JPH0260130A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0260130A
JPH0260130A JP21283788A JP21283788A JPH0260130A JP H0260130 A JPH0260130 A JP H0260130A JP 21283788 A JP21283788 A JP 21283788A JP 21283788 A JP21283788 A JP 21283788A JP H0260130 A JPH0260130 A JP H0260130A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
polysilicon
oxide film
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21283788A
Other languages
Japanese (ja)
Other versions
JPH0713972B2 (en
Inventor
Atsushi Kagizawa
篤 鍵沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63212837A priority Critical patent/JPH0713972B2/en
Publication of JPH0260130A publication Critical patent/JPH0260130A/en
Publication of JPH0713972B2 publication Critical patent/JPH0713972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable silicon nitride film/oxide film to be thinned while reducing the ion implanting energy by a method wherein polysilicon/silicon nitride film/ oxide film are used as ion-implanting masks to form an outer base region. CONSTITUTION:An oxide film 2 in specified thin thickness and a silicon nitride film 3 are formed on an N type semiconductor substrate 1. Next, a polysilicon 4 is formed in specified thickness and then polysilicon 4 and a silicon nitride film 3 are selectively removed except at a region A whereon an emitter is to be formed. Then, after covering the part excluding a base forming region with a resist 5, boron is implanted using the resist 5 and polysilicon 4/silicon nitride film 3/oxide film 2 as masks to implant boron for forming a region 9 in the silicon. Furthermore, after selectively removing the polysilicon 4, boron is introduced through silicon nitride film 3/oxide film 2 to form an inner base region 10. Through these procedures, the energy in case of ion implantation can be notably reduced, enabling the depth of the outer base region 9 to be thinned.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は浅いベース領域を有する高周波、高速バイポー
ラトランジスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of manufacturing a high frequency, high speed bipolar transistor having a shallow base region.

〈従来の技術〉 近年、バイポーラトランジスタに於いて、高速性、高周
波特性がますます要求されるようになってきており、ト
ランジスタのベース、エミッタを制御よ〈極浅構造に形
成することが必要になってきてrる。これらの要求に対
応するための従来のトランジスタの形成法の一例を第2
図(a)〜(d)に示す。
<Conventional technology> In recent years, high speed and high frequency characteristics have become increasingly required for bipolar transistors, and it has become necessary to control the base and emitter of transistors and form them into extremely shallow structures. It's getting worse. An example of a conventional transistor formation method to meet these requirements is shown in the second section.
Shown in Figures (a) to (d).

N型半導体基板1上に、500X程度の酸化膜2を成長
させ次に耐酸化性のシリコン窒化膜3を1000λ程度
成長させる。その後エミッタが形成される領域を残して
、選択的にナイトライド膜3を除去する。
An oxide film 2 of about 500X is grown on an N-type semiconductor substrate 1, and then an oxidation-resistant silicon nitride film 3 of about 1000X is grown. Thereafter, the nitride film 3 is selectively removed, leaving the region where the emitter will be formed.

次にフォト・エツチング法を用いてエミッタ領域の囲り
のベース領域となる領域の酸化膜を選択的に除去し、レ
ジスト5及びシリコン窒化膜3/酸化膜2の二層膜をマ
スクにして例えば20KeV。
Next, the oxide film in the region surrounding the emitter region that will become the base region is selectively removed using a photo-etching method, and using the resist 5 and the two-layer film of silicon nitride film 3/oxide film 2 as a mask, for example, 20KeV.

2 X 11)+5イオン/7のボロンをイオン注入法
でシリコン表出部に導入し、外部ベース領域9とする。
2×11)+5 ions/7 boron are introduced into the silicon exposed portion by ion implantation to form the external base region 9.

次に150KeV程度、lX1013イオy / cr
Aのボロンをレジスト5をマスクにしてシリコン基板中
に導入する。このとき、この不純物は、上記外部ベース
領域9は勿論のことシリコン窒化膜3/酸化膜2の二層
膜を通してこの二層膜下のシリコン基板中もに導入され
内部ベース領域10が形成される。この後酸化性雰囲気
中で不純物の拡散を行ったのちシリコン窒化膜3/酸化
膜2の二層膜を除去する。
Next, about 150KeV, lX1013ioy/cr
Boron A is introduced into the silicon substrate using the resist 5 as a mask. At this time, this impurity is introduced not only into the external base region 9 but also into the silicon substrate below this two-layer film through the two-layer film of silicon nitride film 3/oxide film 2, thereby forming an internal base region 10. . Thereafter, impurities are diffused in an oxidizing atmosphere, and then the two-layer film of silicon nitride film 3/oxide film 2 is removed.

次にヒ素のドープされたポリシリコン7を成形成長し、
エミッタ領域11に選択的に不純物を導入する。
Next, arsenic-doped polysilicon 7 is molded and grown.
Impurities are selectively introduced into the emitter region 11.

〈発明が解決しようとする問題点〉 上記従来の製造方法では、シリコン窒化膜/酸化膜の二
層膜により外部ベースと内部ベースを作り分けており、
二層膜の膜厚は外部ベース形成時のマスクとして使用し
得る条件に設計されている。
<Problems to be Solved by the Invention> In the conventional manufacturing method described above, the external base and internal base are separately formed using a two-layer film of silicon nitride film/oxide film.
The thickness of the two-layer film is designed so that it can be used as a mask when forming an external base.

このため膜厚が1500λ程度以上必要となり内部ベー
ス形成のイオン注入は100KeV以上必要であシ、こ
れは不純物プロファイルをゆるやかにしていた。これを
防ぐためには外部ベースイオン注入エネルギーをさらに
下げる方法が考えられるが、イオン注入時の電流がとれ
に〈〈スループットが悪い、又チャンネリング効果を起
こシやすい等の難点がある。またBF2等の重r不純物
を使うことも考えられるが結晶欠陥によるリークの発生
が起こり実用的でない。
Therefore, the film thickness needs to be about 1500λ or more, and the ion implantation for forming the internal base needs to be 100 KeV or more, which makes the impurity profile gentle. In order to prevent this, a method of further lowering the external base ion implantation energy can be considered, but this method has drawbacks such as poor current throughput during ion implantation and a tendency to cause channeling effects. It is also conceivable to use a heavy r impurity such as BF2, but this is not practical because leakage occurs due to crystal defects.

つまり上記の方法では内部ベースプロファイルがゆるや
かになりこのため活性ベース巾は0.1μm以下の極浅
のトランジスタを作ることは困難であった。
In other words, with the above method, the internal base profile becomes gentle, making it difficult to fabricate an extremely shallow transistor with an active base width of 0.1 μm or less.

〈問題点を解決するための手段〉 本発明は上記従来法の問題点を解決するため、ポリシリ
コン/シリコン窒化膜/酸化膜の三層構造膜をマスクに
して外部ベースの不純物導入を行い、その後、ポリシリ
コン膜を除去しシリコン窒化膜/酸化膜の二層膜を通し
て内部ペースの不純物を行なってバイポーラトランジス
タの不純物領域を形成するものである。
<Means for Solving the Problems> In order to solve the problems of the above-mentioned conventional methods, the present invention introduces externally based impurities using a three-layer structure film of polysilicon/silicon nitride film/oxide film as a mask. Thereafter, the polysilicon film is removed and impurities are applied internally through the two-layer film of silicon nitride film/oxide film to form the impurity region of the bipolar transistor.

く作用〉 本発明ではポリシリコン/シリコン窒化膜/酸化膜の三
層膜を外部ベース形成のためのイオン注入のマスクにす
るため、シリコン窒化膜/酸化膜の二層膜の膜厚の薄膜
化が可能となり内部ぺ一2形成のためのイオン注入の加
速エネルギーの低減化が可能となり内部ベースプロファ
イルは急峻になる。
In the present invention, in order to use the three-layer film of polysilicon/silicon nitride film/oxide film as a mask for ion implantation for forming an external base, the film thickness of the two-layer film of silicon nitride film/oxide film is reduced. This makes it possible to reduce the acceleration energy of ion implantation for forming the internal base 2, and the internal base profile becomes steep.

この結果0.05μm程度の活性ペース巾をもった極浅
構造のトランジスタを再現性よく作ることができる。
As a result, a transistor with an extremely shallow structure having an active pitch width of about 0.05 μm can be manufactured with good reproducibility.

〈実施例〉 第1図(a)〜(f)にnpn)ランジスタの場合を例
にとって本発明を詳述する。
<Example> The present invention will be described in detail using an example of an npn transistor in FIGS. 1(a) to 1(f).

第1図(a)に示すようにN型半導体基板上1に300
^程度の薄い酸化膜2を成長させた後、300λ程度の
シリコン窒化膜3を成長させる。
As shown in FIG. 1(a), 300 nm
After growing a thin oxide film 2 of about 300λ, a silicon nitride film 3 of about 300λ is grown.

次にCVD法でポリシリコン4を更にzoooX程度成
長させる。
Next, polysilicon 4 is further grown to an extent of zoooX using the CVD method.

第1図(b)に示すようにフォト・エツチング法を用い
て少なくともエミッタが形成される領域Aを残してそれ
以外の領域のポリシリコン4及びシリコン窒化膜3を選
択的に除去する。
As shown in FIG. 1(b), the polysilicon 4 and the silicon nitride film 3 are selectively removed by photo-etching, leaving at least the region A where the emitter is to be formed, and removing the polysilicon 4 and the silicon nitride film 3 in other regions.

次に第1図(C)に示すようにフォトリングラフィを用
いてベースが形成される領域以外をレジスト5でカバー
したのち、レジスト5及び、ポリシリコン4/シリコン
窒化膜3/酸化膜2の三層膜をマスクにしてイオン注入
法でボロンを20KeV程度の加速エネルギーで2X1
015イオノ/dド一ズ量程度シリコン中に導入して領
域9を形成する。
Next, as shown in FIG. 1C, after covering the area other than the area where the base will be formed with a resist 5 using photolithography, the resist 5 and the polysilicon 4/silicon nitride film 3/oxide film 2 are formed. Using the three-layer film as a mask, ion implantation is used to implant boron 2X1 at an acceleration energy of approximately 20KeV.
A region 9 is formed by introducing 0.015 ion/d into the silicon.

次に第1図(d)に示すように、ウェットエッチ又はド
ライエッチ法によりポリシリコン4を選択的に除去した
後ボロンを30KeV程度の加速エネルギーで、i X
 1013イオン/d程度、シリコン窒化膜3/酸化膜
2の二層膜を通して基板中に導入し内部ベース領域10
を形成する。このとき中部ベース領域10へのイオン注
入は、ポリシリコン4を除去した従来に比べて薄いシリ
コン窒化膜3/酸化膜2の二層膜を通してなされるため
、注入時のエネルギとしては上記のように従来方法に比
べて著しく小さくなる。従って外部ベース領域9自身と
しても不純物の深さは薄くなる。
Next, as shown in FIG. 1(d), after selectively removing the polysilicon 4 by wet etching or dry etching, boron is exposed to iX with an acceleration energy of about 30 KeV.
About 1013 ions/d are introduced into the substrate through the two-layer film of silicon nitride film 3/oxide film 2 to form an internal base region 10.
form. At this time, the ion implantation into the central base region 10 is performed through the two-layer film of the silicon nitride film 3/oxide film 2, which is thinner than the conventional method in which the polysilicon 4 is removed, so the energy at the time of implantation is as described above. It is significantly smaller than the conventional method. Therefore, the depth of impurities in the external base region 9 itself becomes thinner.

上述のように不純物をイオン注入した後第1図(e)に
示すようにレジスト除去し、続rて熱酸化法で酸化膜6
を1500λ程度成長させる。
After implanting impurity ions as described above, the resist is removed as shown in FIG. 1(e), and then the oxide film 6 is formed by thermal oxidation.
is grown to about 1500λ.

第1図(f)に示すようにエミッタ領域となる部分の基
板表面を被っていたシリコン窒化膜3/酸化膜2の二層
膜を除去した後エミッタ領域となる領域上にヒ素のドー
プされたポリシリコン膜7を形成し、フォト自エツチン
グ法でパターンニングした後CVD酸化膜8を成長させ
、残留ポリシリコン膜7から基板中にヒ素を拡散させて
シリコン基板の活性ペース領域12上にN十エミッタ領
域11を形成する。図中13は不純物領域にコンタクト
された電極を示す。
As shown in Figure 1(f), after removing the two-layer film of silicon nitride film 3/oxide film 2 that covered the substrate surface in the area that would become the emitter region, arsenic was doped onto the area that would become the emitter region. After forming a polysilicon film 7 and patterning it by photo-etching, a CVD oxide film 8 is grown, and arsenic is diffused into the substrate from the remaining polysilicon film 7 to form a nitrogen film on the active space region 12 of the silicon substrate. An emitter region 11 is formed. In the figure, reference numeral 13 indicates an electrode that is in contact with the impurity region.

く効果〉 以上説明した本発明では、内部ペース形成のための注入
エネルギーは30KeV程度と低くすることができ、こ
のため内部ベースの不純物プロファイルは極浅で又急峻
なプロファイルが得られ、その接合深さは0.1μm程
度が可能となる。ポリシリコンからのヒ素拡散の接合深
さは0.05μm程度に制御可能であるためエミッタ直
下のペース巾、即ち活性ペース巾は0.05μm程度に
精度よく制御でき、超高速、超高周波トランジスタが実
現される。
Effect> In the present invention as described above, the implantation energy for forming the internal paste can be as low as about 30 KeV, so that the impurity profile of the internal base can be extremely shallow and steep, and the junction depth can be reduced. The thickness can be about 0.1 μm. Since the junction depth of arsenic diffusion from polysilicon can be controlled to about 0.05 μm, the pace width directly below the emitter, that is, the active pace width, can be precisely controlled to about 0.05 μm, realizing ultra-high speed and ultra-high frequency transistors. be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の一実施例の各工程での
断面図、第2図(a)〜(d)は従来例の各工程での断
面図を示す。 1、  N型半導体基板 2.薄い酸化膜 3.シリコ
ン窒化膜 4. ポリシリコン 5. レジスト6 酸
化膜7.  ヒ素ドープドポリシリコン 8CVD酸化
膜 9.  P+外部ヘース領域 io、P−内部ペー
ス領域11.N+エミノク領域12゜活性ベース領域 
13.電極 代理人 弁理士 杉 山 毅 至(他1名)+4− A
 −+1 第2図 !111!!11
FIGS. 1(a) to 1(f) are sectional views at each step of an embodiment of the present invention, and FIGS. 2(a) to 2(d) are sectional views at each step of a conventional example. 1. N-type semiconductor substrate 2. Thin oxide film 3. Silicon nitride film 4. Polysilicon 5. Resist 6 Oxide film 7. Arsenic doped polysilicon 8CVD oxide film 9. P+ external pace area io, P- internal pace area 11. N+ Eminoku region 12° active base region
13. Electrode agent Patent attorney Takeshi Sugiyama (1 other person) +4-A
-+1 Figure 2! 111! ! 11

Claims (1)

【特許請求の範囲】 1、一導電型基板上にバイポーラトランジスタを形成す
る半導体装置の製造方法において、 少くともエミッタが形成される領域の基板上に薄い酸化
膜、耐酸化膜、ポリシリコン膜を順次形成し、 上記三層膜をマスクにしてエミッタが形成される領域外
に第二導電型の不純物を選択的に基板中に導入し、 上記工程後ポリシリコン膜を選択的に除去し、耐酸化膜
と薄い酸化膜の二層膜を通して第二導電型の不純物を基
板中に選択的に導入することを特徴とする半導体装置の
製造方法。
[Claims] 1. In a method for manufacturing a semiconductor device in which a bipolar transistor is formed on a substrate of one conductivity type, a thin oxide film, an oxidation-resistant film, or a polysilicon film is formed on the substrate at least in a region where an emitter is formed. Then, using the three-layer film as a mask, impurities of the second conductivity type are selectively introduced into the substrate outside the region where the emitter will be formed. After the above process, the polysilicon film is selectively removed and acid-resistant 1. A method for manufacturing a semiconductor device, which comprises selectively introducing impurities of a second conductivity type into a substrate through a two-layer film of an oxide film and a thin oxide film.
JP63212837A 1988-08-25 1988-08-25 Method for manufacturing semiconductor device Expired - Fee Related JPH0713972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63212837A JPH0713972B2 (en) 1988-08-25 1988-08-25 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63212837A JPH0713972B2 (en) 1988-08-25 1988-08-25 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0260130A true JPH0260130A (en) 1990-02-28
JPH0713972B2 JPH0713972B2 (en) 1995-02-15

Family

ID=16629170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63212837A Expired - Fee Related JPH0713972B2 (en) 1988-08-25 1988-08-25 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0713972B2 (en)

Also Published As

Publication number Publication date
JPH0713972B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPS6252950B2 (en)
JPH0260130A (en) Manufacture of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JPH04116933A (en) Manufacture of semiconductor device
JP2576664B2 (en) Method for manufacturing NPN transistor
JPH01179357A (en) Manufacture of semiconductor device
JPS6149469A (en) Manufacture of semiconductor device
JPS6022506B2 (en) Manufacturing method for semiconductor devices
JPH0233932A (en) Manufacture of semiconductor device
JPH01122167A (en) Manufacture of semiconductor device
JPH0274042A (en) Manufacture of mis transistor
JPH03196641A (en) Manufacture of junction type field effect transistor
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH0428246A (en) Semiconductor device and manufacture thereof
JPH01194361A (en) Manufacture of semiconductor device
JPH0233937A (en) Manufacture of semiconductor device
JPH03224238A (en) Manufacture of bipolar transistor
JPH0227813B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPH06310721A (en) Fabrication of semiconductor element
JPS60201661A (en) Manufacture of semiconductor device
JPS6085561A (en) Manufacture of semiconductor device
JPS58180062A (en) Manufacture of semiconductor device
JPH04162430A (en) Manufacture of semiconductor device
JPH05243249A (en) Manufacture of bipolar transistor
JPH01204414A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees