JPH0160546B2 - - Google Patents

Info

Publication number
JPH0160546B2
JPH0160546B2 JP1850581A JP1850581A JPH0160546B2 JP H0160546 B2 JPH0160546 B2 JP H0160546B2 JP 1850581 A JP1850581 A JP 1850581A JP 1850581 A JP1850581 A JP 1850581A JP H0160546 B2 JPH0160546 B2 JP H0160546B2
Authority
JP
Japan
Prior art keywords
evaporation
vapor flow
thin film
evaporation source
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1850581A
Other languages
Japanese (ja)
Other versions
JPS57134555A (en
Inventor
Akira Nahara
Makoto Nagao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP1850581A priority Critical patent/JPS57134555A/en
Priority to DE19823204337 priority patent/DE3204337A1/en
Publication of JPS57134555A publication Critical patent/JPS57134555A/en
Publication of JPH0160546B2 publication Critical patent/JPH0160546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、蒸着効率の高い薄膜形成方法及び装
置に関する。 近年、真空蒸着、イオンプレーテイング、スパ
ツタリング、等により基体上に金属、等の薄膜を
層設して成る製品が、各種分野で開発、実用化さ
れている。 前記薄膜の材料は、例えば貴金属、磁性体、高
分子物質、有機潤滑剤、等極めて多岐にわたり適
用可能になり、現在直面している大きな技術的課
題は如何に低コストで薄膜を形成するかにある。
この課題を前記真空蒸着法に例をとれば、蒸着効
率即ち蒸発材料の蒸発量と実際に基体上に付着し
た量の比を高めることが前記課題の解決に大きく
寄与するものであることは一般に認められている
ものである。 そのため従来の比較的広い蒸発開口部を有する
開放型ハースによつて蒸発面から略Cosn分布を
もつて前記金属等の粒子から成る蒸気流を放射せ
しめる方式に代わり、比較的小さな放射口を有し
内部圧力の上昇によつて、前記蒸気流を極めて指
向性を強く放射する密封型ハースを採用した方式
が提案されている。 しかしながら、前記密封型ハースは、蒸発源と
してGa,Zn、等の材料に対して良好な結果が得
られているが、Fe,Ni,Co,等の材料に対して
は、通常入手が容易なハース材料例えば、W,
Ta,Mo,C,BN,MgO,Al2O3等と高温下で
反応しかつ破損し易く、実用化が著しく困難であ
つた。 一方、前記密封型ハース方式以外に前記蒸気流
の指向性を向上させ、蒸着効率を高める方式とし
て特開昭52―153411号公報に開示されたような電
気用基板の製造方法に関する技術が提案されてい
るが、この提案された方法は、前述したような開
放型ハースから広角度で発散する前記蒸気流の一
部を、W等の高融点金属板から成る加熱式反射板
に射突せしめて基体へ指向させることを特徴とす
る方法であり、前記反射板によつて発射又は放射
方向が修正された前記蒸気流に限つて言えば、前
記基体に付着した後の抗磁力が増加されるにして
も、蒸着効率の向上に関しては何等解決されず、
前記蒸気流を所望する方向に反射せしめる前に、
その反射面に多量の金属粒子が付着、捕捉され、
その結果、次第に反射効率や蒸着効率が低下する
欠点が解消されたものでなかつた。 そこで、本発明者等は比較的広角度で発散する
開放型ハースにおいてもその全蒸気流を所望する
方向に効率良く集束、指向することが可能でかつ
蒸着効率を少なくとも前記密封型ハース方式と同
等あるいはそれ以上が望める蒸着薄膜形成方法に
ついて鋭意、研究を重ねた結果、本発明方法及び
装置を実用化するに至つた。 本発明の目的は、前述した従来方式の欠点を除
去し、長時間安定しかつ効率の良い蒸着薄膜形成
方法及び装置を提供することを目的とするもので
ある。 本発明のかゝる目的は、 真空雰囲気下で; 蒸発源を加熱して得られた蒸気流を、前記蒸発
源と被蒸着体の間で、蒸気流拡散防止手段におけ
る仕切壁により画成された空間を通過させなが
ら、前記蒸発源の蒸発表面温度以上あるいは固体
面に付着した蒸発粒子が再蒸発可能な温度に加熱
されている前記仕切壁内面に衝突した前記蒸気流
の一部を、他の蒸気流と合流するようにその蒸発
方向を前記仕切壁内面によつて屈折せしめて、前
記蒸発気流全体の蒸発分布を集束せしめた後、前
記被蒸着体上に前記蒸気流中の蒸発粒子を蒸着し
て薄膜を形成せしめる、ことを特徴とする薄膜形
成方法、 及び 真空雰囲気内に; 蒸発源、前記蒸発源を収納するハース、前記蒸
発源を加熱蒸発する加熱手段、少なくとも蒸気流
通過用の上、下開口域を有しかつその内面が前記
蒸発源の蒸発表面温度以上あるいは固体面に付着
した蒸発粒子が再蒸発可能な温度まで加熱可能な
仕切壁部材を具備して成る蒸気流拡散防止手段、
被蒸着体、を夫々配設して成り、前記蒸気流拡散
防止手段が前記仕切壁部材の内面によつて蒸気流
に含まれる蒸発粒子の量的損失を招くことなく効
率良くその蒸発分布を集束せしめることを特徴と
する薄膜形成装置、 によつて達成される。 以下、添付した図面に基づき、本発明の実施態
様について詳述する。 第1図において、1は真空排気系22に連通し
てその内部真空度が、一般に、10-2〜10-8Torr
程度の範囲内の所望レベルに保たれるケーシン
グ、3は既知の材質例えばW,Ta,C,Cu,
Mo,Al2O3,BN等から成る開放型ハース、4は
前記ハース3内に収納された磁性体から成る蒸発
源であり、用途に応じてAg,Cr,Co,Fe,Ni,
Co―Ni,Mn―Al,Fe―Ni,Gd―Tb―Fe系合
金等が使用される。 5は前記ハース3の近傍に配設した電子ビーム
加熱方式の蒸発源加熱手段である。 なお、前述したハース3は、前記蒸発源4が比
較的広範に蒸発可能な上方開口部を有した、所
謂、開放型のものに限ることなく、比較的小さな
開口部によつてその蒸発個所が限定されている密
閉型ハースであつても良い。 又、前記蒸発源加熱手段5も、電子ビーム加熱
方式にのみ限定されず、他の既知の方式例えば抵
抗加熱、高周波誘導加熱、等を採用することが可
能である。 6は前記蒸発源4の上方に配設した蒸気流拡散
防止手段であり、前記蒸気流拡張防止手段6は、
前記蒸発源4の蒸発面全域にわたりその開口域が
臨む蒸気流入口用の下方開口域7と、前記開口域
7の上方で比較的小さな開口面積を有する蒸気流
出口用の上方開口域8を具備して全体が略八字状
の縦断面形状の仕切壁部材9(詳しくは第2図)、
第3図を参照)、及び前記仕切壁部材9の各開口
域7及び8を除く外面を被う熱シールド部材1
0、を具備して成つている。 なお、前記仕切壁部材9はW,Ta,Mo,Ti,
Pt,等の高融点金属材から成り、その躯体の一
部が加熱電源12に接続している。更に、前記仕
切壁部材9の内周面は、可能な限り平滑な表面に
仕上げることが好ましい。 又、前記熱シールド部材10は、Cu等の比較
的熱伝導率が高い金属材から成り、その外周面に
冷却用コイル11が巻装されている。 13は前記蒸気流拡散防止手段6の上方に回転
自在に配設したクーリングキヤンであり、その下
方外周面に基体W(例えば、ポリエステルフイル
ム等の可撓性帯状材)を彎曲状に支持し、走行案
内するものである。 14は、前記仕切手段6とクーリングキヤン1
3の間で、かつ前記基体Wの下方面における所定
蒸着面近傍に配設されたW,Ta,Mo、ステンレ
ス鋼、等の高融点材から成る網目状のビーム集束
補助電極で、負の電位が付与され、その有効作用
域は、前記基体Wの下方面における所定蒸着域よ
りも逸脱して展在しないように位置決めされてい
る。 15は、前記クーリングキヤン13の下方にお
いて、前記基体Wの下方面に前記蒸気流Vが規定
外の角度で蒸着しないように配設したマスクであ
る。 以上、記述したようにその要部が構成される本
発明装置において、先ず、前記真空排気系2を介
して前記ケーシング1内を10-2〜10-8Torrの範
囲内の所望する真空度に保ちながら、前記蒸発源
加熱手段5に通電して前記ハース3内の蒸発源4
を連続的に加熱すると、前記蒸発源4はその蒸発
面から金属粒子の蒸気流Vとなつて次第に蒸発し
て行く。なお、その蒸発の際、前記金属粒子の極
く一部はイオン化して他の金属粒子とともに略
Cosn分布をもつて発散、上昇する。 次に、前記蒸気流Vの全ては、その蒸発分布が
比較的拡大化されていない前記蒸発源4の近傍
で、前記仕切壁部材9の下方開口域7から該仕切
壁部材9の内部に進入して行く。 なお、前記蒸発材料4の蒸発表面温度はその材
質や蒸着処理条件等によつて夫々異なるが、通
常、Ag材は約1200℃以上;Cr材は約1300℃以上、
Co材は約1800℃以上の規定表面温度が、前記加
熱手段5によつて略一定に保たれている一方、前
記仕切壁部材9の少なくとも内周面温度は、前記
規定蒸発表面温度又は蒸発粒子が固体面上に付
着、固化しても再蒸発が可能な温度に、前記加熱
電源12によつて略一定に保たれているので、前
記蒸気流Vに含まれている蒸発粒子が前記仕切壁
部材9の内周壁面に衝突を繰り返しても、前記内
周壁面と反応して、付着、固化することがなく、
前記部材9の内部を上昇し続け、やがてその蒸発
分布が当初のものよりも著しく狭められて前記上
方開口域8を通過して行く。 前記出口8を通過した蒸気流Vは、その集束分
布状態が前記ビーム集束補助電極14によつて強
められるとゝもに、所望する入射角度が与えられ
て網状の空隙を通過した後、効率良く前記基体W
の表面に蒸着する。 なお、前記入射角度は約45度以上の範囲が抗磁
力の向上に対して望ましく、そのためには前記基
体Wの走行方向と関連して前記蒸気流拡散防止手
段6の取付位置(特に、その中心位置)を適宜設
定すれば良い。 又、前記ビーム集束補助電極14に代わり、リ
ング状、棒状の収束補助電極を適用することも可
能であり、更に前記基体Wの裏面でリング状ある
いは平板状の形態をもつて近接せしめても良く、
更に前記基体Wの両側に配設しても良い。 なお、前記熱シールド部材10は、前記蒸発源
4、仕切壁部材9等からの放熱を防ぎ、低電力で
加熱することを可能にする一方、輻射熱により前
記基体Wが劣化することも防止できる。 更に、前記熱シールド部材10自体が異常に加
熱された場合、その他、必要に応じて、前記冷却
用コイル11に水等の冷媒を送り込み、冷却する
ことも可能である。 第4図、第5図、第6図、第7図は夫々本発明
に基づく前記仕切壁部材9の変更例を示したもの
である。 第4図に示した仕切壁部材19は蒸気流入口1
7と蒸気流出口18が同等の開口面積を有し中空
長方体状に形成されているものであり、更にこの
四方の壁面を三方あるいは二方壁面に簡略化する
即ち前記出入口17,18以外に他の開口域を増
加することも可能である。 第5図に示した仕切壁部材29は、丸皿状のハ
ース3の形状に合わせて、円筒状の仕切壁面に変
更したものであり、第6図における仕切壁部材3
9は、第1図〜第3図に示した仕切壁部材9とは
逆の断面形状(\/字状)の壁面に変更したもの
である。 前述した何れの仕切壁部材9,19,29,3
9においても、前記蒸気流Vが衝突する内周壁面
が平滑に仕上げられ、かつその内周壁面温度が前
記規定蒸発表面温度又は再蒸発可能温度に加熱さ
れていれば、前記Cosn状の蒸発分布をその内周
壁面によつて確実に集束せしめて、前記蒸気流V
を前記基体Wに向けて効率良く入射、蒸着せしめ
ることができる。 又、前記蒸気流拡散防止手段6は、前記ハース
3と間隙を置くことなく一体化することにより、
更に放熱を抑えることができる。 その場合、加熱用電子ビームが前記ハース3に
到達可能なようにビーム照射孔を透設したり、前
記蒸発源4の監視及び補給用窓も設けることも可
能である。 又、前記仕切壁部材9は、電子ビーム式、誘導
式、あるいは抵抗式加熱手段によつて加熱するこ
とも可能であり、材質も前述したものに限定され
ることなく、MgO,BNコンポジツト、Al2O3
ZrO2等のセラミツクス材でも良い。 以上、記述した本発明は、真空蒸着法に限ら
ず、イオンプレーテイング、スパツタリング等の
方法にも適用可能であり、又、前記基体Wも例え
ば三酢酸セルロース、ポリカーボネート、ポリイ
ミド、ポリエチレンテレフタレート、ポリカーボ
ネート、等のプラスチツクフイルム又はシート、
硝子、セラミツクス等も使用可能である。 次に、本発明の新規な効果を実施例及び比較例
によつて一層明確にする。 〔実施例〕 Ag材とCo材の蒸発源を用いた次表の三条件
(〜)に従つて夫々の蒸着効率を測定した。 〔比較例〕 上記各条件の実施例における仕切壁部材を除去
した以外は同条件で夫々蒸着効率を測定した。
The present invention relates to a method and apparatus for forming a thin film with high vapor deposition efficiency. In recent years, products in which a thin film of metal or the like is layered on a substrate by vacuum evaporation, ion plating, sputtering, etc. have been developed and put into practical use in various fields. The materials for the thin film can now be applied to a wide variety of materials, such as noble metals, magnetic materials, polymeric substances, organic lubricants, etc., and the major technical challenge currently facing is how to form thin films at low cost. be.
Taking this problem as an example of the vacuum evaporation method mentioned above, it is generally understood that increasing the vapor deposition efficiency, that is, the ratio between the amount of evaporated material and the amount actually deposited on the substrate, greatly contributes to solving the problem. It is recognized. Therefore, instead of the conventional method of emitting a vapor flow consisting of particles of metal etc. from the evaporation surface with an approximately Cos n distribution using an open type hearth with a relatively wide evaporation opening, a method with a relatively small evaporation opening is used. However, a method has been proposed in which a sealed hearth is used to radiate the steam flow in a highly directional manner as the internal pressure increases. However, although good results have been obtained with the sealed hearth for materials such as Ga and Zn as evaporation sources, it is difficult to use materials such as Fe, Ni, and Co, which are usually easily available. Hearth materials such as W,
It reacts with Ta, Mo, C, BN, MgO, Al 2 O 3 , etc. at high temperatures and is easily damaged, making it extremely difficult to put it into practical use. On the other hand, in addition to the sealed hearth method, there has been proposed a method for manufacturing electrical substrates as disclosed in Japanese Patent Application Laid-Open No. 153411/1983 as a method for improving the directivity of the vapor flow and increasing the vapor deposition efficiency. However, in this proposed method, a part of the vapor flow emanating from the open hearth as described above at a wide angle is made to impinge on a heated reflector made of a high melting point metal plate such as W. This method is characterized in that the vapor flow is directed toward a substrate, and in terms of the vapor flow whose emission or radiation direction is modified by the reflector, the coercive force after adhering to the substrate is increased. However, no solution was found in improving the deposition efficiency.
Before reflecting the vapor stream in a desired direction,
A large amount of metal particles are attached to and captured on the reflective surface,
As a result, the drawback that reflection efficiency and vapor deposition efficiency gradually decrease has not been solved. Therefore, the inventors of the present invention have discovered that even in an open hearth that diverges at a relatively wide angle, it is possible to efficiently focus and direct the entire vapor flow in a desired direction, and the vapor deposition efficiency is at least equivalent to that of the sealed hearth system. As a result of extensive research into methods for forming vapor-deposited thin films that can achieve higher performance than above, the method and apparatus of the present invention have been put to practical use. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the conventional methods described above, and to provide a method and apparatus for forming a deposited thin film that is stable for a long time and is efficient. Such an object of the present invention is to: In a vacuum atmosphere; to control a vapor flow obtained by heating an evaporation source between the evaporation source and the object to be evaporated by a partition wall in a vapor flow diffusion prevention means. While passing through the space, a portion of the vapor flow that collides with the inner surface of the partition wall, which is heated to a temperature higher than the evaporation surface temperature of the evaporation source or to a temperature at which evaporation particles attached to a solid surface can be re-evaporated, is After refracting the evaporation direction by the inner surface of the partition wall so as to merge with the vapor flow and converging the evaporation distribution of the entire evaporation air flow, evaporation particles in the vapor flow are evaporated onto the object to be evaporated. and in a vacuum atmosphere; an evaporation source, a hearth for housing the evaporation source, a heating means for heating and evaporating the evaporation source, and at least an upper part for passing vapor flow. vapor flow diffusion prevention means comprising a partition wall member having a lower opening area and whose inner surface can be heated to a temperature higher than the evaporation surface temperature of the evaporation source or to a temperature at which evaporation particles attached to a solid surface can be re-evaporated; ,
The vapor flow diffusion preventing means efficiently focuses the evaporation distribution of vapor particles contained in the vapor flow without causing quantitative loss of the vapor particles by the inner surface of the partition wall member. This is achieved by a thin film forming apparatus characterized by: Hereinafter, embodiments of the present invention will be described in detail based on the attached drawings. In FIG. 1, 1 communicates with a vacuum exhaust system 22 whose internal vacuum level is generally 10 -2 to 10 -8 Torr.
3 is a known material such as W, Ta, C, Cu,
An open hearth made of Mo, Al 2 O 3 , BN, etc.; 4 is an evaporation source made of a magnetic material housed in the hearth 3; depending on the application, Ag, Cr, Co, Fe, Ni,
Co-Ni, Mn-Al, Fe-Ni, Gd-Tb-Fe alloys, etc. are used. Reference numeral 5 denotes an evaporation source heating means of an electron beam heating type arranged near the hearth 3. The above-mentioned hearth 3 is not limited to the so-called open type in which the evaporation source 4 has an upper opening that allows evaporation over a relatively wide area; It may be a limited closed hearth. Further, the evaporation source heating means 5 is not limited to only the electron beam heating method, and other known methods such as resistance heating, high frequency induction heating, etc. can be adopted. Reference numeral 6 denotes a vapor flow diffusion prevention means disposed above the evaporation source 4, and the vapor flow expansion prevention means 6 includes:
A lower opening area 7 for a vapor inlet whose opening area faces the entire evaporation surface of the evaporation source 4, and an upper opening area 8 for a vapor outlet having a relatively small opening area above the opening area 7. A partition wall member 9 whose longitudinal cross section is approximately eight-shaped as a whole (see FIG. 2 for details);
(see FIG. 3), and a heat shield member 1 covering the outer surface of the partition wall member 9 except for each opening area 7 and 8.
0. Note that the partition wall member 9 is made of W, Ta, Mo, Ti,
It is made of a high melting point metal material such as Pt, and a part of its frame is connected to the heating power source 12. Furthermore, it is preferable that the inner circumferential surface of the partition wall member 9 be finished as smooth as possible. The heat shield member 10 is made of a metal material with relatively high thermal conductivity, such as Cu, and has a cooling coil 11 wound around its outer peripheral surface. Reference numeral 13 denotes a cooling can which is rotatably disposed above the vapor flow diffusion prevention means 6, and supports a base W (for example, a flexible band-shaped material such as a polyester film) in a curved shape on the lower outer peripheral surface of the cooling can. It provides driving guidance. 14, the partition means 6 and the cooling can 1;
A net-like beam focusing auxiliary electrode made of a high melting point material such as W, Ta, Mo, stainless steel, etc. is disposed between 3 and near a predetermined evaporation surface on the lower surface of the substrate W, and is provided with a negative potential. is provided, and its effective area is positioned so as not to deviate from a predetermined deposition area on the lower surface of the base body W. Reference numeral 15 denotes a mask disposed below the cooling can 13 to prevent the vapor flow V from depositing on the lower surface of the base W at an unspecified angle. In the apparatus of the present invention, the main parts of which are constructed as described above, first, the inside of the casing 1 is brought to a desired degree of vacuum within the range of 10 -2 to 10 -8 Torr via the evacuation system 2. While maintaining the temperature, the evaporation source heating means 5 is energized to heat the evaporation source 4 in the hearth 3.
When continuously heated, the evaporation source 4 gradually evaporates from its evaporation surface into a vapor flow V of metal particles. Note that during the evaporation, a small portion of the metal particles are ionized and ionized together with other metal particles.
It diverges and rises with a Cos n distribution. Next, all of the vapor flow V enters the inside of the partition wall member 9 from the lower opening area 7 of the partition wall member 9 in the vicinity of the evaporation source 4 whose evaporation distribution is not relatively expanded. I'll go. The evaporation surface temperature of the evaporation material 4 differs depending on the material, evaporation processing conditions, etc., but is usually about 1200°C or higher for Ag materials; about 1300°C or higher for Cr materials;
The Co material has a specified surface temperature of approximately 1800° C. or more that is kept approximately constant by the heating means 5, while at least the inner circumferential surface temperature of the partition wall member 9 is the specified evaporation surface temperature or the evaporation particle temperature. Since the heating power supply 12 maintains a substantially constant temperature at which re-evaporation is possible even if the particles adhere to and solidify on the solid surface, the evaporated particles contained in the vapor flow V are kept on the partition wall. Even if it repeatedly collides with the inner circumferential wall surface of the member 9, it will not react with the inner circumferential wall surface and adhere or solidify,
It continues to rise inside the member 9 and eventually passes through the upper opening region 8 with its evaporation distribution becoming significantly narrower than the initial one. The vapor flow V that has passed through the outlet 8 has its focused distribution state strengthened by the beam focusing auxiliary electrode 14 and is given a desired incident angle, and after passing through the net-like voids, is efficiently The base W
vapor deposited on the surface of Note that it is desirable that the incident angle be in a range of about 45 degrees or more in order to improve the coercive force. position) may be set appropriately. Further, instead of the beam focusing auxiliary electrode 14, it is also possible to apply a ring-shaped or rod-shaped focusing auxiliary electrode, and furthermore, it is also possible to use a ring-shaped or flat-shaped focusing auxiliary electrode on the back surface of the base body W and make it close to the beam focusing auxiliary electrode 14. ,
Furthermore, they may be provided on both sides of the base W. The heat shield member 10 prevents heat radiation from the evaporation source 4, the partition wall member 9, etc., and enables heating with low power, while also preventing the base body W from deteriorating due to radiant heat. Furthermore, if the heat shield member 10 itself is abnormally heated, it is also possible to send a refrigerant such as water to the cooling coil 11 to cool it, if necessary. FIG. 4, FIG. 5, FIG. 6, and FIG. 7 each show modified examples of the partition wall member 9 based on the present invention. The partition wall member 19 shown in FIG.
7 and the steam outlet 18 have the same opening area and are formed into a hollow rectangular parallelepiped shape, and furthermore, the four walls are simplified to three or two walls, that is, other than the entrances and exits 17 and 18. It is also possible to increase other aperture areas. The partition wall member 29 shown in FIG. 5 has been changed to a cylindrical partition wall surface in accordance with the shape of the round plate-shaped hearth 3, and is different from the partition wall member 3 in FIG.
Reference numeral 9 indicates a wall surface having a cross-sectional shape (\-shape) opposite to that of the partition wall member 9 shown in FIGS. 1 to 3. Any of the partition wall members 9, 19, 29, 3 mentioned above
9, if the inner circumferential wall surface that the vapor flow V collides with is finished smooth and the inner circumferential wall temperature is heated to the specified evaporation surface temperature or re-evaporation temperature, the Cos n- shaped evaporation occurs. The vapor flow V is reliably focused by its inner circumferential wall surface.
can be efficiently incident on the substrate W and vapor-deposited. Moreover, the vapor flow diffusion prevention means 6 is integrated with the hearth 3 without any gap, so that
Furthermore, heat radiation can be suppressed. In that case, a beam irradiation hole may be provided so that the heating electron beam can reach the hearth 3, or a window for monitoring and replenishing the evaporation source 4 may also be provided. Furthermore, the partition wall member 9 can be heated by an electron beam type, induction type, or resistance type heating means, and the material is not limited to those mentioned above, and may be made of MgO, BN composite, Al, etc. 2O3 ,
Ceramic materials such as ZrO 2 may also be used. The present invention described above is applicable not only to the vacuum deposition method but also to methods such as ion plating and sputtering, and the substrate W may be made of, for example, cellulose triacetate, polycarbonate, polyimide, polyethylene terephthalate, polycarbonate, plastic film or sheet, etc.
Glass, ceramics, etc. can also be used. Next, the novel effects of the present invention will be further clarified through Examples and Comparative Examples. [Example] The evaporation efficiency was measured according to the three conditions (~) shown in the following table using evaporation sources of Ag material and Co material. [Comparative Example] The vapor deposition efficiency was measured under the same conditions as in the examples under each of the above conditions except that the partition wall member was removed.

【表】【table】

【表】 実施例と比較例の各蒸着効率を対比すれば、本
発明(実施例)は実に20〜40倍の蒸着効率向上が
可能であることが明らかになつた。
[Table] Comparing the vapor deposition efficiencies of Examples and Comparative Examples, it became clear that the present invention (Examples) could actually improve the vapor deposition efficiency by 20 to 40 times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置全体
を示す略図、第2図は第1図における要部拡大断
面図、第3図は第2図の一部を示す斜式図、第4
図、第5図及び第6図は本発明装置の夫々変更例
の説明図である。 3はリース、4は蒸発源、6は蒸気流拡散防止
手段、Vは蒸気流、Wは基体体である。
FIG. 1 is a schematic diagram showing the entire apparatus for carrying out the method of the present invention, FIG. 2 is an enlarged sectional view of the main part in FIG. 1, FIG. 3 is a perspective view showing a part of FIG. 2, and FIG.
5 and 6 are explanatory views of modified examples of the apparatus of the present invention, respectively. 3 is a lease, 4 is an evaporation source, 6 is a vapor flow diffusion prevention means, V is a vapor flow, and W is a base body.

Claims (1)

【特許請求の範囲】 1 真空雰囲気下で; 蒸発源を加熱して得られた蒸気流を、前記蒸発
源と被蒸着体の間で、蒸気流拡散防止手段におけ
る仕切壁により画成された空間を通過させなが
ら、前記蒸発源の蒸発表面温度以上あるいは固体
面に付着した蒸発粒子が再蒸発可能な温度に加熱
されている前記仕切壁内面に衝突した前記蒸気流
の一部を、他の蒸気流と合流するようにその蒸発
方向を前記仕切壁内面によつて屈折せしめて、前
記蒸気流全体の蒸発分布を集束せしめた後、前記
被蒸着体上に前記蒸気流中の蒸発粒子を蒸着して
薄膜を形成せしめる、 ことを特徴とする薄膜形成方法。 2 前記蒸発源が、貴金属材料、磁性材料、有機
潤滑剤又は高分子材料から成ることを特徴とする
特許請求の範囲第1項記載の薄膜形成方法。 3 特許請求の範囲第1項記載の薄膜形成方法を
実施するための装置であつて、真空雰囲気内に;
蒸発源、前記蒸発源を収納するハース、前記蒸発
源を加熱蒸発する加熱手段、少なくとも蒸気流通
過用の上、下開口域を有しかつその内面が前記蒸
発源の蒸発表面温度以上あるいは固体面に付着し
た蒸発粒子が再蒸発可能な温度まで加熱可能な仕
切壁部材を具備して成る蒸気流拡散防止手段、被
蒸着体、を夫々配設して成り、前記蒸気流拡散防
止手段が前記仕切壁部材の内面によつて蒸気流に
含まれる蒸発粒子の量的損失を招くことなく効率
良くその蒸発分布を集束せしめることを特徴とす
る薄膜形成装置。 4 前記仕切壁部材がその外周域を熱シールド部
材によつて被われている前記蒸気流拡散防止手段
を具備して成ることを特徴とする特許請求の範囲
第3項記載の薄膜形成装置。 5 前記蒸発源が、貴金属材料、磁性材料、有機
潤滑剤又は高分子材料から成ることを特徴とする
特許請求の範囲第3項記載の薄膜形成装置。 6 前記蒸気流拡散防止手段が、前記ハースと実
質的に連続一体化して成ることを特徴とする特許
請求の範囲第3項記載の薄膜形成装置。
[Claims] 1. In a vacuum atmosphere; a vapor flow obtained by heating an evaporation source is transferred between the evaporation source and the object to be deposited in a space defined by a partition wall in a vapor flow diffusion prevention means. A part of the vapor flow that collides with the inner surface of the partition wall, which is heated to a temperature higher than the evaporation surface temperature of the evaporation source or to a temperature at which evaporation particles attached to the solid surface can be re-evaporated, is transferred to other vapors. The evaporation direction of the vapor flow is refracted by the inner surface of the partition wall so as to merge with the vapor flow, and the evaporation distribution of the entire vapor flow is focused, and then the evaporation particles in the vapor flow are vapor-deposited onto the object to be vaporized. A method for forming a thin film characterized by forming a thin film using the following steps. 2. The thin film forming method according to claim 1, wherein the evaporation source is made of a noble metal material, a magnetic material, an organic lubricant, or a polymer material. 3. An apparatus for carrying out the thin film forming method according to claim 1, in a vacuum atmosphere;
an evaporation source, a hearth for housing the evaporation source, a heating means for heating and evaporating the evaporation source, and at least an upper and lower opening area for passing vapor flow, the inner surface of which has a temperature higher than the evaporation surface temperature of the evaporation source or a solid surface; vapor flow diffusion prevention means comprising a partition wall member that can be heated to a temperature at which evaporated particles adhering to the evaporation particles can be re-evaporated; A thin film forming apparatus characterized in that the inner surface of a wall member efficiently focuses the evaporation distribution of evaporation particles contained in the vapor flow without causing a quantitative loss of the evaporation particles. 4. The thin film forming apparatus according to claim 3, wherein the partition wall member is provided with the vapor flow diffusion prevention means whose outer periphery is covered with a heat shield member. 5. The thin film forming apparatus according to claim 3, wherein the evaporation source is made of a noble metal material, a magnetic material, an organic lubricant, or a polymer material. 6. The thin film forming apparatus according to claim 3, wherein the vapor flow diffusion prevention means is substantially continuously integrated with the hearth.
JP1850581A 1981-02-10 1981-02-10 Method and device for forming thin film Granted JPS57134555A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1850581A JPS57134555A (en) 1981-02-10 1981-02-10 Method and device for forming thin film
DE19823204337 DE3204337A1 (en) 1981-02-10 1982-02-09 Process and apparatus for forming a thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1850581A JPS57134555A (en) 1981-02-10 1981-02-10 Method and device for forming thin film

Publications (2)

Publication Number Publication Date
JPS57134555A JPS57134555A (en) 1982-08-19
JPH0160546B2 true JPH0160546B2 (en) 1989-12-22

Family

ID=11973474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1850581A Granted JPS57134555A (en) 1981-02-10 1981-02-10 Method and device for forming thin film

Country Status (1)

Country Link
JP (1) JPS57134555A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035925A1 (en) * 2001-10-26 2003-05-01 Matsushita Electric Works, Ltd. Device and method for vacuum deposition, and organic electroluminescent element provided by the device and the method
JP2004047452A (en) * 2002-05-17 2004-02-12 Semiconductor Energy Lab Co Ltd Apparatus for manufacture
JP2013067867A (en) * 2012-12-13 2013-04-18 Semiconductor Energy Lab Co Ltd Vessel

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2172015B (en) * 1984-06-12 1988-06-08 Ki Polt I Evaporator for vacuum deposition of films
JPS6143275U (en) * 1984-08-17 1986-03-20 三洋電機株式会社 crystal growth equipment
JPS62124271A (en) * 1985-11-25 1987-06-05 Mitsubishi Electric Corp Vapor ejection device for molten material
JPS6389660A (en) * 1986-10-01 1988-04-20 Konica Corp Vapor deposition device for phosphor
JP2701477B2 (en) * 1989-09-19 1998-01-21 株式会社ユアサコーポレーション Manufacture of manganese dioxide cathode
JP2701476B2 (en) * 1989-09-19 1998-01-21 株式会社ユアサコーポレーション Manufacturing method of lithium anode
JP2008204835A (en) * 2007-02-21 2008-09-04 Matsushita Electric Ind Co Ltd Pre-processing method and manufacturing method of electrochemical element and its electrode, as well as pre-treatment equipment
JP5620747B2 (en) * 2010-08-19 2014-11-05 三菱伸銅株式会社 Vacuum deposition equipment
CN112981443B (en) * 2021-02-22 2022-04-19 吉林大学 Foam nickel with nano silver film deposited on surface, preparation method and application thereof
WO2024022579A1 (en) * 2022-07-26 2024-02-01 Applied Materials, Inc. Evaporation source, material deposition apparatus, and method of depositing material on a substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035925A1 (en) * 2001-10-26 2003-05-01 Matsushita Electric Works, Ltd. Device and method for vacuum deposition, and organic electroluminescent element provided by the device and the method
KR100958682B1 (en) * 2001-10-26 2010-05-20 파나소닉 전공 주식회사 Device and method for vacuum deposition, and organic electroluminescent element provided by he device and the method
JP2004047452A (en) * 2002-05-17 2004-02-12 Semiconductor Energy Lab Co Ltd Apparatus for manufacture
JP2013067867A (en) * 2012-12-13 2013-04-18 Semiconductor Energy Lab Co Ltd Vessel

Also Published As

Publication number Publication date
JPS57134555A (en) 1982-08-19

Similar Documents

Publication Publication Date Title
JPH0160546B2 (en)
TW200407053A (en) Vacuum evaporator apparatus and manufacturing method of EL display panel using the apparatus
JPH0152472B2 (en)
JPH09118977A (en) Method for building up thin film
JP2570560Y2 (en) Electron beam evaporation source
JP3103676B2 (en) Vacuum evaporation method
JPH05166236A (en) Apparatus for producing magneto-optical recording medium
JPS6320303B2 (en)
JPH089770B2 (en) Vacuum deposition equipment
JP3335375B2 (en) Electron beam heating type vapor deposition apparatus and vapor deposition method
JPS58100672A (en) Method and device for formation of thin film
JPS5948450B2 (en) Method for manufacturing magnetic recording media
JPH06111322A (en) Vapor deposition device
JPH06111295A (en) Depositing apparatus
JP2002053955A (en) Apparatus and method for ionized film deposition
JPH062202Y2 (en) Electron gun device
JPH01205066A (en) Vacuum film forming device
JPS6067667A (en) Sputter vapor deposition apparatus
JPS6289861A (en) Method and apparatus for bombardment vapor deposition of thin film
JPH11185544A (en) Evaporating method and evaporating device for orientation-controlled polycrystalline thin film
JPH0734925Y2 (en) AEON Beam Sputtering Device
JPH05140741A (en) Sputtering device
JPH01247570A (en) Formation of film of multicomponent substance by beam sputtering
JPS6230876A (en) Opposed target type sputtering device
JPH01191777A (en) Device for producing long-sized oxide-based superconductor