(1-
A wear-resistant layer 9 made of N and also serving as an oxidation-resistant film is formed by sputtering or other known methods (FIG. 2-H) to complete the thermal head.

次に、このサーマルヘッドの製造工程において、樹脂保
護層の硬度および表面層となる耐摩耗層上における硬度
を測定した結果について述べる。
Next, the results of measuring the hardness of the resin protective layer and the hardness of the wear-resistant layer serving as the surface layer in the manufacturing process of this thermal head will be described.

まず、耐熱樹脂層2上に樹脂保護層3としてa−3iO
を500人、1摩、2即、3IU、5pの膜厚で前述の
手順により夫々°成膜し、 その上にa−5iC膜を0
.3−積層してそれぞれについてヌープ硬度を測定した
。その結果を第4図に示す。同図からも明らかなように
、a−3iOが2p〜3μs程度以上の膜厚でヌープ硬
度値がほぼ一定となった。また、膜厚が1趨以下では充
分な硬度に達していない。
First, a-3iO was formed on the heat-resistant resin layer 2 as a resin protective layer 3.
500 people, 1 polish, 2 instants, 3 IU, 5 p film thickness were formed by the above-mentioned procedure, and then an a-5iC film was deposited on top of it.
.. 3-The Knoop hardness of each layer was measured after lamination. The results are shown in FIG. As is clear from the figure, the Knoop hardness value became almost constant when the film thickness of a-3iO was about 2p to 3μs or more. Further, if the film thickness is less than one layer, sufficient hardness is not achieved.

次に、上記各膜厚のa−5iO膜と0.3goのa −
5iC膜の積層膜よりなる樹脂保護層を有する耐熱性絶
縁基板を用い、前述の手順に従って発熱抵抗体、個別電
極および共通電極を形成し、さらにその上に接着層とし
て厚さIImの5in2膜と耐摩耗層として厚さ2虜の
5i−0−N膜とを順に成膜し、この5i−0−N膜上
でのヌープ硬度を測定した。その結果を第5図に示す。
Next, the a-5iO film of each thickness mentioned above and the a-5iO film of 0.3go
Using a heat-resistant insulating substrate having a resin protective layer made of a laminated film of 5iC films, a heating resistor, individual electrodes, and a common electrode were formed according to the above-mentioned procedure, and a 5in2 film with a thickness of IIm was added thereon as an adhesive layer. A 5i-0-N film having a thickness of 2 mm was sequentially formed as a wear-resistant layer, and the Knoop hardness on this 5i-0-N film was measured. The results are shown in FIG.

同図からは、上記樹脂保護層における硬度と同様に樹脂
保護層のa−5iO膜が、約2μs以上でほぼ一定の硬
度に達し、1−未満では充分な硬度に達しないことがわ
かる。またa−5iCのみの膜でも1虜未満では充分な
硬度が得られないことがわかった。
It can be seen from the figure that, similar to the hardness of the resin protective layer, the a-5iO film of the resin protective layer reaches a substantially constant hardness in about 2 μs or more, and does not reach a sufficient hardness if it is less than 1-. It was also found that even with a film made only of a-5iC, sufficient hardness could not be obtained with less than 1 hardness.

これらから、樹脂保護層の全膜厚が1tm程度まで範囲
では膜硬度向上の効果が充分に得られないことがわかっ
た。また膜厚はあまり厚くてもそれ以上の効果が得られ
ないばかりでなく、耐熱樹脂層による蓄熱効果が薄れ効
率が低下してしまうため、樹脂保護層の好ましい膜厚は
1/ffi〜1〇−程度となる。
From these results, it was found that a sufficient effect of improving film hardness could not be obtained when the total film thickness of the resin protective layer was within a range of about 1 tm. In addition, if the film thickness is too thick, not only will no further effect be obtained, but the heat storage effect of the heat-resistant resin layer will weaken and the efficiency will decrease, so the preferred film thickness of the resin protective layer is 1/ffi to 10 - It will be about.

次に、上記各膜厚のa−3iN膜およびa−5iC膜か
らなる樹脂保護層を有するサーマルヘッドをAQからな
る放熱基板上に両面テープを使用して実装し、同様にし
て実装したドライバ基板上の駆動用ICと超音波ワイヤ
ーボンディングによる配線試験を行ったところ、安定し
てボンディングが行えた。
Next, a thermal head having a resin protective layer made of an a-3iN film and an a-5iC film having the respective film thicknesses described above was mounted on a heat dissipation board made of AQ using double-sided tape, and a driver board mounted in the same manner. When we conducted a wiring test using the above driving IC and ultrasonic wire bonding, we were able to perform stable bonding.

また、このようにして得たサーマルヘッドを60℃、9
0%の恒温恒湿槽で1000時間の放置テストを行った
ところ、膜のはがれもなく、何ら問題は生じなかった。
In addition, the thermal head obtained in this way was heated at 60°C, 9°C.
When a test was conducted for 1000 hours in a constant temperature and humidity chamber at 0%, there was no peeling of the film and no problems occurred.

また、これら各サーマルヘッドを実際にプリンタに組込
み印字走行試験を行った。なお、試験環境は常温、常湿
下とした。5k111の走行試験の結果、膜厚500人
のa−5iOと0.3−のa−3iC膜の積層膜を樹脂
保護層としたサーマルヘッドでは、耐摩耗層にクラック
が5ケ所、同じく膜厚500人のa−5iC膜を樹脂保
護層としたものではクラックが8ケ所発生していた。こ
れに対して、膜厚1/ffi、21M、3μs、54の
a−5iO膜上に0.3μsのa−8iC膜を積層した
ものは、いずれにもクラックの発生はほとんど見られな
かった。
In addition, each of these thermal heads was actually installed in a printer and a printing running test was conducted. The test environment was at room temperature and humidity. As a result of the 5k111 running test, a thermal head with a resin protective layer made of a laminated film of 500-thick a-5iO and 0.3-thick a-3iC film had five cracks in the wear-resistant layer, and the same film thickness In the case of 500 people using the a-5iC film as a resin protective layer, cracks occurred at 8 locations. On the other hand, when a 0.3 μs a-8iC film was laminated on a 54 μs a-5iO film with a film thickness of 1/ffi, 21M, and 3 μs, almost no cracks were observed.

また、本発明との比較として、前述の実施例のサーマル
ヘッドにおいて樹脂保護層として膜厚1μsのサイアロ
ン層をスパッタリング法により形成した以外は同一構造
のサーマルヘッドを用いて、同様に5kmの印字走行試
験を行ったところ、耐摩耗層にクラックが20ケ所発生
した。
In addition, as a comparison with the present invention, using a thermal head having the same structure except that a sialon layer with a thickness of 1 μs was formed as a resin protective layer using a sputtering method in the thermal head of the above-mentioned example, a printing run of 5 km was carried out in the same manner. When the test was conducted, 20 cracks were found in the wear-resistant layer.

この試験結果からも、この実施例のサーマルヘッドが耐
クラツク性に優れていることが明らかである。
It is clear from this test result that the thermal head of this example has excellent crack resistance.

すなわちこの実施例のサーマルヘッドは、耐熱性樹脂と
発熱抵抗体との間に樹脂保護層としてプラズマCVD法
により形成したa−3iN膜およびa−5iO膜によっ
て、電極物質および発熱抵抗体物質を所望の回路パター
ンに溶解除去する際に耐熱樹脂層を損傷する恐れがなく
なり、また真空中における発熱抵抗体物質の形成時のガ
ス発生を防止することができるため抵抗値も安定化する
。さらに。
That is, the thermal head of this embodiment uses the a-3iN film and the a-5iO film, which are formed by plasma CVD as a resin protective layer between the heat-resistant resin and the heat-generating resistor, to provide the desired electrode material and heat-generating resistor material. There is no risk of damaging the heat-resistant resin layer when dissolving and removing it into the circuit pattern, and the resistance value is stabilized because gas generation can be prevented during the formation of the heat-generating resistor material in vacuum. moreover.

実装工程におけるワイヤーボンディング時に耐熱樹脂層
のクツション効果を樹脂保護層の硬さが相殺して、安定
してワイヤーボンディングを行うことが可能となる。そ
して、これらの効果とともに、この実施例のa−5iO
膜とa−5iO膜の積層膜は靭性と硬度が大きいため、
あまり膜厚を厚くすることなく、実際の印字動作におい
て耐摩耗層に局所的な圧力が加わっても、この樹脂保護
層によって耐熱樹脂層が変形することを防止でき、すな
わち局部的な変形が阻止されて耐摩耗層のクラックが防
止される。よって、長的間安定して印字走行を行うこと
が可能となり信頼性が大幅に向上する。
During wire bonding in the mounting process, the cushioning effect of the heat-resistant resin layer is offset by the hardness of the resin protective layer, making it possible to perform wire bonding stably. In addition to these effects, the a-5iO of this example
The laminated film of film and a-5iO film has high toughness and hardness, so
Even if local pressure is applied to the wear-resistant layer during actual printing operations, this resin protective layer can prevent the heat-resistant resin layer from deforming without increasing the film thickness too much. In other words, local deformation is prevented. This prevents the wear-resistant layer from cracking. Therefore, printing can be performed stably over a long period of time, and reliability is greatly improved.

なお、以上の実施例では、樹脂保護層としてa−5iN
膜およびa−3iC膜それぞれを個別に使用したものに
ついて説明したが、これらの膜の積層物を樹脂保護層と
して用いても同様な効果が得られた。
In addition, in the above examples, a-5iN was used as the resin protective layer.
Although the explanation has been made regarding the use of the film and the a-3iC film individually, similar effects were obtained when a laminate of these films was used as the resin protective layer.

たとえば、ヌープ硬度と破壊強度の点で若干有利なa−
3iN膜を耐熱樹脂層上に2−程度の膜厚で形成し、そ
の上に耐エツチング特性(ケミカルドライ上ツチングに
対する)に有利なa−5iC膜を1i層程度の膜厚で形
成することによって、同様な効果が得られた。また、こ
れらa−5iN膜やa−3iC膜の構成元素の組成比を
変えて、膜質を変化させた膜の積層物を用いた際にも同
様な効果が得られた。
For example, a-
By forming a 3iN film on a heat-resistant resin layer to a thickness of about 2-2, and then forming an a-5iC film with a thickness of about 1i, which is advantageous in etching resistance (against chemical dry etching), on top of it. , a similar effect was obtained. Similar effects were also obtained when a stack of films with different film properties was used by changing the composition ratio of the constituent elements of these a-5iN films and a-3iC films.

また、上述の実施例においては、サーマルヘラ碕 ドとしてα眸性評価について説明したが、上記耐熱性絶
縁基板はサーマルヘッドに限らず、たとえばハイブリッ
ドIC用の多層回路基板などとしても樹脂保護層の硬度
向上作用により、実装工程の安定性や配線層の破断など
による不良発生を有効に防止できる効果がある。
In addition, in the above-mentioned embodiment, α-eye evaluation was explained as a thermal head, but the heat-resistant insulating substrate is not limited to a thermal head, but can also be used as a multilayer circuit board for a hybrid IC, etc. due to the hardness of the resin protective layer. This improvement effect improves the stability of the mounting process and effectively prevents the occurrence of defects due to breakage of wiring layers.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の耐熱性絶縁基板によれば、
樹脂保護層の硬度の向上により、実装工程を安定して行
うことができるとともに断線などによる不良の発生率が
減少し、またサーマルヘッドの高抵抗基体として用いた
場合には、サーマルヘッドの印字走行を安定化させるこ
とができる。
As explained above, according to the heat-resistant insulating substrate of the present invention,
By improving the hardness of the resin protective layer, the mounting process can be carried out stably, and the incidence of defects such as wire breakage is reduced, and when used as a high-resistance substrate for a thermal head, the printing run of the thermal head can be improved. can be stabilized.

また耐ケミカルドライエツチング性が良好なことから工
程適合性に優れている。さらにサーマルヘッド等に用い
る場合にも充分な絶縁性を有している。
In addition, it has good chemical dry etching resistance, so it has excellent process compatibility. Furthermore, it has sufficient insulation properties when used in thermal heads and the like.

また、本発明のサーマルヘッドによれば、その製造工程
における耐熱樹脂層の損傷が防止され。
Further, according to the thermal head of the present invention, damage to the heat-resistant resin layer during the manufacturing process is prevented.

抵抗値の制御も容易となり、さらに実装工程におけるワ
イヤーボンディングも安定して行えるとともに、実用字
走行時の表面層となる耐摩耗層のクラックを有効に防止
でき、したがって安定した印字を行うことが可能となり
、その信頼性が格段に向上する。
The resistance value can be easily controlled, wire bonding during the mounting process can be performed stably, and cracks in the wear-resistant layer, which is the surface layer during actual character running, can be effectively prevented, making it possible to perform stable printing. Therefore, its reliability is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のサーマルヘッドの要部を示
す部分分解斜視図、第2図は本発明の一実施例のサーマ
ルヘッドの製造工程をフローチャートで示す図、第3図
は本発明の実施例で非晶質層の成膜に使用したプラズマ
CV Da装置の構成を示す図、第4図は本発明の実施
例における樹脂保護層の厚さとそのヌープ硬度との関係
をグラフで示す図、第5図は本発明の実施例における樹
脂保護層の厚さとそれぞれの耐摩耗層上におけるヌープ
硬度との関係をグラフで示す図である。 1・・・金属基板、     2・・・耐熱樹脂層、3
・・・樹脂保護層、   4・・耐熱性絶縁基板、5・
・・発熱抵抗体、   6・・・個別電極。 7・・・共通電極。 9・・酸化防止膜を兼ねる耐摩耗層。 第1図 第2図 第3図
FIG. 1 is a partially exploded perspective view showing the main parts of a thermal head according to an embodiment of the present invention, FIG. 2 is a flow chart showing the manufacturing process of a thermal head according to an embodiment of the present invention, and FIG. FIG. 4 is a diagram showing the configuration of the plasma CV Da apparatus used to form the amorphous layer in the embodiment of the invention, and is a graph showing the relationship between the thickness of the resin protective layer and its Knoop hardness in the embodiment of the invention. FIG. 5 is a graph showing the relationship between the thickness of the resin protective layer and the Knoop hardness on each wear-resistant layer in an example of the present invention. 1... Metal substrate, 2... Heat-resistant resin layer, 3
... Resin protective layer, 4. Heat-resistant insulating substrate, 5.
...heating resistor, 6...individual electrode. 7...Common electrode. 9. A wear-resistant layer that also serves as an oxidation-preventing film. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)高熱伝導性の支持基板と、この支持基板上に形成
された耐熱樹脂層と、この耐熱樹脂層上に設けられた水
素およびハロゲン元素の少なくとも一種を含有し、窒素
、炭素、酸素の中から選ばれた少なくとも一種と硅素か
らなる非晶質体の第1の層と、この第1の層上に炭化硅
素を主成分とし室温での比抵抗値が10^1^1Ωcm
以上である非晶質炭化硅素からなる第2の層とからなる
樹脂保護層とを少なくとも具備することを特徴とする耐
熱性絶縁基板。
(1) A support substrate with high thermal conductivity, a heat-resistant resin layer formed on the support substrate, and a heat-resistant resin layer provided on the heat-resistant resin layer containing at least one of hydrogen and halogen elements, containing nitrogen, carbon, and oxygen. A first layer of an amorphous material made of silicon and at least one selected from the above, and a material having a resistivity value of 10^1^1 Ωcm at room temperature and containing silicon carbide as a main component on this first layer.
A heat-resistant insulating substrate comprising at least a second layer made of amorphous silicon carbide as described above and a resin protective layer made of the above-mentioned amorphous silicon carbide.
(2)高熱伝導性の支持基板と、この支持基板上に形成
された耐熱樹脂層と、この耐熱樹脂層上に設けられた樹
脂保護層と、この樹脂保護層上に形成された多数の発熱
抵抗体と、これら各発熱抵抗体に接続された導電体と、
前記発熱抵抗体の少なくとも発熱部を被覆するように設
けられた耐摩耗層とを少なくとも具備するサーマルヘッ
ドにおいて、 前記樹脂保護層が、水素およびハロゲン元素の少なくと
も一種を含有し、窒素、炭素、酸素の中から選ばれた少
なくとも一種と硅素からなる非晶質体の第1の層と、こ
の第1の層上に炭化硅素を主成分とし室温での比抵抗値
が10^1^1Ωcm以上である非晶質炭化硅素からな
る第2の層とからなる樹脂保護層とを少なくとも具備す
ることを特徴とするサーマルヘッド。
(2) A highly thermally conductive support substrate, a heat-resistant resin layer formed on this support substrate, a resin protective layer provided on this heat-resistant resin layer, and a large number of heat generating units formed on this resin protective layer. A resistor, a conductor connected to each of these heating resistors,
In the thermal head, the resin protective layer contains at least one of hydrogen and a halogen element, and contains nitrogen, carbon, and oxygen. a first layer of an amorphous material made of silicon and at least one selected from among the above, and a layer containing silicon carbide as a main component and having a specific resistance value of 10^1^1 Ωcm or more at room temperature on this first layer; A thermal head comprising at least a second layer made of amorphous silicon carbide and a resin protective layer made of a certain amorphous silicon carbide.
JP22981988A 1988-09-16 1988-09-16 Heat-resistant insulating substrate and thermal head Pending JPH0278575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22981988A JPH0278575A (en) 1988-09-16 1988-09-16 Heat-resistant insulating substrate and thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22981988A JPH0278575A (en) 1988-09-16 1988-09-16 Heat-resistant insulating substrate and thermal head

Publications (1)

Publication Number Publication Date
JPH0278575A true JPH0278575A (en) 1990-03-19

Family

ID=16898166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22981988A Pending JPH0278575A (en) 1988-09-16 1988-09-16 Heat-resistant insulating substrate and thermal head

Country Status (1)

Country Link
JP (1) JPH0278575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330589A (en) * 2019-01-23 2021-08-31 Lg伊诺特有限公司 Thermoelectric element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113330589A (en) * 2019-01-23 2021-08-31 Lg伊诺特有限公司 Thermoelectric element
CN113330589B (en) * 2019-01-23 2024-02-20 Lg伊诺特有限公司 Thermoelectric element

Similar Documents

Publication Publication Date Title
JPH07280462A (en) Soaking ceramic heater
JP2638649B2 (en) Electrostatic chuck
WO2000069219A1 (en) Hot plate and method of producing the same
JPH02263445A (en) Aluminum nitride substrate and semiconductor using same
JPH0278575A (en) Heat-resistant insulating substrate and thermal head
JPS62222616A (en) Heat-resistant electrode thin film
JP4712836B2 (en) Corrosion-resistant laminated ceramic members
JPH01133729A (en) Conductive laminated film
EP0335660B1 (en) Heat-resistant insulating substrate, thermal printing head, and thermographic apparatus
JPH0278576A (en) Heat-resistant insulating substrate and thermal head
JPH10209257A (en) Electrostatic chuck device and its manufacture
JPH048554A (en) Heat-resistant insulating substrate and thermal head
JPH0278574A (en) Heat-resistant insulating substrate and thermal head
JPH0278573A (en) Heat-resistant insulating substrate and thermal head
JPH021339A (en) Heat-resistant insulation substrate, thermal head and heat sensitive recording device
JPH05268A (en) Method for producing resin-coated substrate
JPH01247170A (en) Heat-resistant insulative substrate and thermal head
JPS6042069A (en) Thermal print head
EP0367122B1 (en) Thermal head
JPH03272865A (en) Heat resistant insulation board and thermal head
JP2007311737A (en) Electrostatic chuck
JPH01202465A (en) Protective coating material and thermal head using it
JPH091806A (en) Ink jet head
JPS62151354A (en) Thermal recording head and its preparation
JP2000012665A (en) Ceramics component