JPH03272865A - Heat resistant insulation board and thermal head - Google Patents

Heat resistant insulation board and thermal head

Info

Publication number
JPH03272865A
JPH03272865A JP6975890A JP6975890A JPH03272865A JP H03272865 A JPH03272865 A JP H03272865A JP 6975890 A JP6975890 A JP 6975890A JP 6975890 A JP6975890 A JP 6975890A JP H03272865 A JPH03272865 A JP H03272865A
Authority
JP
Japan
Prior art keywords
layer
heat
resistant
thin film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6975890A
Other languages
Japanese (ja)
Inventor
Wataru Mitani
渉 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6975890A priority Critical patent/JPH03272865A/en
Publication of JPH03272865A publication Critical patent/JPH03272865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To enhance rigidity, to reduce malfunction occurrence ratio and to prevent crack of a wear resistant layer of a heat resistant insulation board by forming a protective layer formed on a heat resistant layer by laminating a first amorphous silicon layer and a second amorphous silicon layer. CONSTITUTION:A heat resistant resin layer 2 made of polyimide resin, polyamideimide resin or mixture thereof or a laminate to be used as a heat accumulation layer and an insulating layer is formed on a metal board 1 of a thermal head, and a resin protective layer 3 is formed on the layer 2. The layer 3 is formed by laminating a first amorphous silicon layer containing at least one type of halogen and halogen and silicon as a base and a second amorphous silicon layer containing at least one type of hydrogen and halogen, at least one type of oxygen, nitrogen, and carbon, and silicon as a base. Since the first and second layers contains the hydrogen, halogen element, they are soft, strong to greatly improve the hardness of the entire insulation board. Even if a local deformation is applied to the surface layer, its crack can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の[1的] (産業−1,の利用分野) 本発明は、ファクシミリやプリンター″′8[有]感熱
lj式の5己録装置に用い11れるザーマルヘッドと1
、二のよ・)なす・〜マルヘッドや各種電子機器に用い
C−〕れる耐熱性絶縁基板に関するものである。 (従来の技術) 従車ポリイミド樹脂のような耐熱性樹脂を各種基板上に
絶縁層等とIて設けた面4熱性絶縁基板が提案されてい
る。このような耐熱性絶縁基板がザーマルヘッドの高抵
抗基体やハイブリッドIC用の多層回路基板等のような
熱に対
[Object 1 of the Invention] (Field of Application of Industry-1) The present invention relates to a thermal head and
The present invention relates to heat-resistant insulating substrates used in multi-heads and various electronic devices. (Prior Art) Four-sided heat-resistant insulating substrates have been proposed in which a heat-resistant resin such as a follower vehicle polyimide resin is provided on various substrates with an insulating layer or the like. Such heat-resistant insulating substrates are suitable for heat-resistant materials such as high-resistance substrates for thermal heads and multilayer circuit boards for hybrid ICs.

【7て高い信頼性が要求される各種電r機器の支
持基体等とじて多数用いられ”Cいる。 例えばサーマルヘッドにおいζは、高抵抗機械として従
来のアルミーノ゛等のセラミック基板十にグレーズガラ
ス層を熱の放散及び蓄熱i−:q > l−0ルする保
温層とし“C形成19.てなるものに変Aで、セラミッ
ク基板や金属基板トにポリイミド樹脂のような耐熱樹脂
層を形成した耐熱性絶縁基板か用いられている。 このようなをポリイミド樹脂層を保温層として設′けた
サー フルヘッドは以Fのよ・うな構成とな−って(す
る。 すなわち、Fe合金等からなる金属裁板」二に蓄熱層2
−、絶縁層とを兼ねるポリイミド樹脂等からなる耐熱樹
脂層を形成12、この耐熱樹脂屑のLに1゛a  S 
IO2、Ti−8iO,等からUる発熱抵抗体の膜をλ
バッタリング法などにより形成する。 更に、この発熱抵抗体の上にAiヤAρ−5iCu等か
らなる個別電極及び共通電極を形成する。 この個別電極志共通電極との間の領域か発熱領域を形成
しており、少なくともこの発熱領域を被覆するようにシ
リコンAギシヲィトライト(Si0〜N)′8−から耐
摩耗層を形成している。この耐摩耗層は耐酸化膜として
の機能を′1′−n’ Lでいる。 こσ)ような→ノーマルヘットは、従来のグレ−ズガラ
ス層に比べて熱拡散弔が3/]から1./6と低いポリ
イミド樹脂層を保温層として用いる。二とにより熱効率
か改善される。また、金属基板のような6■撓性を有す
る支持基板を使用することかi’iJ能にIより、曲げ
加工を行Uうことができ、小型[]つ安価て高性能九す
−Zルヘ・ソF’ 、!= i−2てlI [−’ll
されている。 し、かし八から、ごのよ・)なり−−゛フルヘッドは、
その製造■7程において以Fのよ・)iA問題点をもし
。 Cいに0 すなわち、発熱抵抗体や電極の形成の際に行な・うエツ
チング処理時や、マスキング膜のアッシング時において
耐熱樹脂屑に損傷をtj、ズ−てj2まう。 また、真空中で発熱抵抗体物質を着膜させる際に、ポリ
イミド樹脂樹脂層からガスが放出され、このノjスの影
響1.゛よ、って発熱抵抗体の抵抗値の調整か難しいε
いう問題点を有(たい。史に、ワ・イヤボンデインク法
により配線する際に、ポリイミド樹脂廣か弾性を有する
ことからボテンYングを6九い難いという問題点を有し
ていた。 このような問題点を解決するための−1:段と(。 て本廟発明者等は先に耐熱樹脂層と発熱抵抗体胸εω間
に、アルミノ、シリコンオキシナイト゛フィト、ザイア
I′:フン等の無機絶縁物からなる樹脂保護層を形成し
たり゛−マル・・\ットを提案し、でいろ(特願昭62
−21.428号公報、特願昭62.−154326号
公報、特願昭62−191.、655号う〉報)。この
よつに耐熱樹脂層と発熱抵抗体層との間に樹脂保護層を
形j戊」ることによ、で、(□製造[、程においてポリ
イミド樹脂層の損傷やボ11イミド樹粕順からのガスの
放出か防11され、また、全体的に剛性が高くなるとい
う効果か得られている。 このように耐熱樹脂1層と発熱抵抗体との間に樹脂保護
層を形成すると、サーマルへ・ノドの高抵抗基体とし5
て用いられるのみならず、他の電J′−機器にお1.)
る絶WM板とし一ζ−用いた場合には電f部品を実装−
する際のJ゛装■程苓安定し−こ行なえる等の効i!を
何する。 (発1明が解決し、ようとする課題) 前述lた。4−うに、ポリイミド樹脂のよ・うム耐熱樹
脂洒の上にアルミ(−、シリコ゛/オギンJイ[・ライ
ドや→ノイrロン等の無機絶縁物からムる樹脂保護層を
設置t f:耐熱性絶縁基板を例えばづ−フルヘッドの
高抵抗基体と(、で用いる、二とによって種々の利点が
i−Iられるちのの、−のような無機絶縁物を川、いた
樹脂保護層の充勺な膜強度かiりられておら1、以1・
に示ずようへ新たな問題点か牛し5た。 すfSわち、本願発明者簀か1j5〕述した樹脂保護層
を自する一+J−=zルパ\ノドをプリンタへ組み込ん
゛C実際に印字試験を行な−ったところ、試験中に異児
な抵抗値の変化を示し、印′7′へ悪影響を及は4゛現
象が認められた。これを詳細に調査し、た結里、リマル
t\ツFと感熱紙あるいは感熱紙とプラテンローラとの
間に往き込まれたゴニ等の異物かサンルヘッドの表面層
となる耐摩耗層へ亀R−4なわちクラックを牛(、さV
、このクラックか発熱II(、坑外まて達I7た場合に
印字特性に悪影響を及+;llj tコ−いることが判
明した。 このようtよ問題12人は、従来のセラミック基板1゜
にグレーズガラス層を形成l−また高抵抗基体イー\金
属基板りにガラス層を形成した高抵抗犠体を用いたザー
シ・マルへ・ント1こ才、)いてはも議られなか、)/
こ視象“Cある。 これは、グレースカ′ラス層ヤプfラス′/@を了1″
4る高抵抗基体を用いたサーマルヘッド′では、高臥抗
基体全体の砂・准が大きく、ごflによって耐摩耗層に
局部的な圧力が加わったとしても耐摩耗層か高抵抗基体
と111]様な変形にかしないため、局部的tよ変形が
阻1[されで前述したよ・うなりラックか/i(。 八いものと考λられる。 一方、これに対し、てポリイミド樹脂のよ・)tよ耐熱
樹脂層を用いた高抵抗基体の場8・には、前述j。 たまうに樹脂保護層によ)である程度高抵抗基体の剛性
が高めあれでいるものの、ポリイミド樹脂の変形か耐摩
R層に比・Nて若(7いため、耐摩耗層に局部的な集中
萄重が加わった際に耐熱樹脂層の変形を樹脂保護層や耐
摩耗層によって防止することかできないためである。そ
j7て、耐熱樹脂層の変形に樹脂保護層や耐摩耗層0)
変形か近間ごきななくノ泳っでクラックが14−シ、て
1、まうもの、、l考えらiする。 ところで、このようへヅーマルヘッドにおける耐熱樹脂
層の変形の防11−のめに着「Iすると、耐摩耗層の膜
厚を増大させることによって変n′;を防IIすること
か考えられる。 jl、かしなから、このような方法では発熱抵抗体と感
熱紙との間の距離か大きくなるノ5め、効ヰ;の低下、
解像度の低F Jの性能上の著I2い欠点が牛しるのみ
ならす、量産性も著しく 0′1”’F iる。 このような問題点はサーマルヘッドに限らず、例えば間
違j、たようにハイブリッドiD用多層回路基板等にお
いでも、実装工程等で耐熱樹脂層の変形によってその上
に設けられた配線層の断線やボ′、、/ディング不良等
を招いてj、まうとい・)問題点を有j、でいる。 、4発明は、このような従来の問題点に鑑みこなぎオl
たものて、剛性を高めるこ己により実装1程等における
不良の発/[、♀;を減少させる耐= it絶縁基板を
提供することを1−1的とすると共に、ブリ:り等に組
み込んで印字を行なわせる際に耐11?耗層のクラック
の発生を防止(7て12、−ζ缶軸性を向I、きせ2)
よ)に(たサーマルへ・ノドを提1−t、−4ることを
1−1的とする。 1、発明の横戊コ (課題を解決するためσ)手段・) 1−1記「1的を連成するための本発明か+、i、g 
(B ’)る耐熱性絶縁基板は、熱(云導性をず了する
基板、)−1、二の基板りに形成される耐熱層、J〜、
ごの耐勃層−トに形I戊される保:J、層とをY41−
、 、前記保護層は1に素、ハロゲンの少なくとも1棟
を八白り、、 fir累を母体とする第1の非晶質硅素
層35、水素、/)Qゲ5・のつ12なくとら1種を含
有し、41つ酸素、窒素、炭素の少なく 1= +)1
種を3有し硅素を母体とする第2゜−11品質硅素層上
の積層ををすることを特徴とする。 また発明か提供するサーマルへ、ノドは、熱伝導性をa
する基板と、こび)基板」−に形成される耐熱層と、こ
の耐熱層−1−に形成される保護層と、この保1連層上
に形成される発熱抵抗体と、この発熱抵抗体−1,に)
じ成される耐1?耗層とを6 L、0てj紀保護届、耐
1q耗膚の少なくとt、−,15−か水素、/\「Iケ
ンσ)・1〉なく2−1も1種を36′(2、硅素苓母
体とイる第1のj「晶質砂素層と、水素、)\「7)f
ンの一1’ fA(とも1種をA有(11、f”1−1
)酸素、窒素1.炭素の、J> fよ<、I−ち1種を
arj“し硅素を4J体と4−゛る第2の非晶質硅素層
5!の積層をIFすることを特徴とする。 (作用) 本発明か提供する耐熱性絶縁基板は、嗣外層の1.1、
形!戊される侶謹鳴を第1(f)J1品質硅素圓と、第
2(7)非晶質硅素層との積層により形成している。 こσ)第1及び第2の、11・品質d素層には水素やノ
ヘ「7ケン元素を含むのC柔らか<T強く且つ耐熱性絶
縁2み板金体ω砂塵か大幅に向上し2で表面層へ局部的
な変形か加わった場合においてもクラックの発11−を
防1[することかてきる。 ゴ′た、本発明が提供するす〜マルヘッドは、耐熱層の
L(、:形成される保護層又は発熱抵抗体の土に形成さ
れる耐摩耗層の少なくとも一方か第1の非晶質硅素層及
び第2の非晶質硅素層との積層により形成されているの
で、萌述し2だと同様に第1及び第2の非晶質硅素層に
は水素や)\【1ケン元素を^みサーマルヘラ10体の
硬度が太軸に向1、する。との粘果表面層に翔1わ−7
た圧力によ−】で局部的な変)にを牛し、た場合であつ
−Cもクララ20発性を確実に防1[−:、 すること
がζきる。 また、非晶質硅素層は膜を形成−参る際の成膜速度か大
きいのてコストの低減を図ることか(きる。 更に、Si、N4、SiC,、A斐N、A斐、0゜等に
比べて熱伝導率か小さいσ)で発熱抵抗体か龜基板側−
2流むる熱による無効J−ネルイーを低減4ることかで
きサーマ/Lヘッドの1ネル4−ニー効率ヲ畠めること
かできる。 尚、室温でC)熱伝導率を比較すると、Si3N4か2
0−29 W / K m 、 A I Nが60−2
00W/KmSSiCが126 = 270 W / 
K m SA交203が20 W /’ K mに対1
21、S i O、、は6゜2−10.4W/に、m−
(ある。 (実施例) 以F図面をt照り、ζ−本発明に係る一実゛施例を詳細
に説明嗜る。 第12図は本発明に係るザーマルヘツF’ +7) i
部の構成図であり、金属基板1はF e−CI含金等に
よ−っ「即さC[,5tr+m程Jtに形成されている
。この金凧基板1の1には蓄熱層と絶縁層を兼ねるボッ
イミド樹脂やポリアミド゛イミド樹鮨あるいは、″れら
の混合物や積層物からなるml熱樹脂層2が20μm 
V’4 Qの厚さで形成されCいる。ごの耐熱樹脂屑2
の土には樹脂侶護層3がIVさ1μmから10 ft 
mの厚さに形成されでいる。 この樹脂保護層うは水素、ハロゲンの少なくと1種を8
有1.硅素を母体とする第1の非晶質硅素層さ、水素、
ハ111]ゲンの少なくとも1種を含有l、5゜11つ
酸素、窒素、炭素の中板くともIP1!を含を1゜研素
をノリ体とする第2σ)非晶質硅素層との積層により形
成されている。4なわち樹脂保護層3は第1−の非晶質
硅素層゛Cあるγモルソ7ス(a) −5iを主成分と
イる薄膜と、第2σ)非晶質h1素層であるa−8i 
01a−5iCを主成分と−づる薄膜よ、の積層により
1ト!戊され“ζ−いる。 14体的にf、ia  Slの土に成膜速瓜″か人きt
よa−8i Oを積層11、このa−5i Oの[−に
a−8iCを積騙1−ζ樹脂保護層3仝体の膜厚を所定
の値にlJ定する。こ11により後述−IZ〕発!MS
抵抗体から金属基板10方向^、向か・ノ熱の移動を肋
11.する。 この樹脂保護、1※3と、耐熱樹脂屑−2と7企庸基板
1と“C耐熱性絶縁基板4か構成さねている。。 こ両耐熱性絶縁糸板40”+−1−にはT a−5i 
O、、、T x−8r、 02等からUる発熱抵抗体5
か形成さねでいる。また、発熱抵抗体5の土にはAgや
Ai−Si−←U等からなる1vさ0.7 tt m 
−1,、um程度の個別電極6及び扶通電極′7が形成
されている。この個別電極6と共通電極7との間の領域
が発熱領域を形成し、この発熱領域か感熱紙と接触して
感熱紙か発色温度以しに達l、た晴に発色し。 て印字藁を形成−dる。少なくともこの発熱領域を被覆
するようにSl O2からなる接着層8か形成さイ・1
ている。また、接着層8の上側(、:は5i−ONから
なる耐摩耗層9か形成さネ17いる。この耐摩耗層9は
耐酸化膜としく−の機能をfi’ [−マいる。 第1田1示すリー マルヘツトは、個別電極6と共通電
極゛7との間に所′;rのパルス屯1トを印加するこ、
]:により発熱餉域の発熱抵抗体5か発熱しで印’;”
 X己録か行t↓われる。 次に第″、、!、区1を参[E< lて’t ””””
”” ””?ルヘソトの製込に係るJ−稈づ三説明−づ
る。 先4゛、第2図(・f)にホ4゛ようにFe16重ji
l L?t]Cr n金からなる柁騰基板1を所定・1
法に切断I2、脱脂洗浄シテー乾燥後に乾いたlk素カ
スの雰囲気中て600 ’Yニー呂c[C’、) ”C
て軌処理全行なう。 次に第2図(c+)’′rlj二の金Ω基板1土に例え
ばポリイミドーノニスやボリアミトイミしワニスを「フ
ル1−りやソ、ビンー゛l−タを用いτ焼成後に20t
t m = 30 lIm c))膜厚となるように所
定量塗布し、乾燥して焼成を行ない耐熱樹脂屑2を形成
する。 次に第2図(ハ)では耐熱樹脂層2の表面を洗浄4る。 続いr第2図に)でij例えばスパッタd1、fオンジ
15・−ディングn2、真空蒸着法、ゾラスマ(]VD
法、E CRゾうスマ(”V I)法、熱CV丁)法、
光CV D等によって樹脂保護層3を形成1−る。、T
、れらの方法の中−ぐも、膜の密着性か良く比軸的低温
て処理c ! r1一つ基板(7′)特性を損わないコ
′、と、11−びに膜の物性1なわち電気物持t’l 
?光学的特Pトか容易に制御−Cきる等の!!、(か1
)ブラスマCV’ I) 法か奸適である。特に本発明
においては耐熱樹脂屑−1(。 でポリイミド樹脂を用いた場合(1,は−船釣なポリイ
ミド樹脂の耐熱温度て゛ある5 50 ℃以」−に(4
゛ζ′きへいため、こσ〕耐熱温准未満の低温て゛処F
II可能な方法か心変である。 このプラズ7CVD法は、原料ガス0)内Si或勺ど1
.τ5LH4ガスやSiF、ガス等を用い、他方の成分
とし、てN2ガス、N20ガス、0.ガス、C■4メノ
ス等を用いている。真空中で、これら[有]ガスをプラ
ズマ化し7、基板1−に目的とするセラ3ツクスの薄膜
を形成する方法である。%I−T−Cの薄膜を形成する
際1ご膜中には原料ガス中の水素や−7ツ等0)ようh
ハ「7ゲン元素か毀藏さ相、これらの元素の影響で非晶
質状態を安定11、て保−)ことが111能ム薄膜か形
成される。 本実施例では以下に示す′lJ−′、舶に従−6C1第
3図に示す甲?j平板型の容量粘0型シラス? CV 
D装置を用いで樹脂保護層3苓)に成膜7で耐熱性絶縁
基板4を作製L f、:、。 第3図におい(真空チ1〉゛バ111〜には゛■′行状
設置電極12と、高周波電極1′3とかχ、を向しC配
置3\れτおり、この平行状設置電極12の1−7に処
理基板14、ずなわら耐熱樹脂胸か形成された金属基板
を載置4る。次に図示しない真空ポンプにより真空チャ
ンバ1]内を10 ”””T o r r程度に排気j
2に後に、設置電極12に取り(Nt +:JたL タ
15i:”より処理基板14を1.50 ℃−450”
C程度1、加熱する。次にガス導入口10から原料ガス
苓真空チャンバ11内へ供給(1、−)つ、0°5T。 Ir・〜1.0Tor+程度の真空度を保つようにDト
気目1′7から排気りながら、高周波電極13にマツ1
ングボツクス18を介(、”C高周波電源19か1ち0
)電力を投入する。これ1.より双7J O”’)電極
間てりD−族電り牛(7させて原料ガノ、をプラス7化
(、処理基板14の[、に[l的とする薄膜をlf′/
成φ゛ろ。 ここで原車1ガスは以1・のちのが用いら4つる(。ず
な#’−) ’l; a  Sjの薄膜を形成、する際
にN:i S lH4ガえを#il u)、=>。また
、a−5iNO薄[漠を形成4゛る際1、−は5iHa
ガスと、N2ガス叉はN H、プlスを用いる。:1;
た、a−5i←)の薄膜を形成り−る際には例えばSi
H4ガスとN、0カス4゛用いる。 また、a−8iCの薄膜を形成“づる際には31■1ガ
スとCH4カスを用いる。 こわによ−)て得られる薄膜の膜質は基板の温j9、高
周波電源の値等により−C異なる。本実施例では、A−
5iの薄膜の形成の際にl;i S 1. H4カス′
30n s c c Mで供給し、a−8iNの薄膜の
形成ノ際ニハ、S i H4カス50 S CCM 、
、、N 2 カフ、 5o c〕S CCM 、又はS
iH4ガス3 OS (’ CM 。 NH,ガス11005CCて供給り、、、A−8S i
 Oの薄膜の形成の際にはSiH4ガノ、50SCCM
。 N、0ガス300 S CCMで供給17、a−5iC
O〕薄膜の形成[有]際には5iI44プjノ、50 
S CCM 。 CH4ガスう00S CCMで供給して行へ一ンた。 その他の条件は、真空圧1.0Torr、高周波電力−
’3 r) OW 、基板の温度250℃に設定jまた
。 また、成膜速Uはa−5iOの3i膜て1 (,1tt
 m /晴間(−あり、a−5iCの薄膜−ご1.5t
tm/時間−(”あり、18宋の乙バッタリ:、り法に
よる成膜速度、例えば810.の薄膜の、400 (1
) 、製/時間、5i−CF−Nの薄膜の50 C) 
(’) A 、y時間(、」L較I。 ごW L、 <人きいt)のであった。 ρfび第2図を参Ql:(4る(ご第2図(ホ)では、
耐熱性絶縁基板4の樹脂保護層′3の1−1,1′ノミ
パノタリニ・り法べ)そI′7)他の・公知のノj−法
によりTa−5i02 、’1− i−s i O2等
からなる発熱抵抗体物質の薄膜を形成する。次に第2図
(へ)ではAQやA誌−8i−Cu、あるいはA IJ
等の電極物質をスパッタリング法等により膜形成する。 7次に第2図(ト)では所望の回路バタ〜ンのマスキン
グ膜を形成L、例えばノ1゛ミカルトライエッチング処
理を行ない個々の発熱抵抗体5、個別電極6及びp、通
電棒゛7を形成する。 次に第2図(ヂ)では5i02からなる接着層8及びS
i・−〇−Nからなる耐酸化膜を兼ねるml摩耗層9を
スバッタリンク法やその他の公知の方法により形成して
サーマルヘッドを完成させる。 次にサーマルヘッドの製造1程において、樹脂保護層3
の硬度及び表曲層となる耐摩耗層9における硬度を測定
1−だ結果につい−て説11J’1−d−る。 まず、耐熱樹脂層2の上に樹脂保護It! 3とL −
c厚さ0.34mのA−8iの薄膜と、A−5iOの薄
膜と、191′さC1、3μmのa−3iCの薄膜を積
層し、a−3iOの膜j9を変化さぜることにより、全
体の膜1vを1 μm、211m、3um、4ums 
5μmに設定した時のそれぞれに−)いてヌブ硬度を測
定した結髪を第4図に示す。第4図からも明らかなよう
に2 ft m −3μm程度以上でヌブ硬度の値か絡
−タ7の値となった。また、膜厚が111m以千゛ては
充分なヌープ硬度の値1、−達1、でいないことか解る
。 次に上記それぞれの膜厚の樹i保護屑3を有する耐熱性
絶縁基板4を用いて前述の手順1: Ll−っで発熱抵
抗体5、個別電極6及び共通電極7を形成し、更にその
Jに接着層として厚さl lt ITIのSiO2の薄
膜と、耐摩耗層9とし5τ厚さ1/lrnのaSiの薄
膜と、厚さ2 /4 mのS 1−0−Nの薄膜とを順
次成膜11、このS i−0・Nの薄膜上でのヌープ硬
度を測定したIIIT′里を第5図に示す。 第5図からも明らかfλように前述した樹脂保護層3に
お番ノるヌープ硬度と同様に、a−Siと、a−3i 
O(!:、a−5i Cの全体の膜厚か約2/Jn1以
上て略一定のヌープ硬度に遠し1.111m未満ては充
分なヌープ硬度に達(5,ないことか解る。 L)、 J二のこ5!二から、樹脂保護層3の全体の膜
1ψか1μIl’lに遠しない場合には膜の硬度か充分
に得られない。また、あまり厚過ぎてちそれVシJの効
果が得られないばかりでなく、耐熱樹脂層2による蓄熱
効果か薄れて効率か低下してしまう。彷−2で、樹脂保
護層3の好まり、い膜厚が1μmから10 ttmの範
囲内の値となる。 次に、前述したそれぞれの膜Hをイj′
[7] It is widely used as a support substrate for various electrical devices that require high reliability. For example, in thermal heads, ζ is used as a high-resistance machine for conventional ceramic substrates such as aluminum and glazed glass. Formation 19. The layer is a heat insulating layer that dissipates heat and stores heat i-:q > l-0. In Variant A, a heat-resistant insulating substrate is used, in which a heat-resistant resin layer such as polyimide resin is formed on a ceramic substrate or a metal substrate. A surf head in which such a polyimide resin layer is provided as a heat insulating layer has the following structure (i.e., a cut metal plate made of Fe alloy, etc.).
-, form a heat-resistant resin layer made of polyimide resin etc. that also serves as an insulating layer 12, and add 1゛a S to L of this heat-resistant resin waste
The heating resistor film made of IO2, Ti-8iO, etc. is λ
It is formed by a battering method or the like. Furthermore, individual electrodes and a common electrode made of Al, Aρ-5iCu, or the like are formed on this heating resistor. A region between the individual electrodes and the common electrode forms a heat generating region, and a wear-resistant layer is formed from silicon A gisitolite (Si0 to N)'8- to at least cover this heat generating region. This wear-resistant layer functions as an oxidation-resistant film in terms of '1'-n'L. This type of →normal head has a thermal diffusion rate of 3/1 to 1. compared to a conventional glazed glass layer. A polyimide resin layer with a low temperature of /6 is used as a heat retaining layer. Thermal efficiency is improved by both. In addition, by using a support substrate with flexibility such as a metal substrate, bending can be performed by using a support substrate that has flexibility, making it possible to create a compact, inexpensive, and high-performance 9S-Z. Luhe SoF',! = i-2telI [-'ll
has been done. The full head is...
In the manufacturing process ■7, I encountered the following F)iA problem. In other words, damage is caused to the heat-resistant resin waste during the etching process performed during the formation of the heating resistor and electrodes, and during the ashing of the masking film. In addition, when depositing the heat generating resistor material in a vacuum, gas is released from the polyimide resin layer, and the influence of this noise 1. Is it difficult to adjust the resistance value of the heating resistor?
Historically, when wiring using the wire bonding method, there was a problem in that it was difficult to attach the bottom Y-rings due to the elasticity of the polyimide resin. In order to solve the above problems, the present inventors first applied alumino, silicon oxynitrate, zair I': fluorine, etc. between the heat-resistant resin layer and the heating resistor chest εω. We proposed forming a resin protective layer made of inorganic insulators such as
Publication No.-21.428, patent application No. 1983. -154326, Japanese Patent Application No. 62-191. , No. 655). By forming a resin protective layer between the heat-resistant resin layer and the heating resistor layer in this way, it is possible to prevent damage to the polyimide resin layer and damage to the polyimide resin layer during the manufacturing process. In addition, the overall rigidity is increased.By forming a resin protective layer between the heat-resistant resin layer and the heat-generating resistor, thermal As a high resistance base of the throat 5
Not only can it be used in other electrical appliances, but it can also be used in other electrical appliances. )
As an absolute WM board, if used, electrical components will be mounted.
The effect of J-equipment when doing this is that it is stable and can be carried out! what to do (Problems to be solved and attempted by the invention) As mentioned above. 4-Install a resin protective layer made from inorganic insulators such as aluminum (-, silicone/Ogin J-[・Ride, →Neuron, etc.) on top of a heat-resistant resin layer such as polyimide resin. Heat-resistant insulating substrates can be used, for example, as full-head high-resistance substrates (2). The film strength is determined by 1, and 1.
I have discovered new problems to show. In other words, when the inventor of the present application incorporated the 1+J-=zlupa\node having the resin protective layer described above into a printer, when he actually conducted a printing test, he found that there were no differences during the test. A slight change in the resistance value was observed, and a phenomenon of 4° was observed that had an adverse effect on the mark '7'. We investigated this in detail and found out whether there was a foreign object such as a goni that had gotten between the Rimal T\T F and the thermal paper or between the thermal paper and the platen roller. -4 that is, the crack is a cow (, s V
It was found that this crack or heat generation adversely affected the printing characteristics when reaching outside the mine. Formation of a glaze glass layer on a high-resistance substrate \Also, a high-resistance sacrificial body with a glass layer formed on a metal substrate was used.
This visual image “C exists. This is the gray scalar layer
In the case of a thermal head using a high-resistance substrate (4), the entire high-resistance substrate has a large amount of sand and dirt, and even if local pressure is applied to the wear-resistant layer by the oil, the wear-resistant layer or the high-resistance substrate may be damaged. ] In order to prevent local deformation from occurring, local deformation is inhibited, and as mentioned above, it is considered that the rack is weak. On the other hand, in contrast,・) In the case of a high-resistance substrate using a heat-resistant resin layer 8., the above-mentioned j. Although the rigidity of the high-resistance base is increased to some extent due to the resin protective layer), due to the deformation of the polyimide resin or the fact that the N is lower than the wear-resistant R layer (7), there is local concentration of stiffness in the wear-resistant layer. This is because the deformation of the heat-resistant resin layer can only be prevented by a resin protective layer or wear-resistant layer when the heat-resistant resin layer is deformed.
I can't help but think about the deformation and the cracks coming up in the near future. By the way, in order to prevent the deformation of the heat-resistant resin layer in the hemal head, it may be possible to prevent the deformation by increasing the thickness of the wear-resistant layer. However, in this method, the distance between the heating resistor and the thermal paper becomes large, which leads to a decrease in efficiency,
Not only does FJ have a significant drawback in terms of performance due to its low resolution, it also significantly reduces mass production.Such problems are not limited to thermal heads; for example, when making mistakes, As mentioned above, even in multilayer circuit boards for hybrid IDs, deformation of the heat-resistant resin layer during the mounting process can lead to disconnections, boarding defects, etc. in the wiring layer provided on top of the layer. ) There are some problems. , 4 Invention has been made in view of these conventional problems.
1-1 aims to provide an insulating board that reduces the occurrence of defects during the first mounting process by increasing the rigidity, and also to provide an insulating board that is resistant to defects during the first mounting process, etc. When printing with 11? Preventing the occurrence of cracks in the wear layer (7 and 12, -ζ can axis property I, Kise 2)
It is assumed that 1-t, -4 is to be applied to (1-t, -4) in (1-t,-4). The present invention for coupling one object +, i, g
(B') The heat-resistant insulating substrate has a heat-resistant layer formed on the heat-resistant (substrate that completely eliminates conductivity) -1, 2 substrates, J~,
The anti-erectile layer is shaped like I: J, and the layer is Y41-
, , the protective layer contains at least one base of halogen, a first amorphous silicon layer 35 having fir as a matrix, hydrogen, /) Contains 41 species, low in oxygen, nitrogen, and carbon 1 = +) 1
It is characterized in that it is laminated on a 2°-11 quality silicon layer having 3 seeds and having silicon as its matrix. In addition, the thermal conductivity of the invention or the thermal conductivity is a
a heat-resistant layer formed on the substrate, a protective layer formed on this heat-resistant layer-1, a heating resistor formed on this protective layer, and this heating resistor. -1, to)
Resistance 1? The abrasion layer is 6 L, 0 Tejian protection notification, 1q abrasion resistance at least t, -, 15- or hydrogen, /\"Ikenσ)・1〉, 2-1 also has one type 36' (2. The first j "crystalline sand layer and hydrogen, which is the silicon matrix,") \ "7) f
1' fA (both have one type A (11, f"1-1
) Oxygen, nitrogen 1. It is characterized by IFing the lamination of the second amorphous silicon layer 5! of carbon, J>f<, I-, one type of arj", silicon of 4J form, and 4-". ) The heat-resistant insulating substrate provided by the present invention has 1.1 of the outer layer,
shape! The hollow layer is formed by laminating a first (f) J1 quality silicon layer and a second (7) amorphous silicon layer. σ) First and second, 11. Quality d The raw layers contain hydrogen and 7 elements. Even if local deformation is applied to the surface layer, it is possible to prevent the occurrence of cracks. At least one of the protective layer formed on the soil of the heating resistor or the wear-resistant layer formed on the soil of the heating resistor is formed by laminating the first amorphous silicon layer and the second amorphous silicon layer. Similarly, in the case of 2, the first and second amorphous silicon layers contain hydrogen and 1 Ken element, and the hardness of the 10 thermal spatulas is 1 in the direction of the thick axis. Nisho 1wa-7
In the case where the pressure caused by the pressure caused by the local deformity is caused by the local deformity, it is possible to reliably prevent the onset of Clara 20 even by -C. In addition, since the amorphous silicon layer has a high film formation speed during film formation, it is possible to reduce costs. The thermal conductivity is smaller than that of the heating resistor or the headboard side.
It is possible to reduce the ineffective J-needle due to the heat flowing through the head, and to increase the efficiency of the Therma/L head. Furthermore, when comparing C) thermal conductivity at room temperature, Si3N4 or 2
0-29 W/Km, AIN is 60-2
00W/KmSSiC is 126 = 270W/
K m SA AC 203 is 20 W/' K m to 1
21, S i O,, is 6°2-10.4W/, m-
(Example) Hereinafter, referring to the drawings F, an embodiment according to the present invention will be explained in detail.
The metal substrate 1 is made of Fe-CI metal, etc., and is formed to a thickness of about C[,5tr+m. The thermal resin layer 2, which also serves as a layer, is made of polyamide resin, polyamideimide resin, or a mixture or laminate thereof, and has a thickness of 20 μm.
It is formed with a thickness of V'4Q. heat-resistant resin scraps 2
The soil has a resin barrier layer 3 with an IV diameter of 1 μm to 10 ft.
It is formed to a thickness of m. This resin protective layer contains at least one of hydrogen and halogen.
Yes1. a first amorphous silicon layer containing silicon as a matrix; hydrogen;
Contains at least one of the following: oxygen, nitrogen, and carbon; It is formed by laminating a 2.sigma.) amorphous silicon layer containing 1.degree. 4 That is, the resin protective layer 3 consists of a first amorphous silicon layer (C), a thin film whose main component is γ morsos (a)-5i, and a second (σ) amorphous h1 elemental layer. -8i
By laminating thin films containing 01a-5iC as the main component, one piece! 14 Physically, f, ia.
A-8i O is laminated 11, a-8iC is laminated to [-] of this a-5i O, and the film thickness of the resin protective layer 3 is set to a predetermined value lJ. This 11 will be described later - IZ] Departure! M.S.
Transfer of heat from the resistor to the metal substrate 10 direction ^ and towards the ribs 11. do. This resin protection 1 * 3, heat-resistant resin scraps -2 and 7, the planning board 1, and the "C heat-resistant insulating board 4" are made up. is T a-5i
Heat generating resistor 5 from O, , T x-8r, 02, etc.
Or is forming a ridge. In addition, the soil of the heating resistor 5 is made of Ag, Ai-Si-←U, etc.
An individual electrode 6 and a supporting electrode '7 of about -1, um are formed. The region between the individual electrodes 6 and the common electrode 7 forms a heat generating region, and when this heat generating region comes into contact with the thermal paper and reaches a coloring temperature of the thermal paper, the color develops. to form a printing straw. An adhesive layer 8 made of SlO2 is formed to cover at least this heat generating area.
ing. In addition, a wear-resistant layer 9 made of 5i-ON is formed on the upper side of the adhesive layer 8. This wear-resistant layer 9 functions as an oxidation-resistant film. The normal height shown in Figure 1 is as follows: Applying a pulse with a pulse width of r between the individual electrode 6 and the common electrode 7,
]: The heating resistor 5 in the heating area generates heat and is marked ';'
X self record or line t ↓ will be done. Next, refer to section ``...!'' Ward 1 [E<lte't ””””
”” ””? J-Kanzusan's explanation on the making of Ruhesoto. Ahead 4゛, Fe16 heavy ji as shown in Fig. 2 (・f) 4゛
l L? t]Cr n A predetermined 1
Cutting method I2, degreasing, cleaning, and drying in the atmosphere of the dried lk raw material 600'Y knee c[C',)''C
Perform all track processing. Next, apply varnish such as polyimide varnish or boria varnish to the gold substrate 1 soil shown in Fig. 2 (c+)''rlj.
t m = 30 lIm c)) A predetermined amount is applied so as to have a film thickness, dried and fired to form heat-resistant resin debris 2. Next, in FIG. 2(c), the surface of the heat-resistant resin layer 2 is cleaned 4. (continued in Figure 2), e.g., sputtering d1, f-ondying 15, -ding n2, vacuum evaporation, Zoramasma (]VD
method, ECR method, heat CV method,
A resin protective layer 3 is formed by optical CVD or the like. , T
However, in these methods, the adhesion of the film is improved by treatment at a specific axial low temperature c! r1 without impairing the properties of the substrate (7'), and 11- and the physical properties of the film, i.e. the electrical properties t'l.
? Optical features allow easy control and control! ! , (or 1
) Brassma CV' I) It is legal or treacherous. In particular, in the present invention, when polyimide resin is used in heat-resistant resin scrap-1 (.), (1, is - the heat-resistant temperature of polyimide resin used for boat fishing is 550 °C or higher) - (4
゛ζ′Because it is hard, this σ] At a low temperature below the heat-resistant temperature standard F
II Possible method or change of mind. This plasma 7CVD method is based on Si or plasma in the raw material gas.
.. τ5LH4 gas, SiF, gas, etc. are used, and the other component is N2 gas, N20 gas, 0. Gas, C■4 Menos, etc. are used. In this method, these gases are turned into plasma 7 in a vacuum, and a desired ceramic thin film is formed on the substrate 1-. When forming a thin film of %I-TC-C, hydrogen in the raw material gas and hydrogen, etc., are present in the film.
In this example, the amorphous state is kept stable due to the influence of these elements. ', According to the ship -6C1 Figure 3 shows the flat plate type capacitive viscosity 0 type whitebait CV
A heat-resistant insulating substrate 4 was prepared by film formation 7 on a resin protective layer 3 using a device D. In FIG. 3, there are electrodes 12 arranged in rows 12 and high frequency electrodes 1'3 or Place the processing substrate 14, a metal substrate formed with a heat-resistant resin shell, on the substrate 4.Next, the inside of the vacuum chamber 1 is evacuated to about 10 Torr using a vacuum pump (not shown).
2, the installed electrode 12 was heated to 1.50°C - 450°C.
Heat to degree C 1. Next, the raw material gas (1, -) was supplied from the gas inlet 10 into the vacuum chamber 11 at 0°5T. While evacuating air from the D hole 1'7 to maintain a vacuum level of about Ir.~1.0 Tor+, place a pine tree 1 on the high frequency electrode 13.
Via the switching box 18 (,"C high frequency power supply 19 or 10
) Turn on the power. This 1. 7J O"') between the electrodes, the D-group electric current (7) and the raw materials are increased to +7 (, the thin film to be applied to the processing substrate 14 is lf'/
Become φ゛ro. Here, the original vehicle 1 gas is 1. Later used 4 tsuru (.zuna #'-) 'l; a When forming a Sj thin film, N:i S lH4 gas #il u) , =>. In addition, a-5iNO thin [1 when forming a vague 4゛, - is 5iHa
Gas, N2 gas or NH, is used. :1;
In addition, when forming a thin film of a-5i←), for example, Si
Use H4 gas, N, and 0 gas. In addition, when forming a thin film of a-8iC, 311 gas and CH4 scum are used. .In this example, A-
When forming a thin film of 5i, l;i S 1. H4 cass'
During the formation of a-8iN thin film, S i H4 gas was supplied at 50 S CCM,
, , N 2 cuff, 5o c] S CCM , or S
iH4 gas 3 OS (' CM. NH, gas 11005CC supplied, A-8S i
When forming a thin film of O, SiH4Gano, 50SCCM
. N,0 gas supplied in 300 S CCM 17, a-5iC
O] When forming a thin film, 5iI44pjno, 50
SCCM. CH4 gas was supplied using a 00S CCM and the flow was carried out. Other conditions are vacuum pressure 1.0 Torr, high frequency power -
'3 r) OW, set the board temperature to 250℃. In addition, the film formation speed U is 1 (,1tt
m / clear space (-with, a-5iC thin film - 1.5t
tm/hour - ("18 Song Dynasty's Obatari: Film forming rate by ri method, for example, 400 (1
), production/hour, 50 C) of thin film of 5i-CF-N
(') A, y time (,'L comparison I. It was the time of the day). ρf and see Figure 2 Ql: (4) (In Figure 2 (e),
1-1, 1' of the resin protective layer '3 of the heat-resistant insulating substrate 4. A thin film of a heating resistor material such as O2 is formed. Next, in Figure 2 (to), AQ, A magazine-8i-Cu, or A IJ
A film is formed using an electrode material such as the following by a sputtering method or the like. 7. Next, in FIG. 2(G), a masking film for a desired circuit pattern is formed, for example, by chemical tri-etching, and the individual heating resistors 5, individual electrodes 6 and P, and current-carrying rods 7 are formed. form. Next, in FIG. 2(d), the adhesive layer 8 and S made of 5i02
A ml wear layer 9 made of i.--〇--N which also serves as an oxidation-resistant film is formed by the sputter link method or other known method to complete the thermal head. Next, in the first step of manufacturing the thermal head, the resin protective layer 3
The hardness of the hardness and the hardness of the wear-resistant layer 9, which is the surface curved layer, were measured and the results are explained below. First, apply resin protection It! on the heat-resistant resin layer 2. 3 and L-
By laminating a thin film of A-8i with a thickness of 0.34 m, a thin film of A-5iO, and a thin film of a-3iC with a thickness of 191' C1 and 3 μm, and changing the a-3iO film j9. , the entire film 1v is 1 μm, 211m, 3um, 4ums
Fig. 4 shows the hair ties whose nub hardness was measured at -) when set to 5 μm. As is clear from FIG. 4, the value of Knube hardness or the value of 7 is reached at approximately 2 ft m - 3 μm or more. It can also be seen that when the film thickness is 111 m or more, a sufficient Knoop hardness value of 1, -1, is not achieved. Next, using the heat-resistant insulating substrate 4 having the protective dust 3 having the respective film thicknesses described above, the heating resistor 5, the individual electrode 6, and the common electrode 7 are formed using the above-mentioned procedure 1. A thin film of SiO2 with a thickness l lt ITI as an adhesive layer, a thin film of aSi with a thickness of 5τ 1/lrn as an abrasion resistant layer 9, and a thin film of S1-0-N with a thickness of 2/4 m are attached to J. FIG. 5 shows the Knoop hardness measured on the S i-0.N thin film formed in sequence 11. As is clear from FIG.
O(!:, a-5i If the total film thickness of C is about 2/Jn1 or more, the Knoop hardness is far from a constant value, and if it is less than 1.111 m, a sufficient Knoop hardness is reached (5, I understand that it is not. L ), J2noko5!2, if the entire film of the resin protective layer 3 is not far from 1ψ or 1μIl'l, the film will not have sufficient hardness. Not only is the effect of J not obtained, but the heat storage effect of the heat-resistant resin layer 2 is weakened, resulting in a decrease in efficiency. The value is within the range.Next, each film H mentioned above is expressed as

【るa−8iQ
薄膜と、a−5iOの薄膜及びa−3iCの薄膜か烏な
る樹脂保護層3をr〕゛する勺−フルヘットをA+から
へる放り基板りに両面デー−−−)7’ Mを使用(7
で装着1.同様に1.て装着1.たドライバ基板[、の
駆動用ICと超音波ワイヘパホンデfンクによる配線試
験を行な−5,たところ、安定j、でポンディングか行
f5スた。まtこ1.二のよ)に(−1て冑られ/二ザ
ーマルへ・71・を温度60℃、湿度00%の(ri温
角湿槙て100 (1時間の放置デストを行f、lニー
:>八ところ、膜のlすれ等もなく何等問題点は11し
2なか、−1]こ。 次にこれら各→ノーマルへ・ソトろ一実際にブリニ、夕
に紹み込んで印字試験を行な−った場ρiのIi’1里
を説明する。尚試験環境は児温て[Lっ常湿十である。 10kmの印7走行試験の結果、膜1’l’、 500
入のa−5iOのNi脱を樹脂保護層3としたサーマル
ヘッドでは、耐摩耗層9ヘクラツクか8箇所発ペーした
。また、同しく膜厚500 Ac7) a−5i Cの
薄膜を樹脂保護層3としたち[有]ではクラックが1μ
m所発生[−ティた。: $1. (、m Thf +
、、、、、 r膜r”ic 1 u m、211+n、
’づ/1m、54mのa−8iの薄膜、aSloの薄膜
及びa−8i Cの薄膜を使用したものは、いず(Jも
クラックの発生(4はとん、114’ 、!、J L”
、オjなか−1た。 4、た、4発明との比較とし、で、前;d o) ”X
I施例の→ノーマルヘットにおいで樹脂保護[閃と(、
て膜厚1tt m c7)サイア[jン廣ろスバ・・I
 91.Jニクd、にJり形l戊1、?−It ”?(
は1司〜IM造のサーマルヘノ+’ G f目いて同様
1:、15 k rnの印字、j−行試験をjjなすだ
(1−一ろ、耐摩耗層にり・ラックが2(]個所光!F
(だ。 こσ)試験1.1.甲からも本実施例(ア−)刀−フル
ヘットかクラックt:y)発生の1τtj 」、、Iに
佼れτいることが明らかである。 J゛た、本実施例の−If−マルヘソトは耐熱樹脂層2
と発熱抵抗体5との間1、−樹脂保護層′3とし、てブ
ラスマCV L)法により形成1°、たa−5iの薄膜
と、a =−8i Oの薄膜及びa−5iCの薄膜にJ
−〕で電極物質及び発熱抵lA4体物質を所望の回路バ
タンに溶解除去する際に耐熱樹脂層3を損傷4る恐れか
t; < tムる。また、真空中における発熱抵抗体物
質の形成時のガスの発生を防止することかできるため、
発熱抵抗体5の抵抗値も安定化する。更に実装工程1丁
おけるTツイヤボンディングの際に耐熱樹脂層2の柔か
さが樹脂保護層3の硬さによ−)で相殺されるので安定
し5Cワイヤボンデインクを行なうことができる。そI
、2て、これらの効果と共1:、この実施例のa−8X
の薄膜と、a−5i (、)の薄膜及びa−5iCの薄
膜の積層膜は、耐熱樹脂層2に比へて非常に硬度か大き
いため、あまり膜厚を厚くすることなく実際の印字動作
において耐摩耗層9へ九〇部的な圧力か加わった場合に
おいてもこの樹脂保護層3によって耐熱樹脂層2の変形
を防止することか−(きる。このように局部的な変形が
阻止されて耐摩耗屑9におけるクラックの発生か防止さ
れる。この結果、長時間安定]5て印字動作を行なうこ
とができ、信頼性が大幅に向1.8する。 尚、水素、ハロゲンの少なくとも1種を含を15゜11
つ酸素、窒素、炭素の少なくとも1杯を含有し。 硅素を母体とする第2の非晶質什素層と【−5で前述の
a−3iOの薄膜、a−3iCの薄膜以外にも例スばa
−5iON7yの薄膜が考スられる。しか1、これらの
内、a−3工0の薄膜、a−5iONの薄膜はCF4の
ブラプマに対する耐食性に劣るのて、a−3iCの薄膜
及び/又はa−SiNの薄膜をこれらの薄膜の1−5に
積層するのか望ましい。 また、a−5iの薄膜は、耐熱樹脂層2と例えばa−3
i Oの薄膜との間に介在させることにより、耐熱樹脂
層2と樹脂保護層3との接合性を向1−さ廿るためのも
のである。 また、前述の実施例においては、→ノーマルヘットとし
7ての特性評価について説明【7たか、2L記耐熱性絶
縁基板4はサーマルヘッドに限らず、例えばハイブリッ
ドIC用の多層回路基板等としても樹脂保護層の硬度ω
向上を図ることにより、実装工程の安定性や配線層の破
断等による不良の発4を防J1゛することがてきる。 次に前述したa−3iの薄膜と、a−5iOの薄膜及び
a−5iCの薄膜の積層膜を耐摩耗層9と(7で用いた
サーマルヘッドの実施例に一ついて説明する。 先ず、前述した実施例におい゛C作成(た金属基板」二
1.7ポリイミド樹脂を耐熱樹脂層と1.て形成したも
のを用い、この耐熱樹脂層の上に樹脂保護層と1.−C
スパッタリング法により膜厚I II m +7) S
 iO2の薄膜を形成して耐熱性絶縁基板を作成り、 
?−0次に、この耐熱性絶縁基板上に発熱抵抗体と、個
別電極及び共通電極を同様な方法により形成し2、この
」、にa−5iの薄膜と、a−81Oの薄膜と、a−5
iCの薄膜の積層膜を耐摩耗屑とL 7::それぞれ前
述の実施例と同様な方法により形成してサマルl\ツド
を作成した。この耐摩耗層の全体の膜厚はそれぞれ2 
l!rn、3μm、5μm、8tJrnに設定1.た。 また、こσ)実施例のり一一−マルヘッドにχtする比
較例として次のようなサーマルヘッドを作成した。 すなわち耐摩耗屑と【、てスパッタリング法によるT 
a 209の薄膜を有するサーマルヘッド及びSi3N
、−25重量%5i02の4−11戊のターケラトを用
いてスパッタリング法により形成した5iO−Nの薄膜
を有する→ノ゛−マルヘッドをそれぞれ作成した。 これらの各サーマルヘッドを用いて、前述の実施例と同
様にプリンタへ組み込んで1.0 k mの印−7゛走
(ゴ試験を行九い、これらの各サーマルヘッドの耐摩耗
屑におけるクラックの発生数を測定した結果を次の表−
1に示す。 表−1 表−1からも明らかなようにブラスマCVD法により形
成したこの実施例のa−5iの薄膜と、a−8iOの薄
膜及びa−3iCの薄膜の積層膜は、比較例のTa2O
,の薄膜及び5i−O−Nの薄膜に比べて同一の膜厚に
おいては明らかにりラックの発生数か低減する。 また、耐摩耗層の膜厚としては、この実施例の結果から
31ノm以」−か奸ましい範囲となるか、例えば樹脂保
護層と11.で更に高い硬度のものを使用すれば2μn
】程度の膜厚のものζも充分にその効果を発揮する。又
、この耐摩耗層の膜厚をあまり厚くするど勺−マルヘツ
トの効率か低Fするため例えば371m以下に設電イる
ことが望才し、い。 以上の実施例からも明らかなように、プラズマCV L
)法によるa−5iの薄膜と、a −3i、 Oの薄膜
及びa−5iCの薄膜による積層膜を耐摩耗層として用
いることによって、面4摩耗層におけるクラックの発生
かi+、7j +)−され、更に高品質のサーマルヘッ
ドが得られる。また、このプラズマCV D注によるa
−5i的薄膜と、a−8i Oの薄膜及びa〜SiCの
薄膜は水素や/)ロゲン元素を含んでおり、従来のTa
2O6の薄膜や5i−0−Nの薄膜に比べて強さか改善
されており、クラックの発生数も低減し、サーマルヘッ
ドの11ii4N耗層と(、て優れたものである。 また、L記の具体的実施例に限電されず、適宜の材質を
用いて第1の)[品質硅素層と、第2の非晶質硅素層と
の積層による耐摩耗軸を形成′4゛ることかできる。す
なわち第1の非晶質硅素層と(7“r水素、ハ0ゲンの
/しなくとも1−秤を含りし、硅素母体とする適宜山薄
膜を形成し、第2の非晶質硅素層、とし、C*素、ハr
’7ゲンの少なくとも1111苓八′白゛し5、Il、
 −1) M 素、窒素、炭素(7) 少す< トモI
 P1i@ a有(7蛙素を母体とする適宜の薄膜によ
り第2の非晶質硅素層を形威し、この第1及び第2 o
)、If晶質硅素層の積層により耐摩耗層を形成した項
八にも同様な効果か得られる。 尚、前述の各実施例においでは、第1及び第2の非晶質
硅素層による積層を樹脂保護層叉2は耐摩耗層のいずれ
か一方に使用し5た項六を例にと−】で説明1、だが、
本発明はこれに限定されることなく例えば樹脂保護層及
び耐摩耗層の成力についで本発明に係る第1及び第2の
非晶質硅素層の積層を形成するように構成しても同様な
効果か得られることは当然ごある。その際にはf4i」
述の名膜厚の値を参考にしてす!・に膜厚を薄くするこ
ともiil能である。 また、前述(−また名実栴、例においでは金属基板上に
64熱樹脂層を形成したものについで説明]、たか、支
持基板とし、では金属に限定されす、例X−はセラミッ
クスやカラス等であっても同様な効果か得l:。 れる。40L、金属基板を支持基板としで用いt〜場合
にiよ、この金属自体を共通電極に用いることかでき、
曲は如上か簡単になることからザ マルヘットの小型化
に人きく′#りする。 「発明の効果] 工J上説明j1、できたように本発明の耐熱性全絶縁板
によれば、保護層の硬度を改善するこノ、がCき、実装
り程を安定E1、てijなうことかてきる。まt″、断
線等による不良の発生率か減少し、°1ストの低減を実
現することかできる。また、サーマルヘッドl□の高抵
抗基体とにて用いた場合には、サーマルヘッドの印字動
作を安定(、て行なわせることかできる。また、非晶質
硅素層のi@m導率が低いためエネルギー効率が改善さ
れる。 また、本発明のザーマルノ\ツドによ和ば、その製造工
程(X、お+jる耐軌層のin傷か防+トされ、発熱抵
抗体の抵抗仙の調整を容易ζ、−1)なうことができる
。まメ“、′!Th装工17におけるワイヤホシデイン
クも”li ”M t、て行なうことかできる。す!に
実際の印了動イ′1においで“は表面1層となる耐摩耗
層におけるクラックの介6牛を確実1.1 ”Ijj−
f卜することかできる。この結果実際の印字動作を安定
(2で行へうごとかて1sialin性か大幅に向りす
る。 4、図:tl」の簡1iム説明 第1図は本発明σ)一実施例のサーマルヘッドの飲部を
示;、た部分的な勺解斜視図、第2同は本発明の一実施
例のサーマル・\ラドの製造上fYをソl〕チ−ヤー 
1・で示し、た説明図、第3図は本発明に係るT施例の
J「品質硅素層の成膜に使用したプラズマCVD装置の
構成を示した構成図、第4図は本発明に係る′実施例に
おける樹脂保護層の厚さとそのヌープ硬度との特性庖ノ
■、(7た特性曲線図、第5図は本発明に係る実施例に
おり、する樹脂保護層の厚さとぞれぞれの耐摩耗1輪に
おけるヌープ硬度との特性を示し、た特性曲線図である
。 ・・・金属基板 2・・・耐熱樹脂層 樹脂保護腐 4 ・ 耐熱性絶縁基板 耐摩耗層
[Rua-8iQ
Throw the resin protective layer 3 consisting of the thin film, a-5iO thin film, and a-3iC thin film. 7
Installed with 1. Similarly 1. Attachment 1. I conducted a wiring test using the drive IC of the driver board [,] and an ultrasonic wave pickup, and found that the bonding was stable at line f5. Matoko1. 2) to (-1) to 2 thermals, 71. to 60℃, 00% humidity, 100 (ri warm angle, humidity 100) (1 hour f, l knee: > 8 However, there was no rubbing of the film, and the problem was 11 to 2, -1].Next, I actually introduced each of these to normal and sotoro, and conducted a printing test in the evening. I'll explain Ii'1 ri of ρi when the temperature is 10km.
In the case of a thermal head in which the Ni removal of a-5iO was used as the resin protective layer 3, printing was performed at 8 locations or 9 locations on the abrasion resistant layer. Similarly, when a thin film of Ac7) a-5i C with a film thickness of 500 was used as the resin protective layer 3, the crack was 1 μm.
Occurred in m places [-tita. : $1. (, m Thf +
,,,, r membrane r”ic 1 um, 211+n,
'Z/1m, 54m a-8i thin film, aSlo thin film and a-8i C thin film were used. ”
, Oj Naka-1. 4. Comparison with the 4th invention, and before; d o) ”X
I Example →Resin protection in normal head [flash and (,
Film thickness: 1tt m c7) Saia
91. J nik d, ni J rigata l 戊1,? -It”?(
1st - IM-made thermal hemo+' Light!F
(da. koσ) Test 1.1. It is clear from A that this example (A) is different from 1τtj of the sword full head or crack t:y). -If-marhesoto of this example is heat-resistant resin layer 2
and the heating resistor 5 1, - A resin protective layer '3 formed by the Blasma CV L) method, a thin film of a-5i, a thin film of a = -8i O, and a thin film of a-5iC. ni J
There is a risk that the heat-resistant resin layer 3 may be damaged when the electrode material and heating resistor material are dissolved and removed into the desired circuit pattern. In addition, it is possible to prevent the generation of gas when forming the heating resistor material in a vacuum.
The resistance value of the heating resistor 5 is also stabilized. Furthermore, during T-twir bonding in one mounting process, the softness of the heat-resistant resin layer 2 is offset by the hardness of the resin protective layer 3, so that 5C wire bonding can be performed stably. Part I
, 2, together with these effects 1:, a-8X of this example
The laminated film of the thin film of , the thin film of a-5i (, ), and the thin film of a-5iC is much harder than the heat-resistant resin layer 2, so it can be used for actual printing without increasing the film thickness. Even if 90 parts of pressure is applied to the wear-resistant layer 9 in the process, the resin protective layer 3 prevents the heat-resistant resin layer 2 from deforming.In this way, local deformation is prevented. This prevents the occurrence of cracks in the abrasion-resistant debris 9. As a result, printing can be performed stably for a long period of time, and reliability is greatly improved. Note that at least one of hydrogen and halogen is used. Including 15゜11
Contains at least one cup of oxygen, nitrogen and carbon. A second amorphous nitride layer having silicon as a matrix and [-5] In addition to the a-3iO thin film and the a-3iC thin film described above, for example, a
-5iON7y thin film is considered. However, among these, the a-3iC thin film and the a-5iON thin film are inferior in corrosion resistance to CF4 Brapma, so the a-3iC thin film and/or the a-SiN thin film are It is desirable to laminate it to -5. Moreover, the thin film of a-5i is connected to the heat-resistant resin layer 2, for example, a-3.
By interposing it between the i O thin film, the bonding property between the heat-resistant resin layer 2 and the resin protective layer 3 is improved. In addition, in the above-mentioned embodiment, the characteristics evaluation as a normal head 7 is explained [7, 2L] The heat-resistant insulating substrate 4 is not limited to a thermal head, but can also be used as a multilayer circuit board for a hybrid IC, for example. Hardness of protective layer ω
By improving the stability of the mounting process, it is possible to prevent the occurrence of defects due to breakage of wiring layers, etc. Next, the laminated film of the a-3i thin film, the a-5iO thin film, and the a-5iC thin film described above will be explained as the wear-resistant layer 9 (one example of the thermal head used in 7). In the example described above, a metal substrate made of 21.7 polyimide resin was used as a heat-resistant resin layer, and a resin protective layer and 1.-C were formed on the heat-resistant resin layer.
Film thickness I II m +7) S by sputtering method
Create a heat-resistant insulating substrate by forming a thin film of iO2,
? -0 Next, a heating resistor, individual electrodes, and a common electrode were formed on this heat-resistant insulating substrate by the same method, and a thin film of a-5i, a thin film of a-81O, and a -5
A laminated film of a thin film of iC was formed with wear-resistant debris and L7:: by the same method as in the above-mentioned example, respectively, to create a summer latch. The total thickness of each wear-resistant layer is 2
l! Set to rn, 3μm, 5μm, 8tJrn1. Ta. In addition, the following thermal head was prepared as a comparative example which was different from the thermal head of the example. In other words, wear-resistant debris [, T by sputtering method]
Thermal head with a thin film of 209 and Si3N
A normal head having a thin film of 5iO-N formed by sputtering using a 4-11 tercerat containing -25% by weight of 5i02 was prepared. Using each of these thermal heads, they were installed in a printer in the same manner as in the previous example, and a 1.0 km mark - 7゜ run test was carried out to detect cracks in the wear-resistant debris of each of these thermal heads. The results of measuring the number of occurrences are shown in the table below.
Shown in 1. Table 1 As is clear from Table 1, the laminated film of the a-5i thin film of this example, the a-8iO thin film, and the a-3iC thin film formed by the plasma CVD method is the Ta2O thin film of the comparative example.
, and the 5i-O-N thin film, the number of racks is clearly reduced at the same film thickness. Also, the thickness of the wear-resistant layer is in the range of 31 nm or more based on the results of this example, for example, the thickness of the resin protective layer is 11 nm or more. If you use a material with even higher hardness, it will be 2 μn.
] A film ζ having a film thickness of about 100% also exhibits its effect sufficiently. In addition, if the thickness of this wear-resistant layer is too thick, the efficiency of the multi-marchet will be lowered, so it is desirable to install the power at a length of, for example, 371 m or less. As is clear from the above examples, plasma CV L
) By using a laminated film consisting of a thin film of a-5i, a thin film of a-3i, O, and a thin film of a-5iC as a wear-resistant layer, it is possible to prevent the occurrence of cracks in the surface 4 wear layer. As a result, a higher quality thermal head can be obtained. In addition, a by this plasma CVD note
The -5i thin film, the a-8i O thin film, and the a~SiC thin film contain hydrogen and/) rogen elements, and the conventional Ta
It has improved strength compared to the 2O6 thin film and the 5i-0-N thin film, reduces the number of cracks, and is superior to the 11ii4N wear layer of the thermal head. Without being limited to specific embodiments, it is possible to form a wear-resistant shaft by laminating a first quality silicon layer and a second amorphous silicon layer using an appropriate material. . That is, a first amorphous silicon layer and a thin film containing (7"r hydrogen, halogen, at least 1-weight) as a silicon matrix are formed, and a second amorphous silicon layer is formed. layer, toshi, C* element, ha r
'7 Gen's at least 1111 Reihachi' white 5, Il,
-1) M element, nitrogen, carbon (7) a little < tomo I
P1i@a (7) A second amorphous silicon layer is formed by an appropriate thin film using a matrix of 7.
), the same effect can be obtained in item 8 in which the wear-resistant layer is formed by laminating If crystalline silicon layers. In each of the above embodiments, the lamination of the first and second amorphous silicon layers is used as either the resin protective layer or the abrasion resistant layer. Explanation 1, but
The present invention is not limited thereto, but may be configured such that, for example, the first and second amorphous silicon layers according to the present invention are formed after forming the resin protective layer and the wear-resistant layer. Of course, you can get some great effects. In that case f4i”
I used the film thickness value mentioned above as a reference! It is also possible to reduce the film thickness. In addition, as mentioned above (-Also, in the example, 64 thermal resin layers are formed on a metal substrate), the supporting substrate is limited to metals, and in Example X-- ceramics, glass, etc. A similar effect can be obtained even if the metal substrate is used as a supporting substrate.
People like The Marhetto's miniaturization because the songs are much simpler. "Effects of the Invention" As explained above, the heat-resistant fully insulating board of the present invention improves the hardness of the protective layer and stabilizes the mounting process. In addition, the incidence of defects due to wire breakage, etc. can be reduced, and it is possible to realize a reduction in the number of losses. In addition, when used with a high-resistance substrate of a thermal head, the printing operation of the thermal head can be stabilized.Also, the i@m conductivity of the amorphous silicon layer is low. In addition, according to the thermal knot of the present invention, the production process (X) prevents scratches on the track-resistant layer, and adjusts the resistance of the heating resistor. ζ, -1) can be easily done.The wire hoside ink in the installation 17 can also be done. In '1', '1.1' ensures the prevention of cracks in the wear-resistant layer, which is the first layer on the surface.
It is possible to change the format. As a result, the actual printing operation becomes stable. The drinking part of the head is shown; the second is a partially exploded perspective view;
1 is an explanatory diagram, and FIG. 3 is a configuration diagram showing the configuration of a plasma CVD apparatus used for forming the J quality silicon layer of the T example according to the present invention. Figure 5 shows the characteristics of the thickness of the resin protective layer and its Knoop hardness in the example according to the present invention. It is a characteristic curve diagram showing the characteristics with Knoop hardness for each wear-resistant wheel. ... Metal substrate 2 ... Heat-resistant resin layer Resin protective rot 4 - Heat-resistant insulating substrate wear-resistant layer

Claims (2)

【特許請求の範囲】[Claims] (1)熱伝導性を有する基板と、 この基板上に形成される耐熱層と、 この耐熱層上に形成される保護層とを有し、前記保護層
は水素、ハロゲンの少なくとも1種を含有し硅素を母体
とする第1の非晶質硅素層と、水素、ハロゲンの少なく
とも1種を含有し、且つ酸素、窒素、炭素の少なくとも
1種を含有し硅素を母体とする第2の非晶質硅素層との
積層を有することを特徴とする耐熱性絶縁基板。
(1) A substrate having thermal conductivity, a heat-resistant layer formed on this substrate, and a protective layer formed on this heat-resistant layer, and the protective layer contains at least one of hydrogen and halogen. a first amorphous silicon layer containing silicon as a matrix; and a second amorphous silicon layer containing at least one of hydrogen and halogen and containing at least one of oxygen, nitrogen, and carbon and containing silicon as a matrix. A heat-resistant insulating substrate characterized by having a laminated layer with a silicon layer.
(2)熱伝導性を有する基板と、 この基板上に形成される耐熱層と、 この耐熱層上に形成される保護層と、 この保護層上に形成される発熱抵抗体と、 この発熱抵抗体上に形成される耐摩耗層とを有し、 前記保護層、耐摩耗層の少なくとも一方が水素、ハロゲ
ンの少なくとも1種を含有し硅素を母体とする第1の非
晶質硅素層と、水素、ハロゲンの少なくとも1種を含有
し、且つ酸素、窒素、炭素の少なくとも1種を含有し硅
素を母体とする第2の非晶質硅素層との積層を有するこ
とを特徴とするサーマルヘッド。
(2) A thermally conductive substrate, a heat-resistant layer formed on this substrate, a protective layer formed on this heat-resistant layer, a heating resistor formed on this protective layer, and this heating resistor. a first amorphous silicon layer having a wear-resistant layer formed on the body, at least one of the protective layer and the wear-resistant layer containing at least one of hydrogen and halogen and having silicon as a matrix; 1. A thermal head comprising a second amorphous silicon layer containing at least one of hydrogen and halogen, and a second amorphous silicon layer containing at least one of oxygen, nitrogen, and carbon and having silicon as its base material.
JP6975890A 1990-03-22 1990-03-22 Heat resistant insulation board and thermal head Pending JPH03272865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6975890A JPH03272865A (en) 1990-03-22 1990-03-22 Heat resistant insulation board and thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6975890A JPH03272865A (en) 1990-03-22 1990-03-22 Heat resistant insulation board and thermal head

Publications (1)

Publication Number Publication Date
JPH03272865A true JPH03272865A (en) 1991-12-04

Family

ID=13412019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6975890A Pending JPH03272865A (en) 1990-03-22 1990-03-22 Heat resistant insulation board and thermal head

Country Status (1)

Country Link
JP (1) JPH03272865A (en)

Similar Documents

Publication Publication Date Title
US5397741A (en) Process for metallized vias in polyimide
US20060093838A1 (en) Metal coated substrate and manufacturing method of the same
JPH03272865A (en) Heat resistant insulation board and thermal head
JPH0757815B2 (en) Method for forming a polyimide layer on a substrate and cured composite structure
TW200418635A (en) An inorganic/organic composite layer-coated stainless steel foil
US5119112A (en) Heat-resistant insulating substrate, thermal printing head, and thermographic apparatus
JPH0278576A (en) Heat-resistant insulating substrate and thermal head
JPH0278575A (en) Heat-resistant insulating substrate and thermal head
JPH048554A (en) Heat-resistant insulating substrate and thermal head
JPH07307114A (en) Method for forming polyimide insulated film
JPH0575590B2 (en)
JPH0278573A (en) Heat-resistant insulating substrate and thermal head
TW202139212A (en) Conductive film and temperature sensor film
JPH0278574A (en) Heat-resistant insulating substrate and thermal head
JPS6042069A (en) Thermal print head
JP4925537B2 (en) Thermal head
US4985712A (en) Thermal head
JP2549135B2 (en) Thermal head
JP2549136B2 (en) Thermal head
JPH0449057A (en) Thin film type thermal head and manufacture thereof
JPS63297066A (en) Thermal head and production thereof
JPH01202465A (en) Protective coating material and thermal head using it
JPH03218856A (en) Thermal head
JPS63189255A (en) Thermal head
JPH0143633B2 (en)