JPH021339A - Heat-resistant insulation substrate, thermal head and heat sensitive recording device - Google Patents

Heat-resistant insulation substrate, thermal head and heat sensitive recording device

Info

Publication number
JPH021339A
JPH021339A JP63227524A JP22752488A JPH021339A JP H021339 A JPH021339 A JP H021339A JP 63227524 A JP63227524 A JP 63227524A JP 22752488 A JP22752488 A JP 22752488A JP H021339 A JPH021339 A JP H021339A
Authority
JP
Japan
Prior art keywords
heat
resistant
layer
thermal head
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63227524A
Other languages
Japanese (ja)
Other versions
JPH0575590B2 (en
Inventor
Katsuhisa Honma
克久 本間
Masaru Nikaido
勝 二階堂
Yoshiaki Ouchi
義昭 大内
Hideji Yoshizawa
吉澤 秀二
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63227524A priority Critical patent/JPH021339A/en
Priority to US07/328,980 priority patent/US4963893A/en
Priority to EP89303052A priority patent/EP0335660B1/en
Priority to KR1019890003860A priority patent/KR920005317B1/en
Priority to DE89303052T priority patent/DE68908749T2/en
Publication of JPH021339A publication Critical patent/JPH021339A/en
Priority to US07/519,179 priority patent/US5119112A/en
Priority to US07/804,014 priority patent/US5177498A/en
Publication of JPH0575590B2 publication Critical patent/JPH0575590B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/33505Constructional details
    • B41J2/3353Protective layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/3355Structure of thermal heads characterised by materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/3359Manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To increase the rigidity of a heat-resistant insulation substrate and thereby decrease a defect generation rate in a mounting process by forming a specific resin protection layer on the heat-resistant resin layer of a support substrate. CONSTITUTION:A heat-resistant resin layer 2 is provided on a highly heat- conductive support substrate 11. Then on this heat-resistant resin layer 2, a resin protection layer 3 is formed which consists of a non-amorphous body or a laminate of these amorphous bodies. The amorphous body contains at least, either one of hydrogen or halogen element and besides, at least, either one of nitrogen, carbon or oxygen and silicon as main components. Thus a highly rigid heat-resistant insulation substrate 4 is obtained. This substrate 4 is used a the highly resistant base of a thermal head for the stabilization of travelling of the thermal head for printing. At the same time, the generation of cracks in an abrason-resistant layer 9 as a surface layer during the travelling for printing is prevented, and subsequently, stable printing is ensured. Furthermore, power consumption by a heat-sensitive recording device using this kind of thermal head can be reduced significantly.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ファクシミリやプリンタなどの感熱記録装置
とこれに用いられるサーマルヘッドとこのサーマルヘッ
ドや各種電子機器に用いられる耐熱性絶縁基板に関する
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a thermal recording device such as a facsimile or a printer, a thermal head used therein, and a heat-resistant recording device used in this thermal head and various electronic devices. The present invention relates to an insulating substrate.

(従来の技術) 最近、ポリイミド樹脂のような耐熱樹脂を各種基板上に
絶縁層や蓄熱層などとして設けた耐熱性絶縁基板が、サ
ーマルヘッドの高抵抗基体やハイブリッドIC用の多層
回路基板などのような熱に対して高い信頼性が要求され
る各種電子機器の支持基板などとして多用されるように
なってきている。
(Prior Art) Recently, heat-resistant insulating substrates in which heat-resistant resins such as polyimide resins are provided as insulating layers or heat storage layers on various substrates have been developed for use in high-resistance substrates for thermal heads, multilayer circuit boards for hybrid ICs, etc. They are increasingly being used as support substrates for various electronic devices that require high reliability against such heat.

たとえばサーマルヘッドにおいては、高抵抗基体として
従来のアルミナなどのセラミック基板上にグレーズガラ
ス層を熱の放散および蓄熱をコントロールする保温層と
して形成してなるものに代えて、セラミックス基板や金
属基板上にポリイミド樹脂層のような耐熱樹脂層を形成
した耐熱性絶縁基板が用いられている。
For example, in thermal heads, instead of the conventional high-resistance substrate formed by forming a glazed glass layer on a ceramic substrate such as alumina as a heat-retaining layer to control heat dissipation and heat accumulation, a ceramic substrate or a metal substrate is used as a high-resistance substrate. A heat-resistant insulating substrate on which a heat-resistant resin layer such as a polyimide resin layer is formed is used.

このポリイミド樹脂層を保温層として設けたサーマルヘ
ッドとしては、たとえば以下のようなも■成を有するも
のが知られている。
As a thermal head provided with this polyimide resin layer as a heat insulating layer, for example, one having the following structure is known.

すなわち、Fe合金などからなる金属ノル板上に蓄熱層
と絶縁層とを兼ねるポリイミド樹脂などからなる耐熱樹
脂層を形成し、 この上にTa−5in/、Tj−5i
O□などからなる発熱抵抗体をスパッタリング法などに
より膜形成する。さらに、この発熱抵抗体の上に発熱部
となる開口を形成する如<AQやAl2−5i−Cuな
どからなる個別電極および共通電極を形成し、少なくと
もこの発熱部を被覆するようシリコンオキシナイトライ
ド(SL−0−N)などからなり耐酸化膜を兼ねる耐摩
耗層を形成したものである。
That is, a heat-resistant resin layer made of polyimide resin, etc., which serves as a heat storage layer and an insulating layer is formed on a metal plate made of Fe alloy, etc., and on this, Ta-5in/, Tj-5i
A heating resistor made of O□ or the like is formed into a film by sputtering or the like. Furthermore, an opening that becomes a heat generating part is formed on this heat generating resistor, and individual electrodes and a common electrode made of AQ, Al2-5i-Cu, etc. are formed, and silicon oxynitride is formed so as to cover at least this heat generating part. (SL-0-N) or the like, and has a wear-resistant layer that also serves as an oxidation-resistant film.

このようなサーマルヘッドは、保温層としてボリイミ1
〜樹脂層を使用することによって、ポリイミド樹脂の熱
拡散率が従来のグレーズガラス層に比べて1/3〜1/
6と低いことから、熱効率に非常に優れたものとなる。
This type of thermal head uses a polyimide 1 as a heat insulating layer.
~ By using a resin layer, the thermal diffusivity of polyimide resin is 1/3 to 1/3 that of a conventional glazed glass layer.
Since it is as low as 6, it has very excellent thermal efficiency.

また、金属基板のような可撓性を有する支持基板を使用
することが可能になることから、曲げ加工を行うことも
可能になり、よって小型で安価で高性能なサーマルヘッ
ドとして注目されている。しかし、このようなサーマル
ヘッドは、その製造工程において以下のような問題点を
有していた。
In addition, since it is possible to use a flexible support substrate such as a metal substrate, it is also possible to perform bending processing, so it is attracting attention as a small, inexpensive, and high-performance thermal head. . However, such a thermal head has the following problems in its manufacturing process.

たとえば、発熱抵抗体や電極の形成の際に行うエツチン
グ処理時やマスキング膜のアッシング時に、耐熱樹脂層
に損傷を与えてしまう。
For example, the heat-resistant resin layer is damaged during etching processing performed when forming heating resistors and electrodes, or during ashing of a masking film.

また、真空中で発熱抵抗体物質を着膜させる際に、ポリ
イミド樹脂層内からのガス放出が多く、このガスの影響
により抵抗値の制御が難しいという問題が生じる。
Further, when depositing the heating resistor material in a vacuum, a large amount of gas is released from within the polyimide resin layer, and the influence of this gas causes a problem in that it is difficult to control the resistance value.

更に、ワイヤーボンディング法により配線する際に、ポ
リイミド樹脂層の弾性によりボンディングを行いにくい
という問題が生じる。
Furthermore, when wiring is performed using the wire bonding method, there arises a problem that bonding is difficult due to the elasticity of the polyimide resin layer.

このような問題点を解決するための一手段として、本出
願人は先に耐熱樹脂層と発熱抵抗体層との間に、アルミ
ナ、シリコンオキシナイトライド、サイアロンなどの無
機絶縁物からなる樹脂保護層を形成したサーマルヘッド
を提案している(特願昭62−21428号、同62−
134326号、 同62−191655号)。 この
ように耐熱樹脂2層と発熱抵抗体層との間に樹脂保護層
を形成することによって、その製造工程においてポリイ
ミド樹脂層の損爆やポリイミド樹脂層からのガス放出が
防止され、また全体の剛性もある程度高まるために実装
工程を安定して行えるなどの効果が9!)られでいる。
As a means to solve these problems, the present applicant first developed a resin protection layer made of an inorganic insulating material such as alumina, silicon oxynitride, or sialon between the heat-resistant resin layer and the heat-generating resistor layer. proposed a thermal head with layers formed (Japanese Patent Application No. 62-21428, No. 62-21428).
No. 134326, No. 62-191655). By forming the resin protective layer between the two heat-resistant resin layers and the heat-generating resistor layer in this way, explosion damage to the polyimide resin layer and gas release from the polyimide resin layer can be prevented during the manufacturing process, and the overall It also increases the rigidity to a certain extent, so the mounting process can be performed stably, etc. 9! )

このように耐熱樹脂層上に樹脂保護層を形成することは
、サーマルヘッドの高抵抗基体としてだけではなぐ、他
の電子機器における絶縁基板としても、実装工程を安定
して行えるなど、有効な手段である。
Forming a resin protective layer on a heat-resistant resin layer in this way is an effective means not only as a high-resistance substrate for a thermal head, but also as an insulating substrate for other electronic devices, allowing the mounting process to be performed stably. It is.

また、特開昭62−117760号公報には、グレーズ
層の上にポリイミド樹脂層を形成し、その上に無機質層
として、NiCr、 Cr、Ti等からなる接着層と5
jO2,5i−0−N、 Si、N、、AQ203等か
らなる絶縁層を形成して、ポリイミド樹脂層との接着性
を確保し、かつ絶縁性耐熱層を実現しており、サーマル
ヘッドに印加する消費電力を減少させることを可能にし
ている。
Furthermore, in JP-A No. 62-117760, a polyimide resin layer is formed on a glaze layer, and an adhesive layer made of NiCr, Cr, Ti, etc. is formed on top of the polyimide resin layer as an inorganic layer.
An insulating layer made of jO2, 5i-0-N, Si, N, AQ203, etc. is formed to ensure adhesion with the polyimide resin layer and to create an insulating heat-resistant layer that can be applied to the thermal head. This makes it possible to reduce power consumption.

(清明が解決しようとする課題) 上述したように、ポリイミド樹脂のような耐熱樹脂層上
にアルミナ、シリコンオキシナイトライドやサイアロン
などの無機絶縁物からなる樹脂保護層を設けた耐熱性絶
縁基板を、たとえばサーマルヘッドの高抵抗基体として
用いることによって様々な利点が得られるものの、上述
したような無機絶縁物層では充分な膜強度が得られてお
らず、たとえば以下に示すような問題が発生している。
(The problem that Seimei is trying to solve) As mentioned above, we have developed a heat-resistant insulating substrate that has a resin protective layer made of an inorganic insulator such as alumina, silicon oxynitride, or sialon on a heat-resistant resin layer such as polyimide resin. Although various advantages can be obtained by using it as a high-resistance substrate for a thermal head, for example, the inorganic insulating layer described above does not have sufficient film strength, and the following problems occur, for example. ing.

すなわち、本発明者らが上記した樹脂保護層を有するサ
ーマルヘッドをプリンタに組込んで実際に印字走行試験
を行ったところ、走行中に異常な抵抗値変化を示し、印
字に悪影響を及ぼす現象が多セルめられた。この異常な
抵抗値変化を示す点について詳細に調べたところ、サー
マルヘッドと感熱紙あるいは感熱紙とローラの間に巻き
込まれたゴミなどの異物がサーマルヘラ1〜の表面層と
なる耐摩耗層にクラックを生じさせ、このクラックが発
熱抵抗体まで達した場合に印字特性に悪影響を及ぼして
いることが判明した。
That is, when the present inventors installed the thermal head having the above-mentioned resin protective layer in a printer and actually conducted a printing running test, it showed an abnormal change in resistance value during running, a phenomenon that adversely affected printing. I was given a lot of cells. A detailed investigation into this abnormal resistance change revealed that foreign matter such as dust caught between the thermal head and the thermal paper or between the thermal paper and the roller caused cracks in the wear-resistant layer, which is the surface layer of the thermal spatula 1. It was found that when these cracks reached the heating resistor, they adversely affected the printing characteristics.

このような問題は、従来のラセミックス基板上にグレー
ズガラス層を形成した高抵抗基体や金属基板上にガラス
層を形成した高抵抗体を用い、それ以外を同一構造とし
たサーマルヘッドにおいては、見られなかった現象であ
る。
Such problems cannot be seen in thermal heads that use a conventional high-resistance substrate with a glazed glass layer formed on a racemic substrate or a high-resistance element with a glass layer formed on a metal substrate, but otherwise have the same structure. This is a phenomenon that was not possible.

これは、グレーズガラス層やガラス層を保温層として用
いた高抵抗基体を用いたサーマルヘッドでは基体全体の
硬度が大きく、これにより耐摩耗層に局所的な圧力が加
わっても耐摩耗層が基体と同様な変形しかしないため、
局部的な変形が阻止されて上述したようなりラックが生
じないものと考えられる。
This is because the hardness of the entire substrate is large in thermal heads that use a high-resistance substrate that uses a glazed glass layer or a glass layer as a heat-retaining layer. Because it only undergoes the same deformation as
It is thought that local deformation is prevented and racks as described above do not occur.

一方、これに対してポリイミド樹脂のような耐熱樹脂を
用いた高抵抗基体の場合、前述したように樹脂保護層に
よっである程度基体の剛性が高められているものの、樹
脂の変形能が耐摩耗層に比べて著しいため、耐摩耗層に
局所的な集中荷重が加わった際に耐熱樹脂層の変形を樹
脂保護層や耐摩耗層によって防止することができないた
めである。そして、耐熱樹脂層の変形に樹脂保護層や耐
摩耗層の変形が追随できなくなってクラックが生じてし
まうものと考えられる。
On the other hand, in the case of a high-resistance substrate made of a heat-resistant resin such as polyimide resin, although the rigidity of the substrate is increased to some extent by the resin protective layer as described above, the deformability of the resin is This is because the deformation of the heat-resistant resin layer cannot be prevented by the resin protective layer or the wear-resistant layer when a locally concentrated load is applied to the wear-resistant layer. It is thought that the deformation of the resin protective layer and wear-resistant layer cannot follow the deformation of the heat-resistant resin layer, resulting in cracks.

このような問題はサーマルヘッドに限らず、たとえば前
述したようにハイブリッドIC用多層回路基板などにお
いても、実装工程などで耐熱樹脂層の変形によってその
上に設けられた配線層の断線やボンディング不良などを
招いてしまう。
Such problems are not limited to thermal heads, but also occur in multilayer circuit boards for hybrid ICs as mentioned above, where deformation of the heat-resistant resin layer during the mounting process causes disconnection of the wiring layer provided on top of it, defective bonding, etc. It invites.

本発明は、このような従来技術の課題に対処するべくな
されたもので、剛性を高め実装工程などにおける不良発
生率を減少させた耐熱性絶縁基板と、プリンタなどに組
み込んで走行させた際の耐摩耗層のクラックを防止し、
信頼性を向上させたサーマルヘッドを提供することを目
的とする。
The present invention was made in order to address the problems of the prior art, and includes a heat-resistant insulated substrate that has increased rigidity and reduced the incidence of defects in the mounting process, and a Prevents cracks in the wear-resistant layer,
The purpose is to provide a thermal head with improved reliability.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の耐熱性絶縁基板は、 高熱伝導性の支持基板と、この支持基板上に形成された
耐熱樹脂層と、この耐熱樹脂層上に設けられた水素およ
びハロゲン元素の少なくとも一種を含有し、窒素、炭素
、酸素の中から選ばれた少なくとも一種と硅素を主成分
とする非晶質体、もしくはこれら非晶質体の積層物から
なる樹脂保護層とを少なくとも具備することを特徴とす
るものである。
(Means for Solving the Problems) The heat-resistant insulating substrate of the present invention includes a highly thermally conductive support substrate, a heat-resistant resin layer formed on the support substrate, and a hydrogen and A resin protective layer containing at least one halogen element and consisting of an amorphous body mainly composed of at least one selected from nitrogen, carbon, and oxygen and silicon, or a laminate of these amorphous bodies. It is characterized by comprising at least the following.

また1本発明のサーマルヘッドは、 高熱伝導性の支持基板と、この支持基板上に形成された
耐熱樹脂層と、この耐熱樹脂層上に設けられた樹脂保護
層と、この樹脂保護層上に形成された多数の発熱抵抗体
と、これら各発熱抵抗体に接続された導電体と、前記発
熱抵抗体の少なくとも発熱部を被覆するように設けられ
た耐摩耗層とを少′なくとも具備するサーマルヘッドに
おいて、前記樹脂保護層および耐摩耗層の少なくとも一
方が、水素およびハロゲン元素の少なくとも一種を含有
し、窒素、炭素、酸素の中から選ばれた少なくとも一種
と硅素を主成分とする非晶質体、もしくはこれら非晶質
体の積層物からなることを特徴とするものである。
Further, the thermal head of the present invention includes a highly thermally conductive support substrate, a heat-resistant resin layer formed on the support substrate, a resin protective layer provided on the heat-resistant resin layer, and a resin protective layer formed on the resin protective layer. It comprises at least a large number of heating resistors formed, a conductor connected to each of the heating resistors, and a wear-resistant layer provided to cover at least the heating portion of the heating resistor. In the thermal head, at least one of the resin protective layer and the wear-resistant layer contains at least one of hydrogen and a halogen element, and is an amorphous material whose main components are silicon and at least one selected from nitrogen, carbon, and oxygen. It is characterized by being made of a solid body or a laminate of these amorphous bodies.

また、本発明の感熱記録装置は、 感熱記録紙と、この感熱記録紙を搬送する搬送手段と、
前記感熱記録紙に印字する請求項2記載のサーマルヘッ
ドと、このサーマルヘッドの発熱抵抗体を記録(8号デ
ータに応じて各々個別に駆動する駆動素子と、 これら駆動素子に記録信号を供給する情報処理回路とを
少なくとも具備することを特徴とするものである。
Further, the thermal recording device of the present invention includes a thermal recording paper, a conveying means for conveying the thermal recording paper,
3. The thermal head according to claim 2, which prints on the thermal recording paper; a drive element that drives each heating resistor of the thermal head individually according to No. 8 data; and a recording signal is supplied to these drive elements. The device is characterized in that it includes at least an information processing circuit.

(作用) 本発明のサーマルヘッドにおいては樹脂保護層や耐摩耗
層として、また耐熱性絶縁基板においては樹脂保護層と
して、水素およびハロゲン元素の少なくとも一種を含有
し窒禦、炭素、酸素の中から選ばれた少なくとも一種と
硅素を主成分とする非晶質体層が形成されている。この
非晶質体層は膜中に水素やハロゲン元素を含むこと、お
よび転移を多く含むことなどから膜の靭性が大きく、ま
た、ポリイミド等と異なり無機質の膜であるため、基板
自体の硬度が大幅に向上する。
(Function) In the thermal head of the present invention, the resin protective layer and the wear-resistant layer, and in the heat-resistant insulating substrate as the resin protective layer, contain at least one of hydrogen and halogen elements, selected from among nitrogen, carbon, and oxygen. An amorphous layer containing at least one selected one and silicon as main components is formed. This amorphous layer has high toughness because it contains hydrogen and halogen elements and many dislocations, and unlike polyimide, etc., it is an inorganic film, so the hardness of the substrate itself is low. Significantly improved.

これによって基板全体の、あるいはサーマルヘッド全体
の剛性が高まり、耐クラツク性が向上する。すなわち、
表面層に加わった圧力によってポリイミド樹脂などの耐
熱樹脂層の局部的な変形により生じるクラックを防止す
ることが可能となる。
This increases the rigidity of the entire substrate or the entire thermal head, and improves crack resistance. That is,
It is possible to prevent cracks caused by local deformation of the heat-resistant resin layer such as polyimide resin due to the pressure applied to the surface layer.

ところで、たとえばサーマルヘッドにおける耐熱樹脂層
の変形の防止のみを考えると、耐摩耗層の膜厚を増大さ
せることによって達成できる。しかし、この方法では発
熱抵抗体と感熱紙との間の距雛が大きくなるため、効率
の低下、解像度の低下など、性能上の著しい欠点が生ず
るのみならず、量産性も署しく低下する。これに対して
、本発明においては、上記性質を有する非晶質体を使用
しているので、膜厚を厚くすることなく基板全体の強度
を向上させることができる。
By the way, if we only consider preventing deformation of the heat-resistant resin layer in a thermal head, for example, this can be achieved by increasing the thickness of the wear-resistant layer. However, in this method, the distance between the heat generating resistor and the thermal paper becomes large, which not only causes significant performance disadvantages such as decreased efficiency and resolution, but also significantly reduces mass productivity. In contrast, in the present invention, since an amorphous material having the above properties is used, the strength of the entire substrate can be improved without increasing the film thickness.

(実施例) 次に、本発明の実施例を図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例のサーマルヘッドの要部の構
成図であり、 1はFe−Cr合金などからなる厚さ0
 、5 +nm程度の金属基板を示している。 この金
属基板上上には、蓄熱層と絶縁層を兼ねるポリイミド樹
脂やポリアミドイミド樹脂、あるいはこれらの混合物や
積層物からなる耐熱樹脂層2が20癖程度の厚さで形成
されており、この耐熱樹脂層2の上に厚さ1−〜10−
で、窒素、炭素、酸素のうち少なくとも一種と珪素とを
主成分とし、水素とハロゲン元素の少なくとも一種を含
む非晶質体からなる樹脂保護層3が形成されて、耐熱性
絶縁基板4が構成されている。
FIG. 1 is a configuration diagram of the main parts of a thermal head according to an embodiment of the present invention.
, 5+nm. On this metal substrate, a heat-resistant resin layer 2 made of polyimide resin, polyamide-imide resin, or a mixture or laminate thereof, which serves as a heat storage layer and an insulating layer, is formed to a thickness of about 20 mm. Thickness 1- to 10- on top of resin layer 2
Then, a resin protective layer 3 made of an amorphous material mainly composed of at least one of nitrogen, carbon, and oxygen and silicon, and containing at least one of hydrogen and a halogen element is formed, thereby forming a heat-resistant insulating substrate 4. has been done.

この耐熱性絶縁基板4上には、Ta−5in2、Ti−
5in。
On this heat-resistant insulating substrate 4, Ta-5in2, Ti-
5in.

などからなる発熱抵抗体5が形成されており、この発熱
抵抗体5の上に発熱部となる開口を形成する如<A4や
AQ−3L−Cuなどからなる厚さ0.7−〜1−程度
の個別電極6および共通電極7が形成され、少なくとも
この発熱部となる開口を被覆するようにSiO□からな
る接着層8および5L−0−Nからなる耐酸化膜を兼ね
る耐摩耗層9が形成されている。
A heat generating resistor 5 made of a material such as A4, AQ-3L-Cu, etc. is formed with a thickness of 0.7 to 1-100 mm and an opening is formed on the heat generating resistor 5 to become a heat generating part. An adhesive layer 8 made of SiO□ and a wear-resistant layer 9 made of 5L-0-N which also serves as an oxidation-resistant film are formed so as to cover at least the opening serving as the heat generating part. It is formed.

そしてこのサーマルヘッドは、個別ff1t4i6と共
通電極7との間に所定の時間間隔でパルス′市圧を印加
することにより発熱部となる開口部に相当する発熱抵抗
体が発熱し印字記録が行われる。
In this thermal head, by applying pulsed pressure between the individual ff1t4i6 and the common electrode 7 at predetermined time intervals, the heat generating resistor corresponding to the opening that becomes the heat generating part generates heat and prints are recorded. .

このサーマルヘッドは、たとえば次のようにして製造さ
れる。
This thermal head is manufactured, for example, as follows.

まず、第2図に示すように、Fe−16重量%Cr合金
からなる金属基板1を所定の寸法に切断し、脱脂洗浄し
て乾燥後、乾水素雰囲気中において600℃〜800°
Cで熱処理を行う(第2図−イ)。次いで、この金属基
板1上に、たとえばポリアミドイミドやポリアミドイミ
ドワニスをロールコータやスピンコータを用いて、焼成
後に20ρ〜30岬の膜厚となるように所定量塗布し、
乾燥、焼成を行い耐熱樹脂層2を形成する(第2図−口
)。
First, as shown in FIG. 2, a metal substrate 1 made of an Fe-16% by weight Cr alloy is cut into predetermined dimensions, degreased, cleaned, dried, and heated at 600°C to 800°C in a dry hydrogen atmosphere.
Heat treatment is performed at C (Figure 2-A). Next, a predetermined amount of polyamide-imide or polyamide-imide varnish, for example, is applied onto the metal substrate 1 using a roll coater or a spin coater so that the film thickness will be 20 to 30 m after firing.
Drying and baking are performed to form a heat-resistant resin layer 2 (Fig. 2 - opening).

次に、この耐熱樹脂層2表面を洗浄した後に(第2図−
ハ)、たとえばスパッタ法、イオンブレーティング法、
真空蒸着法、プラズマCVD法、ECRプラズVCVD
法、熱CVD法、光CVD法などによって樹脂保護層3
を形成する(第2図二)。 これらの方法の中でも、膜
の密着性が良いこと、比較的低温で処理でき基板の特性
を損わないこと、並びに膜の物性すなわち電気的特性や
光学的特性が容易に制御できることなどの点からプラズ
マCVD法が好適している。特に本発明においては被着
基板が耐熱樹脂であるために基板温度を、たとえば耐熱
樹脂としてポリイミド樹脂を用いた場合においても、−
殻内なポリイミド樹脂の耐熱温度である550℃以上に
できないため、 この耐熱温度未満の低温で処理可能な
方法が必要となる。
Next, after cleaning the surface of this heat-resistant resin layer 2 (Fig. 2-
c), such as sputtering method, ion blating method,
Vacuum deposition method, plasma CVD method, ECR plasma VCVD
The resin protective layer 3 is formed by
(Fig. 2-2). Among these methods, this method has the following advantages: it has good film adhesion, it can be processed at relatively low temperatures without damaging the properties of the substrate, and the physical properties of the film, such as electrical and optical properties, can be easily controlled. Plasma CVD method is suitable. In particular, in the present invention, since the substrate to be adhered is made of a heat-resistant resin, the substrate temperature may be -
Since it cannot be heated above 550°C, which is the heat-resistant temperature of the polyimide resin in the shell, a method that can process at a lower temperature than this heat-resistant temperature is required.

このプラズマCVD法は、原料ガスのうちSj酸成分し
てS i II4ガスやSiF4ガスなどを用い、他方
の成分としてN2ガス、CILガス、N20ガスなどを
用いて、真空中でこれらのガスをプラズマ化し、基板上
に目的とするセラミックスの薄膜を形成する方法である
。そしてこの際に、膜中には原料ガス中の水素やフッ素
のようなハロゲン元素が吸蔵され、これら元素の影響で
非晶質状態を安定して保つことが可能な薄膜が得られる
This plasma CVD method uses SiII4 gas or SiF4 gas as the Sj acid component of the raw material gas, N2 gas, CIL gas, N20 gas, etc. as the other component, and combines these gases in a vacuum. This is a method of turning it into plasma and forming the desired ceramic thin film on a substrate. At this time, hydrogen and halogen elements such as fluorine in the source gas are occluded in the film, and a thin film that can stably maintain an amorphous state due to the influence of these elements is obtained.

なお、この実施例では以下に示す手順に従って、第3図
に示す平行平板型の容量結合型プラズマCVD装置を用
いて樹脂保護層3を形成して耐熱性絶縁基板4を作製し
た。
In this example, a heat-resistant insulating substrate 4 was produced by forming a resin protective layer 3 using a parallel plate type capacitively coupled plasma CVD apparatus shown in FIG. 3 according to the procedure shown below.

第3図において、11は真空チャンバであり、この真空
チャンバ11内には平板状接地電極12と高周波電極1
3とが対向して設置されており、この平板状接地電極1
2上に処理基板14、すなわち耐熱樹脂層が形成された
金属基板を載置する。次いで1図示を省略した真空ポン
プにより真空チャンバ11内を10−’ Torr程度
に排気した後、接地電極12に取り付けたヒータ15に
より処理基Fi14を150℃〜450°C程度に加熱
する。次いで、ガス導入口16から原料ガスを真空′チ
ャンバIl内に供給しつつ0.05Torr〜1.0T
orr程度の真空度を保つように排気口17から排気し
ながら、高周波電極13にマツチングボックス18を介
して高周波電源19からの電力を投入することにより、
電極間でグロー放電を起こさせて原料ガスをプラズマ化
し、処理基板14上に目的とする薄膜を形成する。
In FIG. 3, 11 is a vacuum chamber, and inside this vacuum chamber 11 there is a flat ground electrode 12 and a high frequency electrode 1.
3 are installed facing each other, and this flat ground electrode 1
A processing substrate 14, that is, a metal substrate on which a heat-resistant resin layer is formed, is placed on the substrate 2. Next, the inside of the vacuum chamber 11 is evacuated to about 10-' Torr using a vacuum pump (not shown), and then the processing substrate Fi 14 is heated to about 150° C. to 450° C. by the heater 15 attached to the ground electrode 12. Next, while supplying the raw material gas into the vacuum chamber Il from the gas inlet 16, the temperature is set at 0.05 Torr to 1.0 T.
By supplying power from the high-frequency power source 19 to the high-frequency electrode 13 via the matching box 18 while evacuating from the exhaust port 17 so as to maintain a degree of vacuum of approximately
A glow discharge is caused between the electrodes to turn the raw material gas into plasma, thereby forming a target thin film on the processing substrate 14 .

ここで、成膜の条件として具体的な例を次の第1表に示
す。
Here, specific examples of film forming conditions are shown in Table 1 below.

(以下余白) 従来のスパッタリング法でたとえば5in2を成膜する
場合、4000人/時間、5i−0−N膜をつける場合
(Left below) When depositing a 5in2 film using the conventional sputtering method, for example, when depositing a 5i-0-N film using 4000 people/hour.

5000人/時間であったにの比較して、プラズマCV
D法を用いる場合は第1表に示す様に成膜速度が大幅に
向上する。
Compared to 5,000 people/hour, plasma CV
When method D is used, as shown in Table 1, the film formation rate is significantly improved.

よって、工程時間を短縮することができるので、コスト
の低′減に有利である。
Therefore, the process time can be shortened, which is advantageous in reducing costs.

次に、この耐熱性絶縁基板4の樹脂保護層3上にスパッ
タリング法やその他の公知の方法によりTa−5in2
、Ti−3in2などからなる発熱抵抗体物質を膜形成
しく第2図−ホ)、 次いで電極物質のARやAQ、−
3L−Cu、あるいはAuなどをスパッタリング法など
により膜形成した後(第2図−へ)1発熱部となる開口
が形成されるような所望の回路パターンのマスキング1
漠を形成し、たとえばケミカルドライエツチング処理を
行い、個々の発熱抵抗体5、個別型tfi 6および共
通電極7を形成する(第2図−1−)。
Next, Ta-5in2 is deposited on the resin protective layer 3 of the heat-resistant insulating substrate 4 by sputtering or other known methods.
, Ti-3in2, etc., to form a film of heat-generating resistor material (Fig. 2-E), and then electrode materials AR, AQ, -
3 After forming a film of L-Cu, Au, etc. by sputtering method (see Figure 2) 1. Masking of a desired circuit pattern in which openings that will become heat generating parts are formed 1.
Then, a chemical dry etching process is performed, for example, to form individual heating resistors 5, individual TFI 6, and common electrode 7 (FIG. 2-1).

この後、5in2からなる接着層8および5i−0−N
からなる耐酸化膜を兼ねる耐摩耗層9をスパソタリレグ
法やその他公知の方法で形成しく第2図−チ)、サーマ
ルヘッドを完成させる。
After this, adhesive layer 8 consisting of 5in2 and 5i-0-N
A wear-resistant layer 9, which also serves as an oxidation-resistant film, is formed by a sparso-regi method or other known method (FIG. 2-H), and the thermal head is completed.

次に、このサーマルヘッドの製造工程において。Next, in the manufacturing process of this thermal head.

樹脂保護層の硬度および表面層となる耐摩耗層上におけ
る硬度を測定した結果について述べる。
The results of measuring the hardness of the resin protective layer and the hardness on the wear-resistant layer serving as the surface layer will be described.

まず、耐熱樹脂層2上に樹脂保護層3としてa−5iN
膜、a −S jC膜、a−5iO膜をそれぞれ500
人、1μto、2β1n、3μm、57jroの膜厚で
前述の手順により夫々成膜し、それぞれについてヌープ
硬度をaIす定した。その結果を第4図に示す。同図か
ら明らかなように、a −S iN膜、a −S i 
011’Jおよびa−S i CIlxとも2即〜3μ
m程度以上の膜厚でヌープ硬度の値がほぼ一定となった
。また、膜厚が1μm以下で一定の硬度に達していない
First, a-5iN was formed as a resin protective layer 3 on the heat-resistant resin layer 2.
500 each of the film, a-S jC film, and a-5iO film.
Films with film thicknesses of 1 μm, 2β1n, 3 μm, and 57 μm were formed according to the above-described procedure, and the Knoop hardness was determined for each film. The results are shown in FIG. As is clear from the figure, the a-S iN film, the a-S i
011'J and a-S i CIlx both 2~3μ
The Knoop hardness value became almost constant at a film thickness of about m or more. Further, when the film thickness is 1 μm or less, a certain hardness is not achieved.

次に、」二記各膜厚の樹脂保護層を有する耐熱性絶縁基
板を用い、前述の手順に従って発熱抵抗体、個別′rヒ
極および共通電極を形成し、さらにその北に接R層とし
て厚さ1坤のSiO□膜と耐摩耗層として厚さ2卯の5
i−0−N膜とを順に成膜し、この5i−0−N膜上で
のヌープ硬度を測定した。その結果を第5図に示す。同
図からは、上記樹脂保護層における硬度と同様に樹脂保
護層の膜厚が約2μs以上でほぼ一定の硬度に達し、1
卯未満では充分な硬度に達しないことがわかる。
Next, using a heat-resistant insulating substrate having a resin protective layer of each film thickness, a heating resistor, an individual hypode, and a common electrode are formed according to the procedure described above, and a contact R layer is formed to the north of the heat-generating resistor, an individual hypode, and a common electrode. A SiO□ film with a thickness of 1 ㎡ and a 2㎯ thick film as a wear-resistant layer.
A 5i-0-N film and a 5i-0-N film were sequentially formed, and the Knoop hardness on this 5i-0-N film was measured. The results are shown in FIG. From the same figure, it can be seen that the hardness of the resin protective layer reaches an almost constant level when the thickness of the resin protective layer is about 2 μs or more, similar to the hardness of the resin protective layer.
It can be seen that if the hardness is less than rabbit, sufficient hardness cannot be achieved.

これらから、樹脂保護層の膜厚が1μsに達しないと膜
硬度向上の効果が充分に得られないことがわかる。また
あまり厚くてもそれ以上の効果が得られないばかりでな
く、耐熱樹脂層による蓄熱効果が薄れ効率が低下してし
まうため、樹脂保護層の好ましい膜厚は1μm = 1
01鵬程度となる。
From these results, it can be seen that the effect of improving film hardness cannot be sufficiently obtained unless the film thickness of the resin protective layer reaches 1 μs. Moreover, if it is too thick, not only will no further effect be obtained, but the heat storage effect of the heat-resistant resin layer will be weakened and the efficiency will decrease, so the preferred thickness of the resin protective layer is 1 μm = 1
It will be about 01 Peng.

次に、上記各11々厚のa−5iN膜、 a−3iCI
FJ、a−5iQ膜等からなる樹脂保護層を有するサー
マルヘッドをAQからなる放熱基板上に両面テープを使
用して実装し、同様にして実装したドライバ基板上の駆
動用ICと超音波ワイヤーボンディングによる配線試験
を行ったところ、安定してボンディングが行えた。また
、このようにして得たサーマルヘッドを60℃、90%
の恒温恒湿槽で1000時間の放置テストを行ったとこ
ろ、膜のはがれもなく、何ら問題は生じなかった。
Next, a-5iN film, a-3iCI, each having a thickness of 11 as described above.
A thermal head with a resin protective layer made of FJ, a-5iQ film, etc. is mounted on a heat dissipation board made of AQ using double-sided tape, and a drive IC mounted in the same way on a driver board and ultrasonic wire bonding. When we conducted a wiring test using this method, we were able to perform stable bonding. In addition, the thermal head obtained in this way was heated to 60°C and 90%
When the film was left in a constant temperature and humidity chamber for 1,000 hours, the film did not peel off and no problems occurred.

また、これら各サーマルヘッドを実際にプリンタに組込
み印字走行試験を行った。なお、試験環境は常温、常湿
下とした。5kmの走行試験の結果、膜厚500人のa
−5iN膜を樹脂保護層としたサーマルヘッドでは、耐
摩耗層にクラックが5ケ所、同じく膜厚500人のa−
5↓C膜、a−5iO膜等を樹脂保護層としたものでは
クラックがそれぞれ8ケ所発生していた。これに対して
、膜厚1μm、2μm、3摩、571mのa−8iN膜
、a−3iC膜、a−3jO膜等を使用したものは、い
す九にもクラックの発生はほとんど見られなかった。
In addition, each of these thermal heads was actually installed in a printer and a printing running test was conducted. The test environment was at room temperature and humidity. As a result of a 5km running test, the film thickness was 500 people.
-The thermal head with a 5iN film as a resin protective layer had five cracks in the wear-resistant layer.
Cracks occurred at 8 locations in each case where the 5↓C film, a-5iO film, etc. were used as the resin protective layer. On the other hand, when using a-8iN film, a-3iC film, a-3jO film, etc. with film thicknesses of 1 μm, 2 μm, 3 m, and 571 m, almost no cracks were observed in ISUKU. .

また1本発明との比較として、前述の実施例のサーマル
ヘノ1−において樹脂保護層として膜厚1μmのサイア
ロン層をスパッタリング法により形成した以外は同一構
造のサーマルヘッドを用いて、同様に5鵬の印字走行試
験を行ったところ、耐Jf耗層にクランクが20ケ所発
生した。
In addition, as a comparison with the present invention, a thermal head having the same structure as the thermal head 1-1 of the above-mentioned example was used, except that a sialon layer with a thickness of 1 μm was formed by sputtering as a resin protective layer. When a printing running test was conducted, 20 cranks were found in the Jf wear-resistant layer.

この試験結果からも、この実施例のサーマルヘッドが耐
クラツク性に優れていることが明らかである。
It is clear from this test result that the thermal head of this example has excellent crack resistance.

またこの実施例のサーマルヘッドは、耐熱樹脂層と発熱
抵抗体との間に樹脂保護層としてプラズマCVD法によ
り形成したa−3iN膜、a−3iC膜、a−3iO膜
等によって、電極物質および発熱抵抗体物質を所望の回
路パターンに溶解除去する際に耐熱樹脂層を損傷する恐
れがなくなり、また真空中における発熱抵抗体物質の形
成時のガス発生を防止することができるため、抵抗値も
安定化する。
In addition, the thermal head of this embodiment uses an a-3iN film, an a-3iC film, an a-3iO film, etc., formed by plasma CVD as a resin protective layer between the heat-resistant resin layer and the heating resistor. There is no risk of damaging the heat-resistant resin layer when dissolving and removing the heat-generating resistor material into the desired circuit pattern, and gas generation can be prevented when the heat-generating resistor material is formed in a vacuum, so the resistance value can be reduced. Stabilize.

さらに、実装工程におけるワイヤーボンディング時に耐
熱樹脂層のクツション効果を樹脂保護層の硬さが相殺し
て、安定してワイヤーボンディングを行うことが可能と
なる。そして、これらの効果とともに、この実施例のa
−5iN膜、a−5iC膜、a−5iO膜等は、耐熱樹
脂層に比べ非常に硬度が大きいため、あまり膜厚を厚く
することなく、実際の印字動作において耐摩耗層に局所
的な圧力が加わっても、この樹脂保護層によって耐熱樹
脂層が変形することを防止でき、すなわち局部的な変形
が阻止されて耐摩耗層のクラックが防止される。よって
、長時間安定して印字走行を行うことが可能となり信頼
性が大幅に向上する。
Furthermore, during wire bonding in the mounting process, the cushioning effect of the heat-resistant resin layer is offset by the hardness of the resin protective layer, making it possible to perform wire bonding stably. In addition to these effects, a of this example
-5iN film, a-5iC film, a-5iO film, etc. have extremely high hardness compared to heat-resistant resin layers, so it is possible to apply local pressure to the wear-resistant layer during actual printing operations without increasing the film thickness too much. This resin protective layer can prevent the heat-resistant resin layer from being deformed even if the heat-resistant resin layer is applied, that is, local deformation is prevented and cracks in the wear-resistant layer are prevented. Therefore, printing can be performed stably for a long period of time, and reliability is greatly improved.

なお、以上の実施例では、樹脂保護層としてa−3iN
膜、a−5iC膜、 a−3iO膜、a −S iCN
膜、a−5iON膜、a−5iCO膜をそれぞれ個別に
使用したものについて説明したが、これらの膜の積層物
を樹脂保護層として用いても同様な効果が得られた。例
えば。
In addition, in the above examples, a-3iN was used as the resin protective layer.
film, a-5iC film, a-3iO film, a-SiCN
Although the explanation has been made using the film, a-5iON film, and a-5iCO film individually, similar effects were obtained when a laminate of these films was used as the resin protective layer. for example.

成膜速度の点で有利なa−5iN膜やa−5iO膜等を
耐熱樹脂層上に3μm程度の膜厚で形成し、その上に耐
エツチング特性(ケミカルドライエツチングに対する)
に有利なa−5iC膜を0.3μs程度の膜厚で形成す
ることによって、同様な効果が得られた。特に成膜速度
の大きいa−3iO膜を第1の層とし、耐エツチング特
性に優れたa−5iC膜を第2の層とした積層からなる
樹脂保護層が実用上好ましい。即ち、工程に要する時間
が短縮でき、生産性に優れている。
A-5iN film, a-5iO film, etc., which are advantageous in terms of film formation speed, are formed to a thickness of about 3 μm on the heat-resistant resin layer, and then etching resistance properties (against chemical dry etching) are formed on the heat-resistant resin layer.
A similar effect was obtained by forming an a-5iC film having a thickness of about 0.3 μs, which is advantageous for this purpose. In particular, it is practically preferable to use a resin protective layer consisting of a laminated layer in which the first layer is an a-3iO film which has a high deposition rate, and the second layer is an a-5iC film which has excellent etching resistance. That is, the time required for the process can be shortened and productivity is excellent.

なお、上述した第2の層となるa−5iC膜は、抵抗膜
と直接接触するため、電気的な絶縁性を兼ね備える必要
があるが、室温(25°C程度)での比抵抗値が101
1Ω印以上であれば、特に問題はない。
Note that the a-5iC film, which is the second layer mentioned above, needs to have electrical insulation properties since it is in direct contact with the resistive film, but the specific resistance value at room temperature (about 25°C) is 101
If it is 1Ω mark or more, there is no particular problem.

また、これらa−5iNl摸やa−5iC膜の構成元素
の組成比を変えて膜質を変化させた膜の積層物を用いた
際にも同様の効果が得られた。たとえば、炭素1度の異
なるa−3iC膜を積層させて2層構造とし、耐熱樹脂
層側は成膜速度を大きくするために炭素β度の低い層と
し、抵抗膜側は耐エツチング特性に有利なように炭Ja
度の高い層により構成すればよい。
Further, similar effects were obtained when using a stack of films in which the composition ratio of the constituent elements of these a-5iNl and a-5iC films was changed to change the film quality. For example, a-3iC films with different carbon degrees are stacked to form a two-layer structure, the heat-resistant resin layer side is a layer with a low carbon beta degree to increase the film formation speed, and the resistive layer side is a layer with a low carbon degree, which is advantageous for etching resistance. Nayo charcoal Ja
What is necessary is just to consist of a layer with a high degree of strength.

膜組成の請度についてはa−5iO,a−5iN、 a
−3iC。
Regarding the degree of film composition, a-5iO, a-5iN, a
-3iC.

a−5iON、 a−5iOC,a−5iNC等の膜中
に含まれる酸崇、窒素、炭素の全、農度が高い程、硬度
が高くなり、耐クラツク性の点でより有利になる。10
fi子%以上あれば実用上問題は無いが耐エンチング特
性を考慮すると20%以上が望ましい。
The higher the total concentration of acid, nitrogen, and carbon contained in a film such as a-5iON, a-5iOC, and a-5iNC, the higher the hardness and the more advantageous it is in terms of crack resistance. 10
There is no practical problem if the fi factor is at least %, but in consideration of anti-etching properties, it is preferably at least 20%.

また、上述の実施例においては、サーマルヘッドとして
の特性評価について説明したが、」二記耐熱性絶縁基板
はサーマルヘッドに限らず、たとえばハイブリッドIC
用の多層回路基板などとしても樹脂保護層の硬度向」二
作用により、実装工程の安定性や配線層の破断などによ
る不良発生を有効に防I卜することができるなど、様々
な効果が得られ非常に有効である。
In addition, in the above-mentioned embodiments, evaluation of characteristics as a thermal head was explained, but the heat-resistant insulating substrate described in 2.
As a multi-layer circuit board for use, the hardness of the resin protective layer provides various effects such as stabilizing the mounting process and effectively preventing defects due to breakage of wiring layers. It is very effective.

次に、a−5iN膜、a−5iC膜、a−5iO膜等を
耐酸化膜を兼ねる耐摩耗層として用いたサーマルヘッド
の実施例について説明する。
Next, an example of a thermal head using an a-5iN film, an a-5iC film, an a-5iO film, or the like as a wear-resistant layer that also serves as an oxidation-resistant film will be described.

まず、前述の実施例において作製した金属基板上にポリ
イミド樹脂層を耐熱樹脂層として形成したものを用い、
この耐熱樹脂層りに樹脂保護層としてスパッタリング法
により膜厚1μmのSiO□膜を形成して耐熱性絶縁基
板を作製した。
First, a polyimide resin layer was formed as a heat-resistant resin layer on the metal substrate prepared in the above example, and
A SiO□ film having a thickness of 1 μm was formed as a resin protective layer on this heat-resistant resin layer by sputtering to produce a heat-resistant insulating substrate.

次に、この耐熱性絶縁基板上に発熱抵抗体、個別電極お
よび共通′FFi極を同様な方法により形成し、この上
にa−3iN膜、a−3iC膜、a −S x O膜を
耐摩耗層としてそれぞれ前述の実施例と同様な方法によ
り形成し、サーマルヘッドを作製した。これら耐摩耗層
の膜厚は、それぞれ2μm、3癖、5μm、8μmとし
た。
Next, a heating resistor, individual electrodes, and a common FFi electrode are formed on this heat-resistant insulating substrate by the same method, and a-3iN film, a-3iC film, and a-S x O film are formed on this heat-resistant insulating substrate. A wear layer was formed by the same method as in the above-mentioned example, and a thermal head was manufactured. The thicknesses of these wear-resistant layers were 2 μm, 3 μm, 5 μm, and 8 μm, respectively.

また、この実施例のサーマルヘッドに対する比較例とし
て、耐摩耗層としてスパッタリング法によるTa205
膜およびSi、N、−25重量%5in2組成のターゲ
ットを用いてスパッタリング法により形成した5L−0
−N膜を有するサーマルヘッドをそれぞれ作製した。
In addition, as a comparative example for the thermal head of this embodiment, Ta205 was prepared by sputtering as a wear-resistant layer.
5L-0 formed by a sputtering method using a film and a target with a composition of -25% by weight 5in2 of Si, N,
-Thermal heads each having a N film were produced.

これに各サーマルヘッドを用いて、前述の実施例と同様
に実機に組込んで5に+1の印字走行試験を行い、これ
ら耐摩耗層の発生クラック数を測定した。次の第2表に
その結果を示す。
Using each thermal head, a printing running test of 5 + 1 was conducted by incorporating it into an actual machine in the same manner as in the above-mentioned example, and the number of cracks generated in these wear-resistant layers was measured. The results are shown in Table 2 below.

第2表 第2表からも明らかなように、プラズマCVD法により
形成したこの実施例のa−5iN膜、a−5iC膜、a
−5iO膜は、比較例のTa2O,、膜および5i−0
−N膜に比べて同一膜厚では明らかに耐クラツク特性に
優れている。なお、第2表には示していないが、a−3
iCN膜、a−5iON膜、a−3iCO膜についても
同様の効果が得られた。
Table 2 As is clear from Table 2, the a-5iN film, the a-5iC film, and the a-5iC film of this example formed by plasma CVD method.
-5iO film is Ta2O, film of comparative example and 5i-0 film.
- Compared to the N film, the crack resistance is clearly superior to that of the N film at the same film thickness. Although not shown in Table 2, a-3
Similar effects were obtained with the iCN film, a-5iON film, and a-3iCO film.

また、耐摩耗層の膜厚としては、この実施例の結果から
は3μm以」二が好ましい範囲となるが、たとえば樹脂
保護層としてさらに高硬度のものを使用すれば2μm程
度の膜厚のものでも充分にその効果を発揮する。また、
この耐摩耗層の膜厚をあまり厚くするとサーマルヘッド
の効率が低下するため、87im以下のものが好ましい
In addition, the thickness of the wear-resistant layer is preferably 3 μm or more from the results of this example, but if a resin protective layer with even higher hardness is used, a film thickness of about 2 μm can be obtained. However, it is fully effective. Also,
If the thickness of this wear-resistant layer is too thick, the efficiency of the thermal head will decrease, so a thickness of 87 mm or less is preferable.

以上の実施例から明らかなように、プラズマCVD法に
よるa−3iN膜、a−3iC膜、a−3jO膜、a−
3iCN膜、a−5j、ON膜、a−5iCO膜を耐摩
耗層としい用いることによって、実印字走行における耐
17耗層のクラックが防止され、より高品質なサーマル
ヘッドが得られる。また、プラズマCVD法によるこれ
らの膜は、膜中に水素やハロゲン元メ・3を含み、転移
を多く含んでいることなどから、従来のTa2O,、膜
や5i−0−N膜に比べて靭性値に優れており、耐クラ
ツク性の点からもサーマルヘッドの耐摩耗層として優れ
たものである。
As is clear from the above examples, a-3iN film, a-3iC film, a-3jO film, a-
By using the 3iCN film, a-5j, ON film, and a-5iCO film as the wear-resistant layer, cracking of the wear-resistant layer 17 during actual printing is prevented, and a higher quality thermal head can be obtained. In addition, these films made using the plasma CVD method contain hydrogen and halogen elements, and contain many dislocations, so they are more difficult to produce than conventional Ta2O, , and 5i-0-N films. It has excellent toughness and is excellent as a wear-resistant layer for thermal heads in terms of crack resistance.

なお、上述の各実施例においては、窒素、炭素、酸素の
うち少なくとも一種と珪素とを主成分とする非晶質体層
をサーマルヘッドの樹脂保護層および’tt−を摩耗層
のいずれが一方に使用した例について説明したが、これ
らの両方をこの非晶質体層によって形成しても同様な効
果が得られることは当然であり、その際には前述の各膜
厚値を参考にして、さらに膜厚を薄くすることも可能と
なる。
In each of the above-mentioned embodiments, the amorphous layer mainly composed of at least one of nitrogen, carbon, and oxygen and silicon is the resin protective layer of the thermal head, and the 'tt- wear layer is one of the amorphous layers. Although we have explained an example in which both of these layers are formed using this amorphous layer, it is natural that the same effect can be obtained, and in that case, please refer to the above-mentioned film thickness values. , it is also possible to further reduce the film thickness.

また、上述の各実施例においては、金属基板上に耐熱樹
脂層を形成したものについて説明したが、支持基板とし
ては金属に限らずセラミックスやガラスであっても本発
明の効果は同様に期待できる。
Further, in each of the above-mentioned embodiments, a heat-resistant resin layer is formed on a metal substrate. However, the effect of the present invention can be similarly expected even if the supporting substrate is not limited to metal but also ceramics or glass. .

ただし、金属基板を支持基板として用いた場合は、この
金属基板自体を共通電極に用いることもできることや、
曲げ加工が可能なことからサーマルヘッドの小型化に大
きく寄与する。
However, if a metal substrate is used as a support substrate, the metal substrate itself can also be used as a common electrode,
Since it can be bent, it greatly contributes to the miniaturization of thermal heads.

なお、本発明による樹脂保護層は、水素またはハロゲン
元素を含むガス雰囲気中で、窒素、酸素、炭素の中から
選ばれた少なくとも一種と珪素からなるターゲットを用
い、スパッタリング法により形成することも可能である
Note that the resin protective layer according to the present invention can also be formed by a sputtering method in a gas atmosphere containing hydrogen or a halogen element, using a target made of silicon and at least one selected from nitrogen, oxygen, and carbon. It is.

次に、本発明のサーマルヘッドを感熱記録装置に適用し
た例をファクシミリを例にとり説明する。
Next, an example in which the thermal head of the present invention is applied to a thermal recording device will be explained using a facsimile as an example.

なお、ここでは印字部のみを説明する。Note that only the printing section will be explained here.

第6図に、本発明の一実施例のファクシミリの模式図を
示す。感熱記録紙22はプラテンローラ23と図示しな
い一対の駆動ローラにより搬送されると共に、プラテン
ローラ23は、サーマルヘッド21側に動き、感熱記録
紙22をおさえる。印字は、情報処理回路からサーマル
ヘッド21に送られた記録信号をサーマルヘッド21」
二に設けられた駆!1llJ素子24により信号処理を
行い、印字に必要なドラ1−に電気パルスを通してこれ
を加熱することにより、感熱記録紙22の対応する部分
を変色させて行われる。
FIG. 6 shows a schematic diagram of a facsimile machine according to an embodiment of the present invention. The thermal recording paper 22 is conveyed by a platen roller 23 and a pair of drive rollers (not shown), and the platen roller 23 moves toward the thermal head 21 to hold down the thermal recording paper 22. For printing, a recording signal sent from the information processing circuit to the thermal head 21 is sent to the thermal head 21.
The drive set in the second! Signal processing is performed by the 1llJ element 24, and an electric pulse is passed through the driver 1- necessary for printing to heat it, thereby changing the color of the corresponding portion of the heat-sensitive recording paper 22.

上記ファクシミリによれば、サーマルヘッド部の熱効率
が約1.8倍となるため、 消1m力が大幅に低減され
る。すなわち、同一の印字a度を出すのに要する電気エ
ネルギが従来のサーマルヘッドを用いた場合に比較して
約40%低減される。
According to the above-mentioned facsimile, the thermal efficiency of the thermal head section is approximately 1.8 times higher, so that the power per meter is significantly reduced. That is, the electrical energy required to produce the same printing degree is reduced by about 40% compared to when a conventional thermal head is used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の耐熱性絶縁基板によれば、
樹脂保護層の硬度の向上により、実装工程を安定して行
うことができるとともに断線などによる不良の発生率が
減少し、またサーマルヘッドの高抵抗基体として用いた
場合には、サーマルヘッドの印゛字走行を安定化させる
ことができる。
As explained above, according to the heat-resistant insulating substrate of the present invention,
By improving the hardness of the resin protective layer, the mounting process can be carried out stably, and the incidence of defects such as wire breakage is reduced. Also, when used as a high resistance substrate for a thermal head, the thermal head's impression It is possible to stabilize the curve running.

また、本発明のサーマルヘッドによれば、その製造工程
における耐熱樹脂層の損傷が防止され、抵抗値の制御も
容易となり、さらに実装工程におけるワイヤーボンディ
ングも安定して行えるとともに、実印字走行時の表面層
となる耐摩耗層のクラックを有効に防止でき、したがっ
て安定した印字を行うことが可能となり、その信頼性が
格段に向上する。
In addition, according to the thermal head of the present invention, damage to the heat-resistant resin layer during the manufacturing process is prevented, resistance value can be easily controlled, wire bonding can be performed stably during the mounting process, and wire bonding can be performed stably during actual printing. It is possible to effectively prevent cracks in the wear-resistant layer, which is the surface layer, and therefore it is possible to perform stable printing, and its reliability is significantly improved.

また、本発明の感熱記録装置によれば、消費電力が大幅
に低減され、工業的価値が大きい。
Further, according to the heat-sensitive recording device of the present invention, power consumption is significantly reduced, which has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のサーマルヘッドの要部を示
す部分分解斜視図、第2図は本発明の−実施例のサーマ
ルヘッドの製造工程をフローチャー1−で示す図、第3
図は本発明の実施例で非晶質層の成膜に使用したプラズ
マcvo装置の構成を示す図、第4図は本発明の実施例
における樹脂保護層の厚さとそのスープ硬度との関係を
グラフで示す図、第5図は本発明の実施例における樹脂
保護層の厚さとそれぞれの耐摩耗層上におけるスープ硬
度との関係をグラフで示す図、第6図は本発明の感熱記
8装置を断面して示す模式図である。 1 ・金属基板    2・・・耐熱樹脂層3・・・樹
脂保護層   4・・耐熱性絶縁基板5・・・発熱抵抗
体   6・・・個別電極7・・・共通電極 9・・・酸化防止膜を兼ねる耐Jf耗層21・・サーマ
ルヘッド 22・・感熱記録紙23・プラテンローラ 
24・・・情報処理回路代理人 弁理士 則 近 憲 
佑 同    竹 花 喜久男 へ qフ =29 鮒轍儂を耐専刊蝮且っマー71浪 (にg/mm2) オ臼男Hy;i/iEJ又−7°石更1度(に9/mm
z)
FIG. 1 is a partially exploded perspective view showing the main parts of a thermal head according to an embodiment of the present invention, FIG. 2 is a flow chart 1 showing the manufacturing process of a thermal head according to an embodiment of the present invention,
The figure shows the configuration of the plasma CVO device used to form the amorphous layer in the example of the present invention, and Figure 4 shows the relationship between the thickness of the resin protective layer and its soup hardness in the example of the present invention. Fig. 5 is a graph showing the relationship between the thickness of the resin protective layer and the soup hardness on each wear-resistant layer in an example of the present invention, and Fig. 6 is a graph showing the relationship between the thickness of the resin protective layer and the soup hardness on each wear-resistant layer in the embodiment of the present invention. FIG. 2 is a schematic diagram showing a cross section. 1 - Metal substrate 2... Heat-resistant resin layer 3... Resin protective layer 4... Heat-resistant insulating substrate 5... Heat generating resistor 6... Individual electrode 7... Common electrode 9... Oxidation prevention Jf wear-resistant layer that also serves as a film 21...Thermal head 22...Thermal recording paper 23/Platen roller
24...Information processing circuit agent Patent attorney Nori Chika
Yudo Take Hana Kikuo to qfu = 29 Carp treadmill wo resistant special edition 蝮且っま 71 waves (ni g/mm2) Ousuo Hy;i/iEJ also -7° Ishisara 1 degree (ni 9/mm
z)

Claims (3)

【特許請求の範囲】[Claims] (1)高熱伝導性の支持基板と、この支持基板上に形成
された耐熱樹脂層と、この耐熱樹脂層上に設けられた水
素およびハロゲン元素の少なくとも一種を含有し、窒素
、炭素、酸素の中から選ばれた少なくとも一種と硅素を
主成分とする非晶質体、もしくはこれら非晶質体の積層
物からなる樹脂保護層とを少なくとも具備することを特
徴とする耐熱性絶縁基板。
(1) A support substrate with high thermal conductivity, a heat-resistant resin layer formed on the support substrate, and a heat-resistant resin layer provided on the heat-resistant resin layer containing at least one of hydrogen and halogen elements, containing nitrogen, carbon, and oxygen. 1. A heat-resistant insulating substrate comprising at least one selected from among the above, an amorphous body mainly composed of silicon, or a resin protective layer made of a laminate of these amorphous bodies.
(2)高熱伝導性の支持基板と、この支持基板上に形成
された耐熱樹脂層と、この耐熱樹脂層上に設けられた樹
脂保護層と、この樹脂保護層上に形成された多数の発熱
抵抗体と、これら各発熱抵抗体に接続された導電体と、
前記発熱抵抗体の少なくとも発熱部を被覆するように設
けられた耐摩耗層とを少なくとも具備するサーマルヘッ
ドにおいて、 前記樹脂保護層および耐摩耗層の少なくとも一方が、水
素およびハロゲン元素の少なくとも一種を含有し、窒素
、炭素、酸素の中から選ばれた少なくとも一種と硅素を
主成分とする非晶質体、もしくはこれら非晶質体の積層
物からなることを特徴とするサーマルヘッド。
(2) A highly thermally conductive support substrate, a heat-resistant resin layer formed on this support substrate, a resin protective layer provided on this heat-resistant resin layer, and a large number of heat generating units formed on this resin protective layer. A resistor, a conductor connected to each of these heating resistors,
A thermal head comprising at least a wear-resistant layer provided to cover at least a heat-generating portion of the heating resistor, wherein at least one of the resin protective layer and the wear-resistant layer contains at least one of hydrogen and a halogen element. A thermal head comprising an amorphous material whose main components are silicon and at least one selected from nitrogen, carbon, and oxygen, or a laminate of these amorphous materials.
(3)感熱記録紙と、この感熱記録紙を搬送する搬送手
段と、前記感熱記録紙に印字する請求項2記載のサーマ
ルヘッドと、このサーマルヘッドの発熱抵抗体を記録信
号データに応じて各々個別に駆動する駆動素子と、 これら駆動素子に記録信号を供給する情報処理回路とを
少なくとも具備することを特徴とする感熱記録装置。
(3) A thermal recording paper, a conveying means for conveying the thermal recording paper, a thermal head according to claim 2 for printing on the thermal recording paper, and a heating resistor of the thermal head, respectively, in accordance with recording signal data. A thermal recording device comprising at least drive elements that are driven individually and an information processing circuit that supplies recording signals to these drive elements.
JP63227524A 1988-03-28 1988-09-13 Heat-resistant insulation substrate, thermal head and heat sensitive recording device Granted JPH021339A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63227524A JPH021339A (en) 1988-03-28 1988-09-13 Heat-resistant insulation substrate, thermal head and heat sensitive recording device
US07/328,980 US4963893A (en) 1988-03-28 1989-03-27 Heat-resistant insulating substrate, thermal printing head, and thermographic apparatus
EP89303052A EP0335660B1 (en) 1988-03-28 1989-03-28 Heat-resistant insulating substrate, thermal printing head, and thermographic apparatus
KR1019890003860A KR920005317B1 (en) 1988-03-28 1989-03-28 Heat-resistant insulating substrate thermal head and thermographic apparatus
DE89303052T DE68908749T2 (en) 1988-03-28 1989-03-28 Heat resistant, insulating substrate, thermal printhead and thermographic apparatus.
US07/519,179 US5119112A (en) 1988-03-28 1990-05-04 Heat-resistant insulating substrate, thermal printing head, and thermographic apparatus
US07/804,014 US5177498A (en) 1988-03-28 1991-12-09 Heat-resistant insulating substrate, thermal printing head, and thermographic apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7424188 1988-03-28
JP63-74241 1988-03-28
JP63227524A JPH021339A (en) 1988-03-28 1988-09-13 Heat-resistant insulation substrate, thermal head and heat sensitive recording device

Publications (2)

Publication Number Publication Date
JPH021339A true JPH021339A (en) 1990-01-05
JPH0575590B2 JPH0575590B2 (en) 1993-10-20

Family

ID=13541466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227524A Granted JPH021339A (en) 1988-03-28 1988-09-13 Heat-resistant insulation substrate, thermal head and heat sensitive recording device

Country Status (2)

Country Link
JP (1) JPH021339A (en)
KR (1) KR920005317B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842472A (en) * 1981-09-07 1983-03-11 Semiconductor Energy Lab Co Ltd Thermal head
JPS6112357A (en) * 1984-06-29 1986-01-20 Hitachi Ltd Thermal recording head
JPS6144401A (en) * 1984-08-08 1986-03-04 ティーディーケイ株式会社 Wear resistant layer and electronic part
JPS61169262A (en) * 1985-01-24 1986-07-30 Toshiba Corp Thermal head and its preparation
JPS6277476A (en) * 1985-10-01 1987-04-09 Tdk Corp Protective film and its production
JPS62117760A (en) * 1985-11-19 1987-05-29 Fujitsu Ltd Thermal head

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842472A (en) * 1981-09-07 1983-03-11 Semiconductor Energy Lab Co Ltd Thermal head
JPS6112357A (en) * 1984-06-29 1986-01-20 Hitachi Ltd Thermal recording head
JPS6144401A (en) * 1984-08-08 1986-03-04 ティーディーケイ株式会社 Wear resistant layer and electronic part
JPS61169262A (en) * 1985-01-24 1986-07-30 Toshiba Corp Thermal head and its preparation
JPS6277476A (en) * 1985-10-01 1987-04-09 Tdk Corp Protective film and its production
JPS62117760A (en) * 1985-11-19 1987-05-29 Fujitsu Ltd Thermal head

Also Published As

Publication number Publication date
KR890014999A (en) 1989-10-28
JPH0575590B2 (en) 1993-10-20
KR920005317B1 (en) 1992-07-02

Similar Documents

Publication Publication Date Title
JPS5846079B2 (en) Multilayer wiring board manufacturing method
JPH021339A (en) Heat-resistant insulation substrate, thermal head and heat sensitive recording device
EP0335660B1 (en) Heat-resistant insulating substrate, thermal printing head, and thermographic apparatus
JPH0278575A (en) Heat-resistant insulating substrate and thermal head
JPH05268A (en) Method for producing resin-coated substrate
US4786916A (en) Thermal head
JPH048554A (en) Heat-resistant insulating substrate and thermal head
JPH0278576A (en) Heat-resistant insulating substrate and thermal head
JPH0278573A (en) Heat-resistant insulating substrate and thermal head
JPH11277781A (en) Thermal head
JP2001338862A (en) Wafer heating apparatus
US4825040A (en) Thermal head
JP2549135B2 (en) Thermal head
JPH01247170A (en) Heat-resistant insulative substrate and thermal head
JPS62151354A (en) Thermal recording head and its preparation
JPH091806A (en) Ink jet head
JPH0825668A (en) Thermal head
JP2705069B2 (en) Thin film resistor and method of manufacturing the same
JPS63297066A (en) Thermal head and production thereof
JPH03272865A (en) Heat resistant insulation board and thermal head
JPH01202465A (en) Protective coating material and thermal head using it
JPH0218901A (en) Thin film thermal head
JPH0557938A (en) Manufacture of thermal head
JPS58119878A (en) Manufacture of thermal head
JPS6156111B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 15

EXPY Cancellation because of completion of term