JPH0268805A - Conductive particle and manufacture thereof - Google Patents

Conductive particle and manufacture thereof

Info

Publication number
JPH0268805A
JPH0268805A JP21905288A JP21905288A JPH0268805A JP H0268805 A JPH0268805 A JP H0268805A JP 21905288 A JP21905288 A JP 21905288A JP 21905288 A JP21905288 A JP 21905288A JP H0268805 A JPH0268805 A JP H0268805A
Authority
JP
Japan
Prior art keywords
conductive
coated
composite oxide
powder
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21905288A
Other languages
Japanese (ja)
Other versions
JP2553658B2 (en
Inventor
Hideyuki Okinaka
秀行 沖中
Ryo Kimura
涼 木村
Hisashi Nakamura
中村 恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63219052A priority Critical patent/JP2553658B2/en
Publication of JPH0268805A publication Critical patent/JPH0268805A/en
Application granted granted Critical
Publication of JP2553658B2 publication Critical patent/JP2553658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to provide conductive particle excellent in its conductivity and thermal stability inexpensively by composing the particle surface of a conductive composite oxide being coated with a precious metal wherein a nonelectrodeposition plating method is used as the method of precious metal coating. CONSTITUTION:The particle surface of a conductive composite oxide is coated with a precious metal by a nonelectrodeposition plating method. In this case, the dispersion to the precious metal coat layer is retrained since the basic material is oxide, and it is possible to retrain the basic material from being exposed on the particle surface by a high temp. baking process even if the thickness of coating is made thin. Moreover, it is possible to restrain the decrease in the conductivity, even if the exposure occurs, since the basic material is conductive. It is thus possible to produce conductive particle excellent in conductivity, thermal and mechanical stability inexpensively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電極材料に用いる導電性粒子およびその製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to conductive particles used in electrode materials and a method for producing the same.

従来の技術 従来より、導電性粒子と樹脂と溶剤、場合によってはそ
れに微量のフリット、金属酸化物および有機金属化合物
を加えてなる導電性塗料が、各種部品の電極材料として
広範に使用されている。ここで、導電性粒子としては、
銀、金、白金、パラジウムなどの高価な貴金属が用いら
れており、電極材料のコスト低減のため、貴金属の使用
量削減1、発明の名称 導電性粒子およびその製造方法 2、特許請求の範囲 (1)導電性複合酸化物の粒子表面を貴金属で被覆した
ことを特徴とする導電性粒子。
Conventional Technology Conventionally, conductive paints made of conductive particles, resins, solvents, and in some cases trace amounts of frit, metal oxides, and organometallic compounds have been widely used as electrode materials for various parts. . Here, as the conductive particles,
Expensive precious metals such as silver, gold, platinum, and palladium are used, and in order to reduce the cost of electrode materials, reduction of the amount of precious metals used 1. Title of the invention Conductive particles and method for manufacturing the same 2. Claims ( 1) Conductive particles characterized in that the particle surface of a conductive composite oxide is coated with a noble metal.

(2)  導電性複合酸化物が、La、−xSrxCo
o、(0,1<X <O,B ) 、 Pr1−xSr
xCoo5(0,2<x<:0.8 ) 、 Nd1−
xSrxCoo、 (0,3<X<:0.7 ) 、 
 3、La5.BaxCoo、(0,1<:x(:0.
5 ) 、 pr、、BaxCoo5(0,2<X <
:0.5 )のうちの1種あるいは2種以上の固溶系の
組成を有することを特徴とする請求項1記載の導電性粒
子。
(2) The conductive composite oxide is La, -xSrxCo
o, (0,1<X<O,B), Pr1-xSr
xCoo5(0,2<x<:0.8), Nd1-
xSrxCoo, (0,3<X<:0.7),
3, La5. BaxCoo, (0,1<:x(:0.
5), pr,, BaxCoo5(0,2<X<
2. The conductive particles according to claim 1, having a solid solution composition of one or more of the following: 0.5).

(3)導電性複合酸化物が、La2−xBaxCub4
(0,1<x<o、es ) 、 La2−xBaxG
um4(0,01<、x<0.6)のうちの1種あるい
は2種の固溶系の組成を有することを特徴とする請求項
1記載の導電性粒子。
(3) The conductive composite oxide is La2-xBaxCub4
(0,1<x<o,es), La2-xBaxG
2. The conductive particles according to claim 1, having a solid solution composition of one or two of um4 (0.01<, x<0.6).

(褐 導電性複合酸化物が、YB&2Cu、O,系の組
成を有することを特徴とする請求項1記載の導電あるい
は卑金属材料への置換などの検討がなされている。
(Brown) Considerations have been made to replace the conductive composite oxide with a conductive or base metal material according to claim 1, characterized in that the conductive composite oxide has a composition of YB&2Cu, O, system.

卑金属材料への全面置換に対して銅およびニッケル、一
部置換に対して銀−銅合金などが用いられているが、い
ずれも空気中の焼付けあるいは放五により酸化物が形成
され、導電性が低下するため、焼付は雰囲気の制御や電
極表面のコーティングをしなければならず、製造工程が
複雑になるという問題がある。
Copper and nickel are used for full replacement with base metal materials, and silver-copper alloys are used for partial replacement, but in both cases, oxides are formed by baking or exposure in the air, resulting in poor conductivity. In order to prevent baking, the atmosphere must be controlled and the electrode surface must be coated, complicating the manufacturing process.

貴金属の使用量削減については、卑金属粉末を基体物質
としてこれに貴金属を被覆する方法が試みられている(
例えば、特公昭46−40593号公報、特開昭60−
100679号公報)0このような貴金属被覆粉末を用
いた導電性塗料をセラミック材料に塗布し空気中で焼付
けて電極を形成した場合、被覆された貴金属が連続した
状態で焼結されておらず、基体物質が露出し且つ酸化物
が生成されることによシ導電性が低下してしまうこれを
防ぐためには貴金属の被覆厚みを厚くしなければならず
、コスト削減の効果は抑えられてしまう。また、基体物
質の露出を抑制するために貴金属被覆の際のメッキ法の
改良も行われている(例えば、特公昭61−22028
号公報)。しかしながら、卑金属粉末を基体物質として
これに貴金属を被覆した粉末に関しては、高温で焼付け
る際に基体物質の被覆金属への熱拡散を完全に抑えるこ
とは基本的にできないため、基体物質の露出を抑制する
にはどうしても被覆貴金属の厚みを厚くしなければなら
ず、やはり大幅なコスト削減は期待できない。また、基
体物質に酸化ケイ素。
In order to reduce the amount of precious metals used, attempts have been made to use base metal powder as a base material and coat it with precious metals (
For example, Japanese Patent Publication No. 46-40593, Japanese Patent Application Publication No. 60-
100679 Publication) 0 When an electrode is formed by applying a conductive paint using such noble metal coated powder to a ceramic material and baking it in air, the coated noble metal is not sintered in a continuous state, In order to prevent the conductivity from decreasing due to exposure of the base material and generation of oxides, the coating thickness of the noble metal must be increased, and the effect of cost reduction is suppressed. In addition, in order to suppress the exposure of the base material, improvements have been made to plating methods when coating precious metals (for example, Japanese Patent Publication No. 61-22028
Publication No.). However, with respect to powders made of base metal powder coated with noble metals, it is basically impossible to completely suppress heat diffusion from the base material to the coated metal when baking at high temperatures, so exposure of the base material is avoided. In order to suppress this, the thickness of the coated precious metal must be increased, and a significant cost reduction cannot be expected. Also, silicon oxide is used as the base material.

酸化アルミニウム、酸化ジルコニウム、二酸化チタンあ
るいはチタン酸バリウムなどの酸化物を用いることも検
討されている(例えば、特公昭61−22029号公報
、特公昭81−48586号公報)。しかしながら、酸
化物を用いた場合、卑金属と比べて貴金属層への熱拡散
は抑制されるが、上記酸化物はいずれも絶縁体であるた
め、電極材料としての導電性を保持するにはやはシ被覆
厚みを厚くしなければならず、材料コストの大幅な低減
は困難である。
The use of oxides such as aluminum oxide, zirconium oxide, titanium dioxide, or barium titanate has also been considered (for example, Japanese Patent Publication No. 61-22029, Japanese Patent Publication No. 81-48586). However, when using oxides, thermal diffusion to the noble metal layer is suppressed compared to base metals, but since all of the above oxides are insulators, they are no longer sufficient to maintain conductivity as electrode materials. However, the thickness of the coating must be increased, making it difficult to significantly reduce material costs.

発明が解決しようとする課題 上記した構成の、卑金属あるいは酸化物を基体物質とし
て貴金属被覆を施した導電性粒子については、高温での
焼付は処理による基体物質の露出あるいは導電性の低下
を防ぐためには、どうしても被覆厚みを厚くしなければ
ならず、従って貴金属使用量が多くなり、導電性粒子の
コストを大幅に削減できないという問題がある。
Problems to be Solved by the Invention Regarding the conductive particles having the above-mentioned structure, in which the base material is a base metal or an oxide and is coated with a noble metal, baking at high temperatures is necessary to prevent the base material from being exposed or the conductivity from decreasing due to processing. However, there is a problem in that the coating thickness must be increased, and therefore the amount of precious metal used increases, making it impossible to significantly reduce the cost of the conductive particles.

本発明はかかる点に鑑みてなされたもので、導電性に優
れ、且つ熱的安定性にも優れた導電性粒子を安価に提供
することを目的としている。
The present invention has been made in view of this point, and an object of the present invention is to provide conductive particles having excellent conductivity and thermal stability at a low cost.

課題を解決するだめの手段 上記課題を解決するために本発明の導電性粒子は、導電
性複合酸化物の粒子表面を貴金属で被覆するという構成
を備えたものであり、さらに貴金属被覆の方法として無
電解メッキ法を用いるという構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the conductive particles of the present invention have a structure in which the particle surface of a conductive composite oxide is coated with a noble metal. The structure uses an electroless plating method.

ここで、導電性複合酸化物としては、特にLa、−xS
rxCoo5(0,1<x <、0.8 ) 、 Pr
、−,5rx)Coo、 (0,2:< X≦o−s 
) + Nd、−xsrxcoos (o−3<、X 
<、0.7 )、 La+−xBaxCoo5(0,1
<X <0.5)IPr 、 −xBaxCoo 、 
(0,2りX <:0.5 )のうちの1種あるいは2
種以上の固溶系の組成を有するもの、あるいはLa2−
xSrxCub4(o、1<、 x (、o、s ) 
Here, as the conductive composite oxide, especially La, -xS
rxCoo5(0,1<x<,0.8), Pr
, -,5rx)Coo, (0,2:<X≦o-s
) + Nd, -xsrxcoos (o-3<, X
<, 0.7), La+-xBaxCoo5(0,1
<X <0.5) IPr, -xBaxCoo,
One or two of (0, 2 x <: 0.5)
Those having a solid solution composition of more than one species, or La2-
xSrxCub4(o, 1<, x (, o, s )
.

L&2−xBaxCub、 (o、o 1< x < 
o、s )のうちの1種あるいは2種の固溶系の組成を
有するもの、さらにはYBa2Cu、O,系、 BiC
aSrCu2O55系の組成を有するものが好ましい。
L&2−xBaxCub, (o, o 1<x<
o, s), and furthermore, YBa2Cu, O, system, BiC
Preferably, the material has a composition based on aSrCu2O55.

作用 本発明は上記した構成により、基体物質が酸化物である
ために被覆貴金属層への拡散が抑制されるため、被覆厚
みを薄くしても高温での焼付は処理によって基体物質が
粒子表面に露出するのを抑制することができる。また、
基体物質が導電性であるため、露出した場合でも導電性
の低下を抑えることができる。
Effect The present invention has the above-described structure, and since the base substance is an oxide, diffusion into the coated precious metal layer is suppressed.Even if the thickness of the coating is reduced, baking at high temperatures will cause the base substance to reach the particle surface due to processing. Exposure can be suppressed. Also,
Since the base material is electrically conductive, a decrease in electrical conductivity can be suppressed even when exposed.

ここで基体物質として複合酸化物としたのは、単一金属
元素を含む酸化物に比べて、導電性およびコストの点で
複合酸化物の方が優れているためである。特に、La、
−xSrxCoo、 (0,1<、 ! ≦0.8 )
The reason why a composite oxide is used as the base material here is that a composite oxide is superior in terms of conductivity and cost compared to an oxide containing a single metal element. In particular, La,
-xSrxCoo, (0,1<, !≦0.8)
.

Pr、、、−xSrxCoo5(0,2<x <:0.
8 ) 、 Nd1−xSr。
Pr, , -xSrxCoo5(0,2<x<:0.
8), Nd1-xSr.

Coo5(0,3≦X≦0.7 ) 、 Lz、−xB
zxCoo5(o、1≦x <、 o、rs ) 、 
Pr、−、Ba、Coo、 (0,2<x りO,es
)のうちの1種あるいは2種以上の固溶系の組成を有す
るもの、あるいはLa2−xSrxC:uo4(o、1
< xりo、s ) 、 LIL2−xBaxCub4
(o、o 1<X <、0.5 )のうちの1種あるい
は2種の固溶系の組成を有するもの、さらにはYBa2
Cu30.系、 BiCaSrCu2O5.。
Coo5 (0,3≦X≦0.7), Lz, -xB
zxCoo5(o, 1≦x<, o, rs),
Pr,−,Ba,Coo, (0,2<x riO,es
), or La2-xSrxC:uo4(o, 1
<xrio,s), LIL2-xBaxCub4
(o, o 1 <
Cu30. system, BiCaSrCu2O5. .

系の組成を有するものは、いずれも導電性に優れており
、被覆貴金属厚みが薄くても高い導電性が得られるため
、導電性粒子のコストヲ大幅に削減することが可能であ
る。そして、基体物質への貴金属の被覆方法としては、
電気メッキ法、無電解メッキ法、熱分解法、蒸着法など
があるが、装置規模および量産性の点で無電解メッキ法
が最も優れておシ、これによって貴金属被覆粉末を安価
に作製することが可能となる。この無電解メッキ法によ
り被覆可能な貴金属としては、銀、金、白金。
All of the particles having the above-mentioned composition have excellent electrical conductivity, and high electrical conductivity can be obtained even if the thickness of the noble metal coating is thin, making it possible to significantly reduce the cost of the electrically conductive particles. The method for coating the base material with precious metals is as follows:
There are electroplating methods, electroless plating methods, pyrolysis methods, vapor deposition methods, etc., but the electroless plating method is the best in terms of equipment scale and mass productivity, and it allows the production of precious metal coated powders at low cost. becomes possible. Precious metals that can be coated with this electroless plating method include silver, gold, and platinum.

パラジウム、ロジウム、イリジウム、ルテニウムあるい
はこれらの合金などを挙げることができる。
Examples include palladium, rhodium, iridium, ruthenium, and alloys thereof.

また、貴金属被覆に際して上記2種以上の貴金属を多層
被覆することも可能である。
In addition, when coating with noble metals, it is also possible to coat with two or more of the above noble metals in multiple layers.

実施例 以下、本発明を実施例によって詳細に説明する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

(実施例1) La205.5rCO,、Go、04f出発原料として
、各々の必要量を秤量し、エタノール中で12時間混合
し、乾燥後900°Cで仮焼した。この仮焼粉を粉砕後
、1000°Cで2時間焼成して、Lao、sSr o
5CoO、の組成を有する粉末を得た。
(Example 1) La205.5rCO, Go, 04f As starting materials, the required amounts of each were weighed, mixed in ethanol for 12 hours, dried and calcined at 900°C. After pulverizing this calcined powder, it was fired at 1000°C for 2 hours to obtain Lao, sSro
A powder having a composition of 5CoO was obtained.

一方、中性タイプのパラジウムイオンを含む活性化液に
上記粉末を浸漬し、粉末の活性化処理を行い、別途塩化
パラジウムを濃アンモニア水に溶かし、これに塩酸を加
えてpHを8.6に調整したパラジウムメッキ液を作製
した。このパラジウムメッキ液にヒドラジンを加え、上
記活性化処理を行った粉末全投入し、攪拌することによ
って粉末表面にパラジウムをメッキした。このメッキ処
理後、デカンテーション法による水洗を行い、乾燥して
パラジウム被覆粉末を得た。こうして得られた粉末のL
ILo5Sro5CoO5とパラジウムの重量比は70
/30であった。
On the other hand, the above powder is immersed in an activation solution containing neutral type palladium ions to activate the powder. Separately, palladium chloride is dissolved in concentrated ammonia water, and hydrochloric acid is added to this to adjust the pH to 8.6. A prepared palladium plating solution was prepared. Hydrazine was added to this palladium plating solution, all of the powder that had been subjected to the above activation treatment was added, and the powder surface was plated with palladium by stirring. After this plating treatment, it was washed with water by decantation and dried to obtain a palladium-coated powder. L of the powder thus obtained
The weight ratio of ILo5Sro5CoO5 and palladium is 70
/30.

上記パラジウム被覆粉末100重量部、ガラスフリット
5型歪部、エチルセルロース2重量部。
100 parts by weight of the above palladium-coated powder, 5-type strained glass frit, and 2 parts by weight of ethyl cellulose.

テルピネオール10重量部からなる混合物を三本ロール
で混練してペースト状にし、アルミナ基板上にスクリー
ン印刷後、1000℃で10分間の焼付は処理全行った
。このようにして焼付けられた厚膜の電気抵抗値は4X
10−’Ω・αであり、優れた導電性を示した。
A mixture consisting of 10 parts by weight of terpineol was kneaded with three rolls to form a paste, and after screen printing on an alumina substrate, the entire process was carried out by baking at 1000° C. for 10 minutes. The electrical resistance value of the thick film baked in this way is 4X
The resistance was 10-'Ω·α, indicating excellent conductivity.

一方、LILo5Sr 、5Coo 、  にパラジウ
ム被覆をしない粉末を用いて上記と同様の方法でアルミ
ナ基板上に形成した厚膜の場合は、7〜9×10 Ω・
αの抵抗値全話し、パラジウム被覆粉末を焼付けた場合
に比べて著しく抵抗値が増加した。これは焼付けられた
厚膜とアルミナ基板との境界部が青色に着色しているこ
とから、La 、5Sr 、5Coo 5  がアルミ
ナと反応することにより抵抗値が上昇するものと考えら
れる。従って、パラジウム被覆をすることによって粉末
の導電性を高めると同時に、基体物質であるL&。5 
” 0.5 ”05  と基板材料との反応が抑制され
るという2つの効果が相まって、アルミナ基板上に導電
性に優れた厚膜が形成されるものと思われる。
On the other hand, in the case of a thick film formed on an alumina substrate by the same method as above using LILo5Sr, 5Coo, powder without palladium coating, 7 to 9 × 10 Ω・
In all cases, the resistance value of α was significantly increased compared to the case where palladium-coated powder was baked. This is because the boundary between the baked thick film and the alumina substrate is colored blue, and it is thought that the resistance value increases due to the reaction of La, 5Sr, and 5Coo5 with alumina. Therefore, by coating with palladium, the conductivity of the powder is increased, and at the same time, the base material L&. 5
It is thought that the two effects of suppressing the reaction between "0.5"05 and the substrate material combine to form a thick film with excellent conductivity on the alumina substrate.

また、パラジウム被覆の厚みを変えて上記と同様の実験
を行ったが、LILo5Sro5COO5とパラジウム
の重量比が80/20の場合でも上記と同等の優れた導
電性が確認され、貴金属使用量の大幅な削減が可能にな
ることが明らかとなった。
In addition, we conducted the same experiment as above by changing the thickness of the palladium coating, and even when the weight ratio of LILo5Sro5COO5 and palladium was 80/20, the same excellent conductivity as above was confirmed, and the amount of precious metal used was significantly reduced. It has become clear that reductions are possible.

(実施例2) La20.Pr60. 、 、 Nd2O5,BaC0
,、5rCO5゜Co、04を出発原料として、実施例
1と同様の方法により、L a + −x S r x
 Co Os * P r + −x S rx Co
 Os TNd、−xSrxCoo、 、 La、−x
BaxCoo5. Pr、−、BaxCoo、の各組成
系のXの異なる粉末を作製した。
(Example 2) La20. Pr60. , , Nd2O5,BaC0
,,5rCO5゜Co,04 as the starting material, L a + -x S r x
Co Os * P r + −x S rx Co
Os TNd, -xSrxCoo, , La, -x
BaxCoo5. Powders with different X of each composition system of Pr, -, and BaxCoo were prepared.

これらの粉末を基体物質として、実施例1と同様の方法
によりメッキ処理を行い基体物質とパラジウムの重量比
が70730のパラジウム被覆粉末を得た。この粉末を
用いて、同じ〈実施例1と同様の方法により導体ペース
トラ作製し、アルミナ基板上に焼付けて電気抵抗値を測
定した。この測定値をΩ・口に単位換算した結果を下記
の表1に示す。
Using these powders as a base material, plating was performed in the same manner as in Example 1 to obtain a palladium-coated powder having a weight ratio of base material to palladium of 70,730. Using this powder, a conductor paste was prepared in the same manner as in Example 1, and the paste was baked on an alumina substrate and the electrical resistance value was measured. The results of converting this measured value into units of Ω/mouth are shown in Table 1 below.

(以下 余 白) 上記衣1の結果から、焼付けられた厚膜の電気抵抗値は
被覆したパラジウムだけで決められるのではすく、基体
物質の組成によって影響を受けることがわかる。そして
、優れた導電性を得るためには、基体物質の組成として
、La 、 −xSrxCoo 5(0,1<X <、
0.8 ) 、 Pr、−,5rxCoo5(0,2≦
X<:0.8 ) 、 Nd、−xSrxCoo5(o
、s<x<0.7)。
(Hereinafter in the margin) From the results of Coating 1 above, it can be seen that the electrical resistance value of the baked thick film is not determined only by the coated palladium, but is influenced by the composition of the base material. In order to obtain excellent conductivity, the composition of the base material should be La, -xSrxCoo 5 (0,1<X<,
0.8), Pr,-,5rxCoo5(0,2≦
X<:0.8), Nd, -xSrxCoo5(o
, s<x<0.7).

La + −x Bax C0Os  (0−1≦x<
0.5)、 Pr、−xBaxCoo、 (0−,2<
、 ! <:0.6 )が適している。
La + -x Bax C0Os (0-1≦x<
0.5), Pr, -xBaxCoo, (0-,2<
, ! <:0.6) is suitable.

次に、上記材料を複合化した酸化物を基体物質として上
記と同様の方法でパラジウムメッキ、ペースト化および
焼付は処理を行い、得られた厚膜の電気抵抗値を測定し
た結果、下記の表2に示すように優れた導電性を確認し
た。
Next, palladium plating, pasting, and baking were performed in the same manner as above using an oxide that is a composite of the above materials as a base material.The electrical resistance value of the obtained thick film was measured, and the results are shown in the table below. As shown in Figure 2, excellent conductivity was confirmed.

(実施例3) La O5rCO、BaCO3,CuOを出発原料とし
25 l      5 て、各々の必要量を秤量しエタノール中で12時間混合
し、乾燥後、900’Cで12時間焼成した後、600
℃の酸素中で熱処理してL 2L 2−x S rxC
ub4. La、xBaxCub4のxf種々に変えた
組成を有する粉末を得た。
(Example 3) Using 25 l 5 of LaO5rCO, BaCO3, and CuO as starting materials, the required amount of each was weighed, mixed in ethanol for 12 hours, dried, and calcined at 900'C for 12 hours.
L 2L 2-x S rxC by heat treatment in oxygen at ℃
ub4. La, xBaxCub4 xf Powders having various compositions were obtained.

一方、中性タイプのパラジウムイオンを含む活性化液に
上記粉末を浸漬して活性化処理を行い、別途塩化白金と
アンモニア水と塩酸からなるメッキ液を作製し、このメ
ッキ液にヒドラジンと活性化処理済みの粉末を投入し、
攪拌することによって粉末表面に白金をメッキした。こ
のメッキ処理後、デカンテーション法による水洗を行い
、乾燥して白金被覆粉末を得た。こうして得られた粉末
の基体物質と白金との重量比は70/30であった。
On the other hand, the above powder was activated by immersing it in an activation solution containing neutral palladium ions, and a plating solution consisting of platinum chloride, aqueous ammonia, and hydrochloric acid was separately prepared, and this plating solution was added with hydrazine and activated. Add the processed powder,
The powder surface was plated with platinum by stirring. After this plating treatment, it was washed with water by decantation and dried to obtain a platinum-coated powder. The weight ratio of the base substance and platinum in the powder thus obtained was 70/30.

上記白金被覆粉末を用いて、実施例1と同様の方法によ
り導体ペーストラ作製し、アルミナ基板上に900°C
の温度で焼付け、電気抵抗値を測定した。この測定値を
Ω・αに単位換算した結果を下記の表3に示す。
Using the above platinum-coated powder, a conductive paste was prepared in the same manner as in Example 1, and placed on an alumina substrate at 900°C.
The electrical resistance was measured at a temperature of . The results of converting this measured value into units of Ω·α are shown in Table 3 below.

(以下余白) 上記衣3の結果から、優れた導電性を得るためには、基
体物質の組成として、La 2−.5rxCuO4(0
,1<、X <、0.5 ) 、 La2−xBaxC
ub4(0,01<。
(Left below) From the results of Cloth 3 above, in order to obtain excellent conductivity, the composition of the base material must be La 2-. 5rxCuO4(0
,1<,X<,0.5), La2-xBaxC
ub4(0,01<.

xくo、s)が適していることがわかる。It can be seen that xkuo,s) is suitable.

次に、上記材料を複合化した酸化物を基体物質として、
上記と同様の方法で白金メッキ、ペースト化および焼付
は処理を行い、こうして得られた厚膜の電気抵抗値を測
定した結果、下記の表4に示すように優れた導電性を確
認した。
Next, using an oxide that is a composite of the above materials as a base material,
Platinum plating, pasting, and baking were performed in the same manner as above, and the electrical resistance of the thick film thus obtained was measured, and as a result, excellent conductivity was confirmed as shown in Table 4 below.

(以下余 白) (実施例4) Y OBaC0、CuO、Bi OCaC0,、5rC
0゜2 5’       5           
2 5’を出発原料として、各々の必要量を秤量しエタ
ノール中で12時間混合し、乾燥後、850°Cで12
時間焼成した後、600°Cの酸素中で熱処理して、Y
Ba2Cu30.  およびBiCaSrCu2O5.
の組成を有する粉末全得た。
(Left below) (Example 4) Y OBaC0, CuO, Bi OCaC0,, 5rC
0゜2 5' 5
Using 25' as a starting material, the required amount of each was weighed, mixed in ethanol for 12 hours, dried, and heated at 850°C for 12 hours.
After baking for an hour, heat-treated in oxygen at 600°C, Y
Ba2Cu30. and BiCaSrCu2O5.
A total powder having the composition was obtained.

一方、中性タイプのパラジウムイオンを含む活性化液に
上記粉末を浸漬して活性化処理を行い、別途シアン化金
とエチレンジアミンテトラ酢酸(EDT人)の4NIL
塩と塩酸からなるメッキ液を作製し、このメッキ液にア
スコルビン酸ナトリウムと活性化処理済みの粉末を投入
し、攪拌することによって粉末表面に金をメッキした。
On the other hand, the above powder was immersed in an activation solution containing neutral type palladium ions for activation treatment, and separately 4NIL of gold cyanide and ethylenediaminetetraacetic acid (EDT) was applied.
A plating solution consisting of salt and hydrochloric acid was prepared, sodium ascorbate and activated powder were added to this plating solution, and the powder surface was plated with gold by stirring.

このメッキ処理後、デカンテーション法による水洗を行
い、乾燥して金被覆粉末を得た。こうして得られた粉末
の基体物質と金との重量比はf30/40であったO 次いで、上記金被覆粉末音用いて、実施例1と同様の方
法によ多導体ペーストを作製し、アルミナ基板上に85
0’Cで焼付け、電気抵抗値を測定した。その結果、基
体物質がYBa2Cu30アの場合の電気抵抗値は6×
10 Ω−cat、 BiCaSrCu2O,5の場合
は8×10 Ω・αであり、優れた導電性を確認した。
After this plating treatment, it was washed with water using a decantation method and dried to obtain a gold-coated powder. The weight ratio of the base material and gold of the powder thus obtained was f30/40.Next, a multi-conductor paste was prepared in the same manner as in Example 1 using the above gold-coated powder, and an alumina substrate was prepared. 85 on top
It was baked at 0'C and the electrical resistance was measured. As a result, when the base material is YBa2Cu30a, the electrical resistance value is 6×
10 Ω-cat, and in the case of BiCaSrCu2O,5, it was 8×10 Ω·α, confirming excellent conductivity.

(実施例6) マグネシウム・ニオブ酸鉛(Pb (Mgv3NbH)
0.)を主成分とする誘電体粉末100重量部、ポリビ
ニルブチラール樹脂8重量部、ジブチルフタレート4重
量部、トリクロルエタン40重量部、酢酸ブチル26重
量部を加えて、ボールミルで20時間混練した。こうし
て得られた誘電体スラリーをリバースロール法にて4o
μmの厚みにシート成形した。
(Example 6) Magnesium lead niobate (Pb (Mgv3NbH)
0. ), 8 parts by weight of polyvinyl butyral resin, 4 parts by weight of dibutyl phthalate, 40 parts by weight of trichloroethane, and 26 parts by weight of butyl acetate were added and kneaded in a ball mill for 20 hours. The dielectric slurry thus obtained was subjected to a reverse roll method to
It was formed into a sheet with a thickness of μm.

次に、実施例1と同様の方法により、LΔ。5SrO,
50003粒子表面をパラジウムで被覆した粉末(La
o5Sro5Coo、  とパラジウムの重量比二60
/60)を作製し、これにエチルセルロースとテルピネ
オールを加えて三本ロールで混練して電極<−7トを作
製した。この電極ペーストラ上記誘主体シート上に所望
のパターンに印刷し、これを積層することにより、電極
と誘電体とが交互に積層された積層体を作製した後、所
望の寸法に切断して1100’C,2時間で焼成した。
Next, by the same method as in Example 1, LΔ was determined. 5SrO,
50003 Powder whose particle surface is coated with palladium (La
o5Sro5Coo, and palladium weight ratio 260
/60) was prepared, ethyl cellulose and terpineol were added thereto, and the mixture was kneaded with three rolls to prepare an electrode <-7. This electrode paster is printed in a desired pattern on the dielectric main sheet and laminated to produce a laminate in which electrodes and dielectrics are alternately laminated. C. Baked for 2 hours.

こうして得られた焼結体の電極が露出している側面に、
実施例1と同様の方法で作製したパラジウム被覆したL
ao5Sro5Coo、 (Lao、5Sro5Co0
5とパラジウムの重量比: 70/30 )とガラスフ
リット、エチルセルロース、テレピネオールとからなる
電極ペーストを塗布し、800″Cで焼付けた。このよ
うにして得られた積層チップコンデンサの静電容蛋値は
、誘電体の誘電率(ε〜12000 )から計算された
設計値とよく一致しており、パラジウム被覆をしたLa
 o5Sr o5Co05  を用いた電極の実用性が
確認された。
On the side of the sintered body thus obtained where the electrodes are exposed,
Palladium-coated L prepared in the same manner as in Example 1
ao5Sro5Coo, (Lao, 5Sro5Co0
An electrode paste consisting of 5 and palladium (weight ratio: 70/30), glass frit, ethyl cellulose, and terpineol was applied and baked at 800''C.The capacitance value of the multilayer chip capacitor thus obtained was , which is in good agreement with the design value calculated from the dielectric constant (ε~12000), and the palladium-coated La
The practicality of the electrode using o5Sr o5Co05 was confirmed.

不実施例Jユ外にも、貴金属被覆金した導電性複合酸化
物粒子が、チップ抵抗、チップインダクタ。
In addition to non-example J, conductive composite oxide particles coated with precious metals are used for chip resistors and chip inductors.

バリスタ、圧電素子さらにはセラミック多層配線基板な
どの電極としての実用性があることは言うまでもない。
Needless to say, it is useful as an electrode for varistors, piezoelectric elements, and even ceramic multilayer wiring boards.

本発明が対象とする複合酸化物は、いずれも通常は酸素
欠陥を有しているため、酸素の組成については特に規定
されるものではない。また、基体物質の化学的安定性な
いしは電気特性を制御するために、主成分元素以外の金
属元素あるいは陰イオン元素を基体物質に添加してもよ
い。さらに、上記実施例で用いた複合酸化物粉末は、5
.0〜0.1μmの範囲の粒子径を有していたが、粒子
径および粒子形状について特に規定されることはない。
Since all of the composite oxides targeted by the present invention usually have oxygen vacancies, the composition of oxygen is not particularly defined. Furthermore, in order to control the chemical stability or electrical properties of the base material, metal elements or anionic elements other than the main component elements may be added to the base material. Furthermore, the composite oxide powder used in the above example was 5
.. Although the particle size was in the range of 0 to 0.1 μm, the particle size and shape are not particularly defined.

一方、被覆貴金属として上記実施例に加えて、無電解メ
ッキが可能な銀、ロジウム、イリジウム。
On the other hand, in addition to the above-mentioned examples, silver, rhodium, and iridium, which can be plated electrolessly, can be used as coated noble metals.

ルテニウムおよびこれらの合金を用いてもよいことは言
うまでもない。
It goes without saying that ruthenium and alloys thereof may also be used.

発明の効果 以上のように本発明は、導電性複合酸化物の粒子表面を
貴金属で被覆した構成の導電性粒子であシ、さらに貴金
属被覆の方法として無電解メッキ法を用いるものであシ
、導電性に優れ且つ熱的。
Effects of the Invention As described above, the present invention provides conductive particles having a structure in which the particle surface of a conductive composite oxide is coated with a noble metal, and furthermore, an electroless plating method is used as a method for coating the noble metal. Excellent conductivity and thermal properties.

化学的安定性に優れた導電性粒子を安価に製造せしめる
ことができ、実用上の価値は非常に大きいものである。
Conductive particles with excellent chemical stability can be produced at low cost, and are of great practical value.

Claims (7)

【特許請求の範囲】[Claims] (1)導電性複合酸化物の粒子表面を貴金属で被覆した
ことを特徴とする導電性粒子。
(1) Conductive particles characterized in that the particle surface of a conductive composite oxide is coated with a noble metal.
(2)導電性複合酸化物が、La_1_−_XSr_X
CoO_3(0.1≦X≦0.8),Pr_1_−_X
Sr_XCoO_3(0.2≦X≦0.8),Nd_1
_−_XSr_XCoO_3(0.3≦X≦0.7),
La_1_−_XBa_XCoO_3(0.1≦X≦0
.5),Pr_1_−_XBa_XCoO_3(0.2
≦X≦0.5)のうちの1種あるいは2種以上の固溶系
の組成を有することを特徴とする請求項1記載の導電性
粒子。
(2) The conductive composite oxide is La_1_-_XSr_X
CoO_3 (0.1≦X≦0.8), Pr_1_-_X
Sr_XCoO_3 (0.2≦X≦0.8), Nd_1
____XSr_XCoO_3 (0.3≦X≦0.7),
La_1_−_XBa_XCoO_3 (0.1≦X≦0
.. 5), Pr_1_−_XBa_XCoO_3(0.2
The conductive particles according to claim 1, having a solid solution composition of one or more of the following: ≦X≦0.5.
(3)導電性複合酸化物が、La_2_−_XBa_X
CuO_4(0.1≦X≦0.5),La_2_−_X
Ba_XCuO_4(0.01≦X≦0.5)のうちの
1種あるいは2種の固溶系の組成を有することを特徴と
する請求項1記載の導電性粒子。
(3) The conductive composite oxide is La_2_-_XBa_X
CuO_4 (0.1≦X≦0.5), La_2_−_X
The conductive particles according to claim 1, having a solid solution composition of one or two of Ba_XCuO_4 (0.01≦X≦0.5).
(4)導電性複合酸化物が、YBa_2Cu_3O_7
系の組成を有することを特徴とする請求項1記載の導電
性粒子。
(4) The conductive composite oxide is YBa_2Cu_3O_7
2. The conductive particles according to claim 1, having a composition of:
(5)導電性複合酸化物がBiCaSrCu_2O_5
_._5系の組成を有することを特徴とする請求項1記
載の導電性粒子。
(5) The conductive composite oxide is BiCaSrCu_2O_5
_. The conductive particles according to claim 1, having a composition of _5 series.
(6)導電性複合酸化物の粒子表面を無電解メッキによ
り貴金属で被覆することを特徴とする導電性粒子の製造
方法。
(6) A method for producing conductive particles, which comprises coating the surface of conductive composite oxide particles with a noble metal by electroless plating.
(7)請求項1記載の導電性粒子を用いたことを特徴と
する電子部品用電極。
(7) An electrode for electronic components, characterized in that the conductive particles according to claim 1 are used.
JP63219052A 1988-09-01 1988-09-01 Electrode material for electronic parts Expired - Fee Related JP2553658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219052A JP2553658B2 (en) 1988-09-01 1988-09-01 Electrode material for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219052A JP2553658B2 (en) 1988-09-01 1988-09-01 Electrode material for electronic parts

Publications (2)

Publication Number Publication Date
JPH0268805A true JPH0268805A (en) 1990-03-08
JP2553658B2 JP2553658B2 (en) 1996-11-13

Family

ID=16729511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219052A Expired - Fee Related JP2553658B2 (en) 1988-09-01 1988-09-01 Electrode material for electronic parts

Country Status (1)

Country Link
JP (1) JP2553658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876149A (en) * 2017-03-07 2017-06-20 华南理工大学 A kind of ultracapacitor that silver nano-grain is supported based on porous cobalt strontium lanthanum oxide substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150692A (en) * 1975-06-20 1976-12-24 Arita Kosei High conductivity composed substance
JPS5571667A (en) * 1978-11-22 1980-05-29 Tokai Rika Co Ltd Highhresistivity*conductive composition
JPS58178903A (en) * 1982-04-13 1983-10-20 ティーディーケイ株式会社 Conductive paste
JPS63190712A (en) * 1987-01-23 1988-08-08 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Superconductive substance
JPS63207007A (en) * 1987-02-24 1988-08-26 Semiconductor Energy Lab Co Ltd Superconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150692A (en) * 1975-06-20 1976-12-24 Arita Kosei High conductivity composed substance
JPS5571667A (en) * 1978-11-22 1980-05-29 Tokai Rika Co Ltd Highhresistivity*conductive composition
JPS58178903A (en) * 1982-04-13 1983-10-20 ティーディーケイ株式会社 Conductive paste
JPS63190712A (en) * 1987-01-23 1988-08-08 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Superconductive substance
JPS63207007A (en) * 1987-02-24 1988-08-26 Semiconductor Energy Lab Co Ltd Superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876149A (en) * 2017-03-07 2017-06-20 华南理工大学 A kind of ultracapacitor that silver nano-grain is supported based on porous cobalt strontium lanthanum oxide substrate
CN106876149B (en) * 2017-03-07 2018-06-22 华南理工大学 A kind of ultracapacitor that silver nano-grain is supported based on porous cobalt strontium lanthanum oxide substrate

Also Published As

Publication number Publication date
JP2553658B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
EP0964415B1 (en) Electronic device and method of producing the same
EP1156498B1 (en) Multi-layer ceramic electronic device and method for producing same
US7067173B2 (en) Method for manufacturing laminated electronic component
KR100524090B1 (en) Method for manufacturing multilayered PTC thermistor
JPH10324906A (en) Nickel powder and production thereof
JPH07242845A (en) Electrically-conductive coating compound for electrode and its production
JPS5868918A (en) Electronic part with electrode layer and method of producing same
JPH0268805A (en) Conductive particle and manufacture thereof
JPH0543921A (en) Production of nickel fine powder
JP3831537B2 (en) Electronic device and manufacturing method thereof
JPH0266101A (en) Electric conductive particles and manufacture thereof
JP2808639B2 (en) Conductive particles for electrodes of ceramic electronic components
JPH02215005A (en) Conductive grain and its manufacture
JPH02215006A (en) Conductive particle and manufacture thereof
EP0834368A1 (en) Nickel powder and process for preparing the same
JPH03215916A (en) Method for formation of electrode and electronic part using it
JPH03214716A (en) Formation of electrode and electronic parts using the same
JP3698098B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JPH02217479A (en) Production of conductive grain
JPS61136978A (en) Electroconductive paste for thick film circuit
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JPH07118429B2 (en) Conductive paint for internal electrodes of multilayer capacitors
JPH07130573A (en) Ceramic powder coated with conductive metal
JP2757402B2 (en) Method for producing high-permittivity dielectric ceramic composition
JPH03218615A (en) Formation of electrode and laminated chip component using same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees