JPH0262484B2 - - Google Patents

Info

Publication number
JPH0262484B2
JPH0262484B2 JP26636286A JP26636286A JPH0262484B2 JP H0262484 B2 JPH0262484 B2 JP H0262484B2 JP 26636286 A JP26636286 A JP 26636286A JP 26636286 A JP26636286 A JP 26636286A JP H0262484 B2 JPH0262484 B2 JP H0262484B2
Authority
JP
Japan
Prior art keywords
suspension
hydroxide
carbonate
basic magnesium
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26636286A
Other languages
English (en)
Other versions
JPS63123810A (ja
Inventor
Tsuneo Morie
Toshihiro Kuroki
Yasuhiro Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP26636286A priority Critical patent/JPS63123810A/ja
Publication of JPS63123810A publication Critical patent/JPS63123810A/ja
Publication of JPH0262484B2 publication Critical patent/JPH0262484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】
〔産業上の利用分野〕 本発明は、ゴム、プラスチツクなどのポリマー
あるいは塗料、化粧料、製紙の分野において白色
の無機充填剤として有効に利用が期待される見掛
比重の大きい炭酸カルシウムを含む球状塩基性炭
酸マグネシウムの製造方法に関するものである。 〔従来の技術〕 ゴム、プラスチツクなどのポリマーあるいは塗
料、化粧料、製紙の分野において白色の無機充填
剤として、現在使用されている代表的なものに塩
基性炭酸マグネシウムがある。この塩基性炭酸マ
グネシウムの製造方法として従来採用されている
主なものとしては、水酸化マグネシウムの炭酸
化法、苦汁・炭酸アルカリ法、重炭酸マグネ
シウムの熱分解法がある。 上記の製造方法は、水酸化マグネシウム懸濁
液に炭酸ガスを吹き込んで炭酸化せしめ塩基性炭
酸マグネシウムとする方法である。の製造方法
は、苦汁の希釈液に当量よりやや過剰の炭酸ナト
リウムあるいは炭酸アンモニウムなどの炭酸アル
カリ溶液を反応させて正炭酸マグネシウム
〔MgCO3・3H2O〕を生成させ、これを熟成して
塩基性炭酸マグネシウムを得る方法である。また
の製造方法は、重炭酸マグネシウム〔Mg
(HCO32〕の溶液を加熱分解して正炭酸マグネ
シウムとし、これを熟成して塩基性炭酸マグネシ
ウムとする方法である。 〔発明が解決しようとする問題点〕 前記製造方法によつて得られた塩基性炭酸マグ
ネシウムは、いずれも鱗片状の微細粒子から成
り、見掛比重が小さく、これらの塩基性炭酸マグ
ネシウムを水、有機溶媒あるいはポリマー等に分
散させる場合に粘度が増大するために多量かつ均
一に分散させることが困難であつた。 また、粉末の流動性が悪く飛散するなど取り扱
い作業性が悪いという問題を有していた。さら
に、これらの塩基性炭酸マグネシウムを製造する
際に脱水ケーキの含水率が高く、乾燥に多量のエ
ネルギーを必要とするため、生産コストが高くな
るという欠点があつた。 本発明は、上記の如き問題点を解決し、水、有
機溶媒あるいはポリマー等への分散性が良くかつ
取り扱い作業性が良好で見掛比重の大きい炭酸カ
ルシウムを含む球状塩基性炭酸マグネシウムを容
易に製造しうる方法を提供せんとするものであ
る。 〔問題を解決するための手段〕 本発明者等は、上記の如き問題点を解決するた
めに、炭酸カルシウムを含む球状の塩基性炭酸マ
グネシウムを製造する方法を研究し、本発明に到
達した。 すなわち本発明は、反応槽内の塩基性炭酸マグ
ネシウム出発懸濁液に水酸化マグネシウムと水酸
化カルシウムの混合懸濁液を添加しながら炭酸ガ
スを吹き込んで炭酸化反応を開始し、引き続き同
反応槽内の懸濁液に水酸化マグネシウムと水酸化
カルシウムの混合懸濁液を添加しながら炭酸ガス
を吹き込んで炭酸化反応を続行することを特徴と
する炭酸カルシウムを含む球状塩基性炭酸マグネ
シウムの製造方法に係るものである。 〔作用〕 本発明に用いる塩基性炭酸マグネシウム出発懸
濁液は、通常のいずれの製造方法によるものでも
よい。また、添加する混合懸濁液中の水酸化マグ
ネシウムあるいは水酸化カルシウムも通常のいず
れの製造方法によるものでもよい。例えば、水酸
化マグネシウムとしては、海水・石灰法あるいは
苦汁・アンモニア法等によるもの、水酸化カルシ
ウムとしては、湿式消和法あるいは乾式消和法等
によるものを挙げることができる。 使用する塩基性炭酸マグネシウム出発懸濁液お
よび水酸化マグネシウムと水酸化カルシウムの混
合懸濁液の好ましい濃度範囲は10〜100g(MgO
+CaO)/であり、さらに好ましい濃度範囲は
20〜60g(MgO+CaO)/である。10g
(MgO+CaO)/より希薄な濃度では、処理液
量が多量になり経済的でなく、また100g(MgO
+CaO)/より濃厚な濃度では、炭酸化時に、
懸濁液の粘度が上昇するために炭酸化反応が不均
一となり好ましくない。 また、炭酸化反応系の温度は40〜80℃が好まし
い。炭酸化反応系の温度が40℃より低い場合、混
合懸濁液中の水酸化マグネシウムより生成する正
炭酸マグネシウムの熟成が速やかに進行せず、生
成する塩基性炭酸マグネシウムの凝集状態を制御
することが困難となり球状体を得難い。炭酸化反
応系の温度が高くなるほど正炭酸マグネシウムか
ら塩基性炭酸マグネシウムの反応は速やかとなる
が、80℃より高温では反応速度にあまり変化がみ
られず、いたずらに熱エネルギーを消費すること
になり、工業的に不経済である。 本発明の炭酸カルシウムを含む球状塩基性炭酸
マグネシウムを得るには、塩基性炭酸マグネシウ
ム出発懸濁液に水酸化マグネシウムと水酸化カル
シウムの混合懸濁液を添加しながら炭酸化反応を
行わせることにより塩基性炭酸マグネシウムと炭
酸カルシウムの複合粒子の凝集状態を制御するこ
とが出来る。 水酸化マグネシウムと水酸化カルシウムの混合
懸濁液の添加速度S(/hr)は、これを添加す
る反応槽内の懸濁液量V()に対してV/S=
0.5〜20の範囲が適している。このV/Sの値は、
反応槽への水酸化マグネシウムと水酸化カルシウ
ムの混合懸濁液の添加速度であるS(/hr)を
一定に維持する場合、同反応槽内での炭酸化反応
を進行させるに従い、大きくなつていく。何故な
らば、上記反応槽内の懸濁液量V()は、炭酸
化反応開始当初は、塩基性炭酸マグネシウム出発
懸濁液の液量に等しいが、時間n(hr)の経過に
伴い、同反応槽内に添加される水酸化マグネシウ
ムと水酸化カルシウムの混合懸濁液量n×S()
分だけ増加するからである。 このV/S値の増加は、水酸化マグネシウムと
水酸化カルシウムの混合懸濁液の反応槽への連続
添加によつて、当該反応槽が一杯になるまで続く
が、本発明の実施にあたつては、水酸化マグネシ
ウムと水酸化カルシウムの混合懸濁液の反応槽へ
の添加開始時(炭酸化反応開始当初)から、当該
反応槽が一杯になるまでの間は、V/S値を常に
0.5〜20の範囲に保持せしめることが望ましい。 反応槽への水酸化マグネシウムと水酸化カルシ
ウムの混合懸濁液の添加速度S(/hr)が小さ
く、V/Sが20よりも大きい場合には目的物であ
る炭酸カルシウムを含む球状塩基性炭酸マグネシ
ウムの製造に時間がかかりすぎ、工業的規模での
実施に不向きとなる。一方、反応槽への水酸化マ
グネシウムと水酸化カルシウムの混合懸濁液の添
加速度S(/hr)が大きくV/Sが0.5より小さ
くなると、生成する塩基性炭酸マグネシウムと炭
酸カルシウムの複合粒子の凝集が不均一に起つ
て、均一な複合粒子とならず、本発明の目的が達
成し難い。 反応槽へ添加する水酸化マグネシウムと水酸化
カルシウムの混合懸濁液中の水酸化マグネシウム
と水酸化カルシウムの混合比率を調整することに
より炭酸カルシウムを含む球状塩基性炭酸マグネ
シウム(以下炭酸化生成物と記す)中に
CaCO320〜80重量%を含むことが望ましい。炭
酸化生成物中のCaCO3が80重量%より多い場合、
生成する塩基性炭酸マグネシウムと炭酸カルシウ
ムの複合化が均一に起こらず、好ましくない。ま
た、炭酸化生成物中のCaCO3が20重量%より少
ない場合、見掛比重の小さい多孔質な球状粒子と
なり、本発明の目的が達成し難い。 炭酸化に使用する炭酸ガスは、CO2濃度が10容
量%以上であれば良く、ガス流量は、反応槽内の
全懸濁液中の固形分(反応槽内の全懸濁液中の塩
基性炭酸マグネシウム、炭酸カルシウム以下固形
分と記す)量に対して150〜1500/min・Kg固
形分の範囲が好ましい。CO2濃度が10容量%より
低いと炭酸化に要する時間が長くなり経済的でな
い。また、ガス流量が150〜1500/min・Kg固
形分の範囲より外れると塩基性炭酸マグネシウム
と炭酸カルシウムの複合化が均一に起こらず、好
ましくない。 なお、反応槽を1槽のみ用意して、この反応槽
内で以上の本発明をバツチ式で実施する場合に
は、水酸化マグネシウムと水酸化カルシウムの混
合懸濁液の添加により当該反応槽が一杯となつた
時点で水酸化マグネシウムと水酸化カルシウムの
混合懸濁液の添加を止め、その後は、同反応槽へ
炭酸ガスのみを吹き込んで、未反応の水酸化マグ
ネシウムおよび水酸化カルシウムの炭酸化反応を
進行完結させればよい。 また、反応槽を数槽用意して本発明を連続式で
実施する場合には、第1図に示す如く、水酸化マ
グネシウムと水酸化カルシウムの混合懸濁液を添
加する第1槽目の反応槽1において、前述のV/
S値、炭酸ガスの濃度、同ガスの吹き込み量等を
適切に設定し、第1槽目の反応槽1をオーバーフ
ローした懸濁液を第2槽目の反応槽2へ導き、更
に反応槽2をオーバーフローした懸濁液を第3槽
目の反応槽3へ導き、これら第2槽目以後の反応
槽2,3…では炭酸ガスの吹き込みのみを行つ
て、未反応の水酸化マグネシウムおよび水酸化カ
ルシウムの炭酸化反応を進行完結させればよい。 本発明においては、炭酸化反応開始当初に反応
槽内に存在する塩基性炭酸マグネシウムの凝集粒
子を核としてその表面で水酸化マグネシウムと水
酸化カルシウムの炭酸化反応が進行して、多孔質
な球状塩基性炭酸マグネシウムの空孔を炭酸カル
シウムで充填するものと略確信される。生成する
球状粒子の粒子径は、バツチ式の場合反応槽の容
積を大きくして、水酸化マグネシウムと水酸化カ
ルシウムの混合懸濁液の添加総量を大きくすれ
ば、反応槽の容積を小さなものとした場合に比較
して(当初の塩基性炭酸マグネシウム出発懸濁液
量は同じとする)、大きくなり、一方連続式の場
合には、水酸化マグネシウムと水酸化カルシウム
の混合懸濁液の添加時間が経過するに従つて大き
くなる。 〔発明の効果〕 以上、説明した様に本発明によれば、見掛比重
の大きな炭酸カルシウムを含む球状塩基性炭酸マ
グネシウムを一挙に製造可能なため、該塩基性炭
酸マグネシウムを水、有機溶媒あるいはポリマー
等を分散させる場合に、分散性が良好で、取り扱
い作業性も良好である。また、粒子径の制御が可
能であるため、塗料、化粧料、紙あるいはポリマ
ー等への充填剤および薬剤、芳香剤等の担体等の
広い用途に好適である。さらに、球状炭酸化生成
物中に炭酸カルシウムを含有することによつて、
球状炭酸化生成物が塩基性炭酸マグネシウムのみ
によるものより生産コストが安価であり、工業的
価値は大きい。 〔実施例〕 以下、本発明を実施例により更に具体的に説明
する。 実施例 1 水酸化マグネシウムを炭酸化して得た濃度30g
MgO/の塩基性炭酸マグネシウム出発懸濁液
10を60℃に保持して反応槽に入れ、これに濃度
30g(MgO+CaO)/で60℃に保持した水酸
化マグネシウムと水酸化カルシウムの混合懸濁液
を10/hrの速度で添加しながら、CO2濃度25容
量%の炭酸ガスを流量500/min・Kg固形分で
吹き込んで炭酸化反応させた。なお、水酸化マグ
ネシウムと水酸化カルシウムの混合懸濁液中の水
酸化マグネシウムと水酸化カルシウムの混合比は
MgO/CaO=1/1で行なつた。懸濁液量が50
になるまで水酸化マグネシウムおよび水酸化カ
ルシウムの混合懸濁液を添加し、添加終了後30分
間さらに炭酸ガスを吹き込み、次いで生成物をろ
過後、120℃で24時間乾燥した。 乾燥品のX線回折の結果は、塩基性炭酸マグネ
シウムと炭酸カルシウムの混合物であり、化学分
析したところCaCO3を39重量%含んでいた。得
られた粉末を走査型電子顕微鏡にて観察したとこ
ろ、多孔質な塩基性炭酸マグネシウムの空げきに
炭酸カルシウムが充填したもののようであつて、
粒子径10〜40μm程度の球状体をなしていた。脱
水したケーキの含水率は150%であつた。また、
得られた粉末は見掛比重=0.39g/c.c.で水500ml
に粉末100gを懸濁させた際の粘度が100cpsであ
つた。 実施例 2 第1図に示すような反応装置を用いて炭酸化反
応を連続的に行なつた。反応槽には上部に排出口
を設け、懸濁液量が各々50になるようにした。
塩基性炭酸マグネシウム出発懸濁液および水酸化
マグネシウムと水酸化カルシウムの混合懸濁液の
濃度および温度は、30g(MgO+CaO)/お
よび60℃、水酸化マグネシウムと水酸化カルシウ
ムの混合懸濁液中の水酸化マグネシウムと水酸化
カルシウムの混合比はMgO/CaO=1/1、炭
酸ガスの濃度およびガス流量は、各々25容量%お
よび500/min・Kg固形分で行なつた。塩基性
炭酸マグネシウム出発懸濁液10を第1槽目の反
応槽1に入れ、水酸化マグネシウムと水酸化カル
シウムの混合懸濁液を添加しながら炭酸ガスを吹
き込んだ。水酸化マグネシウムと水酸化カルシウ
ムの混合懸濁液の添加速度を10/hrとして反応
槽3から排出する懸濁液を排出開始より0hr後、
5hr後、20hr後に採取し、ろ過後120℃で24時間乾
燥した。 乾燥品はいずれも塩基性炭酸マグネシウムと炭
酸カルシウムのX線回折ピークを示し、走査型電
子顕微鏡にて観察したところ、多孔質な塩基性炭
酸マグネシウムの空げきに炭酸カルシウムが充填
した球状体となつていた。第2図に5hr後に採取
したものの走査型電子顕微鏡写真を示す。顕微鏡
による平均粒子径および見掛比重は下表の通りで
あつた。
【表】 比較例 1 濃度30gMgO/の塩基性炭酸マグネシウム
懸濁液10と濃度30gMgO/の水酸化マグネ
シウム懸濁液20と濃度30gCaO/の水酸化カ
ルシウム懸濁液20とを混合し、液温を60℃に保
持して、CO2濃度25容量%の炭酸ガスを流量500
/min・Kg固形分で吹き込んで炭酸化させた。
炭酸化反応終了後、生成物をろ過し、120℃で24
時間乾燥した。 乾燥品のX線回折の結果は、塩基性炭酸マグネ
シウムと炭酸カルシウムの混合物であつた。得ら
れた粉末を走査型電子顕微鏡にて観察したとこ
ろ、鱗片状の微細な塩基性炭酸マグネシウム粒子
と紡錘状の炭酸カルシウム粒子が混合したもので
あつた。脱水したケーキの含水率は400%であつ
た。また、得られた粉末は、見掛比重=0.18g/
c.c.で水500mlに粉末100gを懸濁させた際の粘度が
1300cpsであつた。
【図面の簡単な説明】
第1図は、実施例2の連続式装置の概略図であ
る。図中1,2,3……反応槽、4……水酸化マ
グネシウム懸濁液と水酸化カルシウム懸濁液混合
槽、5……炭酸ガス用配管、6,7……懸濁液用
配管、8……水酸化マグネシウム懸濁液用定量ポ
ンプ、9……水酸化カルシウム懸濁液用定量ポン
プ、10……混合懸濁液用定量ポンプ、11……
ガス流量計。 第2図及び第3図はいずれも粒子構造を示す図
面代用写真であり、第2図は、実施例2における
5hr後に採取した炭酸カルシウムを含む球状塩基
性炭酸マグネシウムの粒子構造を示す、100倍の
走査型電子顕微鏡写真を、第3図は同塩基性炭酸
マグネシウムの粒子構造を示す、500倍の顕微鏡
写真を夫々表す。

Claims (1)

  1. 【特許請求の範囲】 1 反応槽内の塩基性炭酸マグネシウム出発懸濁
    液に水酸化マグネシウムと水酸化カルシウムの混
    合懸濁液を添加しながら炭酸ガスを吹き込んで炭
    酸化反応を開始し、引き続き同反応槽内の懸濁液
    に水酸化マグネシウムと水酸化カルシウムの混合
    懸濁液を添加しながら炭酸ガスを吹き込んで炭酸
    化反応を続行することを特徴とする炭酸カルシウ
    ムを含む球状塩基性炭酸マグネシウムの製造方
    法。 2 炭酸化反応系の温度が40〜80℃であり、塩基
    性炭酸マグネシウム出発懸濁液および水酸化マグ
    ネシウムと水酸化カルシウムの混合懸濁液の濃度
    がいずれも10〜100g(MgO+CaO)/である
    特許請求の範囲第1項記載の炭酸カルシウムを含
    む球状塩基性炭酸マグネシウムの製造方法。 3 反応槽への水酸化マグネシウムと水酸化カル
    シウムの混合懸濁液の添加速度S(/hr)が同
    反応槽内の懸濁液量V()に対し、V/S=0.5
    〜20を満足する特許請求の範囲第1項又は第2項
    記載の炭酸カルシウムを含む球状塩基性炭酸マグ
    ネシウムの製造方法。 4 反応槽へ添加する水酸化マグネシウムと水酸
    化カルシウムの混合懸濁液中の水酸化マグネシウ
    ムと水酸化カルシウムの混合比率を調整すること
    により、炭酸カルシウムを含む球状塩基性炭酸マ
    グネシウム中にCaCO320〜80重量%を含む、特
    許請求の範囲第1項、第2項および第3項のいず
    れかの項に記載の炭酸カルシウムを含む球状塩基
    性炭酸マグネシウムの製造方法。 5 炭酸ガスの濃度がCO2換算で10容量%以上で
    あり、炭酸ガスの吹き込み流量が反応槽内懸濁液
    中の固形分(反応槽内懸濁液中の塩基性炭酸マグ
    ネシウム、炭酸カルシウム)量に対して150〜
    1500/min・Kg固形分である特許請求の範囲第
    1項、第2項、第3項および第4項のいずれかの
    項に記載の炭酸カルシウムを含む球状塩基性炭酸
    マグネシウムの製造方法。
JP26636286A 1986-11-08 1986-11-08 炭酸カルシウムを含む球状塩基性炭酸マグネシウムの製造方法 Granted JPS63123810A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26636286A JPS63123810A (ja) 1986-11-08 1986-11-08 炭酸カルシウムを含む球状塩基性炭酸マグネシウムの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26636286A JPS63123810A (ja) 1986-11-08 1986-11-08 炭酸カルシウムを含む球状塩基性炭酸マグネシウムの製造方法

Publications (2)

Publication Number Publication Date
JPS63123810A JPS63123810A (ja) 1988-05-27
JPH0262484B2 true JPH0262484B2 (ja) 1990-12-25

Family

ID=17429889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26636286A Granted JPS63123810A (ja) 1986-11-08 1986-11-08 炭酸カルシウムを含む球状塩基性炭酸マグネシウムの製造方法

Country Status (1)

Country Link
JP (1) JPS63123810A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230734A (en) * 1991-07-29 1993-07-27 Okutama Kogyo Co., Ltd. Calcium-magnesium carbonate composite and method for the preparation thereof
JP2004331417A (ja) * 2003-04-30 2004-11-25 Nittetsu Mining Co Ltd 塩基性炭酸マグネシウム被覆複合粒子、その製造方法及びそれを含有する組成物
BE1020577A3 (fr) * 2012-03-22 2014-01-07 Lhoist Rech & Dev Sa Composition minerale a base d'une phase solide mixte de carbonates de calcium et de magnesium, son procede de preparation et son utilisation.
BE1021832B1 (fr) 2013-09-19 2016-01-21 S.A. Lhoist Recherche Et Developpement Composition minerale a base d'une phase solide mixte de carbonates de calcium et de magnesium et procede de preparation d'une telle composition

Also Published As

Publication number Publication date
JPS63123810A (ja) 1988-05-27

Similar Documents

Publication Publication Date Title
US4124688A (en) Process for preparing cubic crystals of calcium carbonate
KR101196041B1 (ko) Pcc 제조 방법
US5075093A (en) Calcium carbonate in a platelet-like particulate form and a method for the preparation thereof
WO1997003016A1 (fr) Fines particules d'hydroxyapatite poreuse petaloide et leur procede de production
JPS58130135A (ja) 膨張性ビ−ズ製造材料
JPS5945959A (ja) 自由流動性乾燥粉体組成物
JP2003306325A (ja) 塩基性炭酸マグネシウム及びその製造方法、並びに該塩基性炭酸マグネシウムを含有する組成物又は構造体
Song et al. A study of the effects of NH 4+ on the fast precipitation of vaterite CaCO 3 formed from steamed ammonia liquid waste and K 2 CO 3/Na 2 CO 3
JPH0262484B2 (ja)
JPH05229819A (ja) 炭酸塩類及びその製造方法
CN114291835B (zh) 一种大小立方分散沉淀碳酸钙的制备方法
JPH0262483B2 (ja)
JP4157202B2 (ja) 紡錘状炭酸カルシウムの製造方法
JPH0433730B2 (ja)
JPH06102542B2 (ja) 球状粒子炭酸カルシウムの製造方法
JP2004359543A (ja) 発泡シリカゲル及びその製造方法
JPH0649574B2 (ja) 微粒立方状炭酸カルシウムの製造方法
US1266339A (en) Process of making light precipitated chalk.
JPH0431316A (ja) 単分散した板状炭酸カルシウム及びその製造方法
JP2005170733A (ja) ホタテ貝殻由来の軽質炭酸カルシウムの製造方法
JPH054342B2 (ja)
Ma et al. Bubble-Liquid Membrane Method for Preparing Spherical Calcium Carbonate Nanoparticles
Yan et al. Hydrogen peroxide as a crystal growth modifier of CaCO 3
JPS6330317A (ja) 立方体状炭酸カルシウムの製造法
US3379495A (en) Production of sodium carbonate