JPH0256730A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0256730A
JPH0256730A JP20718188A JP20718188A JPH0256730A JP H0256730 A JPH0256730 A JP H0256730A JP 20718188 A JP20718188 A JP 20718188A JP 20718188 A JP20718188 A JP 20718188A JP H0256730 A JPH0256730 A JP H0256730A
Authority
JP
Japan
Prior art keywords
wall surface
control cylinder
vapor flow
vapor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20718188A
Other languages
Japanese (ja)
Other versions
JP2618695B2 (en
Inventor
Naoki Kusuki
直毅 楠木
Hideaki Takeuchi
英明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP63207181A priority Critical patent/JP2618695B2/en
Publication of JPH0256730A publication Critical patent/JPH0256730A/en
Application granted granted Critical
Publication of JP2618695B2 publication Critical patent/JP2618695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To maintain high vapor deposition efficiency by setting the temp. on the inside wall surface of a control cylinder between the melting point and b. p. of vapor flow metallic particles. CONSTITUTION:Water from a water source is run through a water flow path 15 to a water cooled cylinder 14 to set the temp. of the inside wall surface of the control cylinder 7 so as to attain the temp. between the melting point and b. p. of the vapor flow forming metal. of the vapor flow metallic particles passing the inside wall surface of the control cylinder, the particles which stick to the inside wall surface by colliding against the wall, therefore, maintain the liquid state without reevaporating and solidifying. The particles descend by creeping on this inside wall surface and fall from the lower end face of the control cylinder 7 into a crucible 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は蒸着効率を高め得る磁気記録媒体の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a magnetic recording medium that can improve deposition efficiency.

(従来の技術) 磁気記録媒体の製造においては、いかにして蒸着効率を
高めるかが大きな技術的課題とされており、このような
蒸着効率を高める一つの方法として蒸発源と被蒸着体と
の間に制御筒を配し、この制御筒内に蒸発源からの蒸気
流を通すことでこの蒸気流の指向性を高めて被蒸着体へ
の蒸着効率を高めるようにしたものが知られている(特
開昭57−134555号公報)。このように制御筒は
その内壁面によって蒸気流の拡散を防止するものである
が、反面蒸気流がこの内壁面に接触し、この蒸気流形成
金属がこの内壁面に付着、固化するおそれがある。金属
粒子が内壁面に付着、固化すると、意図していた蒸気流
分布とは異なった蒸気流分布となってしまい、また堆積
した付着金属の回収作業等のメンテナンスも必要とな・
る。そこで上記方法においては上記制御筒に加熱源を付
加し、この制御筒の内壁面を蒸気流構成金属の沸点以上
の温度とし、この制御筒内壁面に衝突してこの内壁面に
付着した金属粒子を再蒸発せしめて他の蒸気流と合流し
得るようにしている。
(Prior art) In the production of magnetic recording media, how to increase the deposition efficiency is a major technical issue, and one way to increase the deposition efficiency is to improve the connection between the evaporation source and the object to be deposited. It is known that a control tube is placed in between, and the vapor flow from the evaporation source is passed through the control tube to increase the directivity of the vapor flow and increase the efficiency of vapor deposition onto the object to be evaporated. (Japanese Unexamined Patent Publication No. 134555/1983). In this way, the control tube prevents the vapor flow from spreading through its inner wall surface, but on the other hand, there is a risk that the vapor flow may come into contact with this inner wall surface and the metal that forms this vapor flow may adhere to and solidify on this inner wall surface. . If metal particles adhere to and solidify on the inner wall surface, the vapor flow distribution will be different from the intended vapor flow distribution, and maintenance such as collection of deposited metal will be required.
Ru. Therefore, in the above method, a heating source is added to the control tube, and the temperature of the inner wall surface of the control tube is higher than the boiling point of the metal forming the vapor flow. is reevaporated so that it can be combined with other vapor streams.

(発明が解決しようとする課題) しかしながら、上記制御筒内壁面から再蒸発した金属粒
子の飛散方向はその他の蒸気流金属粒子の飛散方向と異
なるため当初意図していた蒸気流分布が得られず蒸着効
率の低下を招くおそれがあった。
(Problem to be Solved by the Invention) However, the scattering direction of the metal particles reevaporated from the inner wall surface of the control cylinder is different from the scattering direction of other vapor flow metal particles, so the originally intended vapor flow distribution cannot be obtained. This may lead to a decrease in vapor deposition efficiency.

本発明はこのような問題を解決するためになされたもの
であり、蒸着効率を低下せしめることなく制御筒の内壁
面への蒸気流金属粒子の付着、固化を防止し得る磁気記
録媒体の製造方法を提供することを目的とするものであ
る。
The present invention has been made to solve these problems, and provides a method for manufacturing a magnetic recording medium that can prevent vapor flow metal particles from adhering to and solidifying on the inner wall surface of a control cylinder without reducing vapor deposition efficiency. The purpose is to provide the following.

(課題を解決するための手段) 本発明の磁気記録媒体の製造方法は、蒸気流の飛散方向
を制御する制御筒の内壁面の温度を蒸気流構成金属の融
点以上であって沸点よりも低い温度に調節することを特
徴とするものである。
(Means for Solving the Problems) The method for manufacturing a magnetic recording medium of the present invention is characterized in that the temperature of the inner wall surface of the control tube that controls the scattering direction of the vapor flow is set to a temperature higher than the melting point of the vapor flow constituent metal and lower than the boiling point. It is characterized by adjusting the temperature.

(作  用) 上記構成によれば、制御筒内壁面の温度を蒸気流構成金
属の融点以上であって沸点よりも低い温度に調節してい
るのでこの制御筒内壁面に付着した蒸気流金属粒子は再
蒸発せず液状となりこの内壁面をつたわって下降する。
(Function) According to the above configuration, since the temperature of the inner wall surface of the control cylinder is adjusted to a temperature higher than the melting point of the vapor flow component metal and lower than the boiling point, the vapor flow metal particles attached to the inner wall surface of the control cylinder are controlled. does not re-evaporate and becomes liquid and descends along this inner wall surface.

これにより、制御筒上部開口からの蒸気流には制御筒内
壁面から再蒸発した金属粒子が含まれず、したがって蒸
気流分布は再蒸発金属の蒸気流により乱されることなく
高い蒸着効率を維持することが可能となる。
As a result, the vapor flow from the upper opening of the control cylinder does not include metal particles re-evaporated from the inner wall surface of the control cylinder, and therefore the vapor flow distribution is not disturbed by the vapor flow of the re-evaporated metal, maintaining high vapor deposition efficiency. becomes possible.

また、制御筒内壁面に付着し、液状となってこの内壁面
をつたわり落ちる金属粒子はこの制御筒の下方に配設さ
れている蒸発源の容器(ルツボ)に回収することが可能
で、上記内壁面に付着した金属等を除去する作業が不要
となる。
In addition, metal particles that adhere to the inner wall surface of the control cylinder, turn into liquid, and fall down the inner wall surface can be collected into an evaporation source container (crucible) located below the control cylinder. There is no need to remove metal etc. adhering to the inner wall surface.

(実 施 例) 以下、本発明の実施例について図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を実施するための装置の一例を示
すものであり、チェンバ1内に、蒸発源2を溶融せしめ
る容器としてのルツボ3と、このルツボ3内の蒸発源2
を蒸気流とすべくこの蒸発源形成材料を加熱する高周波
誘導加熱手段4と、このルツボ3からの蒸気流が蒸着さ
れる被蒸着体5を支持する被蒸着体支持手段としての蒸
着ドラム6と、上記ルツボ3と上記被蒸着体5の間に配
され、内部にルツボ3からの蒸気流を通過させてこの蒸
気流の飛散方向を制御する制御筒7を備えてなる。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention, in which a chamber 1 includes a crucible 3 as a container for melting an evaporation source 2, and an evaporation source 2 inside this crucible 3.
a high-frequency induction heating means 4 that heats the evaporation source forming material to turn it into a vapor flow; and a vapor deposition drum 6 as a vapor deposition object support means that supports a vapor deposition object 5 onto which the vapor flow from the crucible 3 is deposited. , is provided with a control cylinder 7 which is disposed between the crucible 3 and the object to be deposited 5, and which allows the vapor flow from the crucible 3 to pass therethrough and controls the scattering direction of the vapor flow.

上記チェンバ1は適当な真空排気系12と接続されてお
り、内部圧力は10−2〜lO’T。7.程度に調節さ
れている。また、上記ルツボ3としては内径50調程度
の開放端面を有し、例えばマグネシア、あるいはW、T
a、C,Cu、MO,A、Q、203゜BN等の既知の
材料からなるものであり、このルツボ3の回りに配され
た高周波誘導加熱手段4には交流電源8から例えば周波
数200KHz、出力20KWの電力が供給される。ま
た上記蒸着ドラム6は内部に冷媒流路を形成され、図示
する位置に回転自在に支持された直径300m、表面温
度0℃のクーリングキャンであり、その下方外周面に、
送出しロール9から巻取りロール10に向けて走行する
長尺の被蒸着体5を湾曲状に支持するものである。また
、上記制御筒7はセラミック材料からなり、略円筒形状
に形成されている。セラミック材料により形成したのは
蒸気流を形成する金属材料として強磁性金属材料が用い
られる場合に、この強磁性金属材料による腐食を防止す
るためであるが、例えばW等の他の材料によっても形成
することが可能である。また、この制御筒7は例えば内
径50#、外径72m、高さ75mmに形成される。ま
た、この制御筒側壁の外周にはカーボン繊維からなる熱
伝導媒体13が配され、さらにこの熱伝導媒体13の外
周には制御筒7を冷却する冷却手段としての水冷却式シ
リンダ14が配されている。熱伝導媒体13としてはカ
ーボン繊維に限られるものではないが制御筒7と水冷却
式シリンダ14との間の熱伝導接触抵抗を低くし得る密
着性の良好な材料により形成することが望ましい。また
、水冷却式シリンダ14は例えば内径84mm5外径1
20rrM11肉厚3mの円筒状の銅製シリンダからな
り、この内部に水源からの水を流水路15を介して循環
せしめられるものである。これにより制御筒7の内壁面
の温度が蒸気流金属の融点と沸点の間の温度に設定され
るようになっており、制御筒内壁面に付着した蒸気流金
属粒子の再蒸発を防止することが可能となる。なお、制
御筒7の壁部に温度検出手段を配しておき、この検出手
段からの温度情報に応じて水冷却式シリンダ14に送出
する水の循環速度や水温を制御して制御筒7の内壁面を
所望の温度に調節することも可能である。なお、上記冷
却手段と共にもしくは冷却手段に代え、この制御筒7に
加熱手段を付加して制御筒7の内壁面を所望の温度に調
節することも可能である。
The chamber 1 is connected to a suitable evacuation system 12, and the internal pressure is 10-2 to lO'T. 7. It is adjusted accordingly. The crucible 3 has an open end surface with an inner diameter of about 50 mm, and is made of magnesia, W, T, etc., for example.
The crucible is made of known materials such as a, C, Cu, MO, A, Q, and 203°BN, and the high-frequency induction heating means 4 disposed around the crucible 3 is supplied with an AC power source 8 having a frequency of, for example, 200 KHz. Power with an output of 20KW is supplied. The vapor deposition drum 6 is a cooling can with a diameter of 300 m and a surface temperature of 0° C., which is rotatably supported at the position shown in the figure, and has a coolant flow path formed therein.
The elongated deposition target 5 traveling from the delivery roll 9 toward the take-up roll 10 is supported in a curved manner. Further, the control cylinder 7 is made of a ceramic material and is formed into a substantially cylindrical shape. The reason for forming the ceramic material is to prevent corrosion caused by the ferromagnetic metal material when a ferromagnetic metal material is used as the metal material forming the vapor flow, but it can also be formed from other materials such as W. It is possible to do so. Further, this control cylinder 7 is formed to have, for example, an inner diameter of 50#, an outer diameter of 72m, and a height of 75mm. Further, a heat conduction medium 13 made of carbon fiber is disposed on the outer periphery of the side wall of the control cylinder, and a water-cooled cylinder 14 as a cooling means for cooling the control cylinder 7 is further disposed on the outer periphery of this heat conduction medium 13. ing. The heat conduction medium 13 is not limited to carbon fiber, but is preferably formed of a material with good adhesion that can reduce the heat conduction contact resistance between the control tube 7 and the water-cooled cylinder 14. In addition, the water-cooled cylinder 14 has, for example, an inner diameter of 84 mm and an outer diameter of 1
It consists of a cylindrical copper cylinder of 20rrM11 and a wall thickness of 3m, into which water from a water source is circulated through a flow channel 15. As a result, the temperature of the inner wall surface of the control cylinder 7 is set to a temperature between the melting point and the boiling point of the vapor flow metal, thereby preventing re-evaporation of the vapor flow metal particles attached to the control cylinder inner wall surface. becomes possible. Note that a temperature detection means is arranged on the wall of the control cylinder 7, and the circulation speed and water temperature of the water sent to the water-cooled cylinder 14 are controlled according to the temperature information from this detection means, so that the temperature of the control cylinder 7 is controlled. It is also possible to adjust the inner wall surface to a desired temperature. Incidentally, it is also possible to add a heating means to the control tube 7 in addition to or in place of the cooling means described above to adjust the temperature of the inner wall surface of the control tube 7 to a desired temperature.

さらに、被蒸着体5としてはPET (ポリエチレンテ
レフタレート)製の長尺フィルム(100arm幅、1
3μm厚)が使用され、蒸発源形成金属材料としてはF
e 、 Fe −Ni 、 Gd −Tb −Fe 。
Further, as the deposition object 5, a long film made of PET (polyethylene terephthalate) (100 arm width, 1
3 μm thick) is used, and F is used as the metal material for forming the evaporation source.
e, Fe-Ni, Gd-Tb-Fe.

Cr等の磁性体金属が使用されているが、被蒸着体5お
よび上記金属材料としてはこれに限られるものではなく
用途に応じて適当な材料のものを選択すればよい。
Although a magnetic metal such as Cr is used, the material to be deposited 5 and the above-mentioned metal material are not limited to this, and appropriate materials may be selected depending on the application.

上述したように構成された装置を作動するには、まず真
空排気系12を介して上記チェンバ1内を10−2〜1
0”tar+の範囲内の所望する圧力に保ちながら、高
周波誘導加熱手段4に通電してルツボ3内の蒸発源2を
連続的に加熱する。これにより蒸発源2はその蒸発面か
ら金属粒子の蒸気流となって次第に蒸発していく。なお
、その蒸発の際、前記金属粒子の極く一部はイオン化し
て他の金属粒子とともに所定の分布をもって発散、上昇
する。
In order to operate the apparatus configured as described above, first, the inside of the chamber 1 is pumped through the vacuum exhaust system 12 to
While maintaining the desired pressure within the range of 0" tar+, the high frequency induction heating means 4 is energized to continuously heat the evaporation source 2 in the crucible 3. As a result, the evaporation source 2 is able to release metal particles from its evaporation surface. The metal particles gradually evaporate in the form of a vapor flow. During the evaporation, a small portion of the metal particles are ionized and diverge and rise together with other metal particles in a predetermined distribution.

この蒸気流の全ては、その蒸発分布が比較的拡大化され
ていないルツボ3の開口端面近傍で、制御筒7の下方開
口からこの制御筒7の内部に進入していく。
All of this vapor flow enters the inside of the control tube 7 from the lower opening of the control tube 7 near the open end surface of the crucible 3 where the evaporation distribution is relatively unexpanded.

水冷却式シリンダ14には流水路15を通じて水源から
の水を流し制御筒7の内壁面の温度が蒸気流形成金属の
融点と沸点の間の温度となるように設定しておく。この
ように制御筒7の内壁面の温度が調節されているため、
この制御筒内壁面を通過する蒸気流金属粒子のうちこの
内壁面に衝突して付着するものは再蒸発もしくは固化す
ることがなく、液状態を維持し、この内壁面をつたわっ
て下降し、制御筒7の下部端面からルツボ3内に落下す
る。したがって、制御筒7の上方開口から射出される蒸
気流には制御筒内壁面から再蒸発する金属粒子は含まれ
ず、したがって高い蒸着効率を維持することが可能とな
る。
Water from a water source is supplied to the water-cooled cylinder 14 through a flow channel 15, and the temperature of the inner wall surface of the control cylinder 7 is set to be between the melting point and the boiling point of the metal forming the steam flow. Since the temperature of the inner wall surface of the control cylinder 7 is regulated in this way,
Among the vapor flow metal particles that pass through the inner wall of the control cylinder, those that collide with and adhere to the inner wall do not re-evaporate or solidify, but maintain a liquid state and descend along the inner wall to control the control cylinder. It falls into the crucible 3 from the lower end face of the cylinder 7. Therefore, the vapor flow injected from the upper opening of the control cylinder 7 does not contain metal particles that reevaporate from the inner wall surface of the control cylinder, making it possible to maintain high vapor deposition efficiency.

一方、被蒸着体5である長尺フィルムを蒸着ドラム6の
下方周面に沿わせ、送出しロール9から巻取りロールl
Oに向けて60m/1I11nの一定速度で走行させる
。なお、前述した制御筒7を断面楕円状に形成し、この
制御筒7の上部端面の長軸方向とこの被蒸着体5の幅方
向とが一致するように制御筒7を配しておき、制御筒7
の上方開口から射出される蒸気流が被蒸着体5の幅方向
に広く、長さ方向に狭い分布をなして、この被蒸着体5
の表面に衝突するように形成することも可能である。
On the other hand, a long film, which is the object to be deposited 5, is placed along the lower peripheral surface of the deposition drum 6, and is passed from the delivery roll 9 to the take-up roll l.
The vehicle is run at a constant speed of 60 m/1I11n toward O. The control tube 7 described above is formed to have an elliptical cross section, and the control tube 7 is arranged so that the long axis direction of the upper end surface of the control tube 7 coincides with the width direction of the vapor deposited object 5. Control tube 7
The vapor flow injected from the upper opening has a wide distribution in the width direction of the evaporation target 5 and a narrow distribution in the length direction, so that the evaporation target 5
It is also possible to form it so that it collides with the surface of.

これにより、被蒸着体5の幅方向に−様な膜厚分布をな
す蒸着膜を形成し得るとともに、被蒸着体5の長さ方向
には、被蒸着体表面への金属粒子の入射角度を略−様の
値とすることで磁気異方性を高めることが可能となる。
As a result, it is possible to form a deposited film having a -like film thickness distribution in the width direction of the evaporation target 5, and at the same time, in the length direction of the evaporation target 5, the incident angle of the metal particles on the surface of the evaporation target can be adjusted. The magnetic anisotropy can be increased by setting the value to approximately -.

なお、この被蒸着体5への蒸着膜の膜厚は例えば150
0人とする。なお、目的に応じて制御筒7と蒸着ドラム
6との間にマスク11、さらには蒸着金属加速電極等を
設けることも可能である。
Note that the thickness of the vapor deposited film on this vapor deposited body 5 is, for example, 150 mm.
Assume 0 people. Note that it is also possible to provide a mask 11, a vapor-deposited metal accelerating electrode, etc. between the control tube 7 and the vapor deposition drum 6 depending on the purpose.

なお、上記実施例方法によりCoの蒸着膜を形成した場
合、制御筒7の内壁面に衝突した金属粒子の約70%が
溶解し、蒸着効率が27%という結果が得られた。一方
、上記装置において、水冷却式シリンダ14および熱伝
導媒体13を除去し、その他は上記と同様にして蒸着を
行なった場合には制御筒7の内壁面に衝突した金属粒子
の約10%が溶解し、蒸着効率は14%という結果であ
った。
Note that when a Co vapor deposited film was formed by the above-described method, approximately 70% of the metal particles that collided with the inner wall surface of the control cylinder 7 were dissolved, resulting in a vapor deposition efficiency of 27%. On the other hand, in the above apparatus, when the water-cooled cylinder 14 and the heat transfer medium 13 are removed and the vapor deposition is performed in the same manner as above, about 10% of the metal particles that collide with the inner wall surface of the control cylinder 7 are The result was that the vapor deposition efficiency was 14%.

なお、本発明の方法としては上述した実施例のものに限
られるものではなく、例えば蒸発源の加熱方法や制御筒
内壁面の温度調整方法としては目的に応じた最適な方法
を選択することが可能である。
Note that the method of the present invention is not limited to those of the above-mentioned embodiments; for example, as a method of heating the evaporation source and a method of adjusting the temperature of the inner wall surface of the control cylinder, it is possible to select an optimal method according to the purpose. It is possible.

(発明の効果) 以上説明したように、本発明の磁気記録媒体の製造方法
によれば制御筒の内壁面の温度を蒸気流金属粒子の融点
と沸点との間に設定しているので、制御筒を通過する蒸
気流金属粒子のうちこの制御筒内壁面に衝突して付着す
るものは、再蒸発せず、液状のまま、この内壁面を伝わ
って下降する。これにより、蒸気流分布が制御筒内壁面
からの再蒸発金属粒子により乱されることがなく高い蒸
着効率を維持することが可能となる。
(Effects of the Invention) As explained above, according to the method of manufacturing a magnetic recording medium of the present invention, the temperature of the inner wall surface of the control tube is set between the melting point and boiling point of the vapor flow metal particles, so Among the vapor flow metal particles passing through the cylinder, those that collide with and adhere to the inner wall surface of the control cylinder do not re-evaporate, but descend along the inner wall surface in a liquid state. Thereby, the vapor flow distribution is not disturbed by the reevaporation metal particles from the inner wall surface of the control cylinder, making it possible to maintain high vapor deposition efficiency.

また、内壁面を伝わって下降する金属粒子は、この制御
筒の下部端面から、この制御筒の直下に配したルツボ内
に落下せしめて、蒸着時に回収することが可能であり、
制御筒内壁に堆積した金属粒子の除去等の作業が不要と
なる。
In addition, the metal particles descending along the inner wall surface can be collected from the lower end of the control tube into the crucible placed directly below the control tube during vapor deposition.
Work such as removing metal particles deposited on the inner wall of the control cylinder becomes unnecessary.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る磁気記録媒体の製造方法を実施する
ための装置の一例を示す概略図である。 2・・・蒸発源     3・・・ルツボ4・・・高周
波誘導加熱手段 5・・・被蒸着体 7・・・制御筒 6・・・蒸着ドラム 14・・・水冷却式シリンダ
The drawing is a schematic diagram showing an example of an apparatus for carrying out the method of manufacturing a magnetic recording medium according to the present invention. 2... Evaporation source 3... Crucible 4... High-frequency induction heating means 5... Deposited body 7... Control tube 6... Vapor deposition drum 14... Water-cooled cylinder

Claims (1)

【特許請求の範囲】 真空雰囲気中で蒸発源を加熱し、この加熱により得られ
た蒸気流がこの蒸発源と被蒸着体の間に配した制御筒内
を通過するようになしてこの蒸気流の飛散方向を制御し
、前記被蒸着体上に所望の蒸着膜を形成する磁気記録媒
体の製造方法において、 前記制御筒の内壁面の温度を前記蒸気流構成金属の融点
以上であって沸点よりも低い温度に調節することを特徴
とする磁気記録媒体の製造方法。
[Claims] An evaporation source is heated in a vacuum atmosphere, and the vapor flow obtained by this heating passes through a control cylinder disposed between the evaporation source and the object to be evaporated. In the method of manufacturing a magnetic recording medium, the temperature of the inner wall surface of the control cylinder is set to a temperature higher than the melting point of the metal forming the vapor flow and lower than the boiling point of the metal forming the vapor flow. A method for manufacturing a magnetic recording medium, characterized in that the temperature is adjusted to a low temperature.
JP63207181A 1988-08-19 1988-08-19 Manufacturing method of magnetic recording medium Expired - Fee Related JP2618695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63207181A JP2618695B2 (en) 1988-08-19 1988-08-19 Manufacturing method of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63207181A JP2618695B2 (en) 1988-08-19 1988-08-19 Manufacturing method of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH0256730A true JPH0256730A (en) 1990-02-26
JP2618695B2 JP2618695B2 (en) 1997-06-11

Family

ID=16535587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63207181A Expired - Fee Related JP2618695B2 (en) 1988-08-19 1988-08-19 Manufacturing method of magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2618695B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316627A (en) * 2015-11-20 2016-02-10 苏州赛森电子科技有限公司 Self-cleaning device of evaporation table for semiconductor processing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155369A (en) * 1981-03-20 1982-09-25 Fuji Photo Film Co Ltd High vacuum ion plating method and apparatus
JPS5826733U (en) * 1981-08-12 1983-02-21 ソニー株式会社 Manufacturing equipment for metal thin film magnetic recording media

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155369A (en) * 1981-03-20 1982-09-25 Fuji Photo Film Co Ltd High vacuum ion plating method and apparatus
JPS5826733U (en) * 1981-08-12 1983-02-21 ソニー株式会社 Manufacturing equipment for metal thin film magnetic recording media

Also Published As

Publication number Publication date
JP2618695B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
JPH0160546B2 (en)
JPH0256730A (en) Production of magnetic recording medium
JPH01285023A (en) Apparatus for producing magnetic recording medium
JPH04214860A (en) Manufacture of multicomponent solid material
JPH08158045A (en) Control of temperature in crucible in vacuum deposition device
JPS63277752A (en) Vacuum deposition device
JP3877178B2 (en) Vacuum deposition equipment
US5122392A (en) Method and apparatus for manufacturing magnetic recording medium
JPH0798861A (en) Production of magnetic recording medium
JP3566825B2 (en) Heat-treated particles by thermal plasma and heat-treatment method
JP3735846B2 (en) Method and apparatus for preheating steel sheet in continuous vacuum deposition apparatus
US20070062333A1 (en) Method and apparatus for producing metallic ultrafine particles
JP2554488B2 (en) Magnetic recording medium manufacturing equipment
JPH09165674A (en) Vacuum coating apparatus
JPS58150424A (en) Treatment for coating surface of fine particle
JPS63204513A (en) Apparatus for producing magnetic recording medium
JPH0313566A (en) Production of thin film
JP3781154B2 (en) Vacuum deposition equipment
JPH0382756A (en) Ion beam assisted vapor deposition device and method thereof
JPS63259832A (en) Apparatus for producing magnetic recording medium
JP2898652B2 (en) Evaporator for ion plating
JPS6347361A (en) Evaporation device for ion plating
JPH06111295A (en) Depositing apparatus
JPH06102828B2 (en) Strip coating device
JPS6329585B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees