JPH11185544A - Evaporating method and evaporating device for orientation-controlled polycrystalline thin film - Google Patents

Evaporating method and evaporating device for orientation-controlled polycrystalline thin film

Info

Publication number
JPH11185544A
JPH11185544A JP9358430A JP35843097A JPH11185544A JP H11185544 A JPH11185544 A JP H11185544A JP 9358430 A JP9358430 A JP 9358430A JP 35843097 A JP35843097 A JP 35843097A JP H11185544 A JPH11185544 A JP H11185544A
Authority
JP
Japan
Prior art keywords
thin film
orientation
tape
target
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9358430A
Other languages
Japanese (ja)
Other versions
JP3771027B2 (en
Inventor
Yasuhiro Iijima
康裕 飯島
Mariko Hosaka
真理子 保坂
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP35843097A priority Critical patent/JP3771027B2/en
Publication of JPH11185544A publication Critical patent/JPH11185544A/en
Application granted granted Critical
Publication of JP3771027B2 publication Critical patent/JP3771027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporating method and an evaporating device for an orientation-controlled polycrystalline thin film, capable of improving a crystal orientation property of a surface of an orientation-controlled polycrystalline thin film without reducing filming efficiency. SOLUTION: An evaporating device for an orientation-controlled polycrystalline the film is made up by providing an evaporating container 40 that can be evacuated, with a target 36, a spatter-beam irradiating device 38 for spattering and accumulating particles composing the target 36 onto a tape- shaped basic material 22 moving near the target 36, an ion gun 39 for irradiating an ion beam to the particles composing the target 36 from a quarter oblique to a filming surface of the basic material 22, and a base-material winding bobbin 25 for winding the base material 22 having an orientation-controlled polycrystalline thin film evaporated thereon. A cover 26 is provided for covering not only the post-evaporation basic material 22 and the wound post-evaporation basic material 22 but also the base-material winding device 25, and a slit is formed in the cover 25 for introducing the post-evaporation tape-shaped basic material 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、テープ状の基材上
に配向制御多結晶薄膜を形成する配向制御多結晶薄膜の
蒸着方法及び蒸着装置に係わり、特に、成膜効率を低下
させることなく、配向制御多結晶薄膜の表面の結晶配向
性を向上させることができる配向制御多結晶薄膜の蒸着
方法及び蒸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for depositing an orientation-controlled polycrystalline thin film on a tape-shaped substrate, and more particularly to a method and an apparatus for depositing the same. The present invention relates to a method and an apparatus for depositing an orientation-controlling polycrystalline thin film capable of improving the crystal orientation of the surface of the orientation-controlling polycrystalline thin film.

【0002】[0002]

【従来の技術】近年になって発見された酸化物超電導体
は、液体窒素温度を超える臨界温度を示す優れた超電導
体であるが、現在、この種の酸化物超電導体を実用的な
超電導体として使用するためには、種々の解決するべき
問題点が存在している。その問題点の1つが、酸化物超
電導体の臨界電流密度が低いという問題である。前記酸
化物超電導体の臨界電流密度が低いという問題は、酸化
物超電導体の結晶自体に電気的な異方性が存在すること
が大きな原因となっており、特に酸化物超電導体はその
結晶軸のa軸方向とb軸方向には電気を流し易いが、c
軸方向には電気を流しにくいことが知られている。この
ような観点から酸化物超電導体を基材上に形成してこれ
を超電導体として使用するためには、基材上に結晶配向
性の良好な状態の酸化物超電導体を形成し、しかも、電
気を流そうとする方向に酸化物超電導体の結晶のa軸あ
るいはb軸を配向させ、その他の方向に酸化物超電導体
のc軸を配向させる必要がある。
2. Description of the Related Art Oxide superconductors discovered in recent years are excellent superconductors having a critical temperature exceeding the temperature of liquid nitrogen. At present, this type of oxide superconductor is a practical superconductor. There are various problems to be solved in order to use this. One of the problems is that the critical current density of the oxide superconductor is low. The problem that the critical current density of the oxide superconductor is low is largely attributable to the existence of electrical anisotropy in the crystal itself of the oxide superconductor. Although it is easy to conduct electricity in the a-axis direction and the b-axis direction,
It is known that it is difficult to conduct electricity in the axial direction. From such a viewpoint, in order to form an oxide superconductor on a base material and use it as a superconductor, an oxide superconductor having a good crystal orientation is formed on the base material, and It is necessary to orient the a-axis or b-axis of the crystal of the oxide superconductor in the direction in which electricity is to flow, and to orient the c-axis of the oxide superconductor in the other direction.

【0003】ところで、酸化物超電導体を導電体として
使用するためには、テープ状などの長尺の基材上に結晶
配向性の良好な酸化物超電導層を形成する必要がある。
ところが、金属テープなどの基材上に酸化物超電導層を
直接形成すると、金属テープ自体が多結晶体でその結晶
構造も酸化物超電導体と大きく異なるために、結晶配向
性の良好な酸化物超電導層は到底形成できないものであ
る。しかも、酸化物超電導層を形成する際に行なう熱処
理によって金属テープと酸化物超電導層との間で拡散反
応が生じるために、酸化物超電導層の結晶構造が崩れ、
超電導特性が劣化する問題がある。そこで本発明者ら
は、ハステロイテープなどの金属テープからなる基材の
上にイットリウム安定化ジルコニア(YSZ)などの多
結晶中間薄膜を形成し、この多結晶中間薄膜上に、酸化
物超電導体の中でも臨界温度が約90Kであり、液体窒
素(77K)中で用いることができる安定性に優れたY
1Ba2Cu3Ox系の超電導層を形成することで超電導特
性の優れた超電導導体を製造する試みを種々行なってい
る。このような試みの中から本発明者らは先に、結晶配
向性に優れた中間薄膜を形成するために、あるいは、超
電導特性の優れた超電導テープを得るために、特願平3
ー126836号、特願平3ー126837号、特願平
3ー205551号、特願平4ー13443号、特願平
4ー293464号などにおいて特許出願を行なってい
る。
In order to use an oxide superconductor as a conductor, it is necessary to form an oxide superconducting layer having good crystal orientation on a long base material such as a tape.
However, if an oxide superconducting layer is formed directly on a base material such as a metal tape, the metal tape itself is polycrystalline and its crystal structure is significantly different from that of the oxide superconductor. Layers cannot be formed at all. Moreover, the heat treatment performed when forming the oxide superconducting layer causes a diffusion reaction between the metal tape and the oxide superconducting layer, so that the crystal structure of the oxide superconducting layer collapses,
There is a problem that superconductivity is deteriorated. Therefore, the present inventors formed a polycrystalline intermediate thin film such as yttrium-stabilized zirconia (YSZ) on a base material made of a metal tape such as Hastelloy tape, and formed an oxide superconductor on the polycrystalline intermediate thin film. Among them, the critical temperature is about 90K, and Y is excellent in stability and can be used in liquid nitrogen (77K).
Various attempts have been made to produce a superconducting conductor having excellent superconducting properties by forming a 1 Ba 2 Cu 3 Ox-based superconducting layer. Among these attempts, the present inventors have previously proposed a method for forming an intermediate thin film having excellent crystal orientation or obtaining a superconducting tape having excellent superconducting properties in Japanese Patent Application No. Hei.
Patent applications have been filed in Japanese Patent Application Nos. 1-12,836, 3-126837, 3-205551, 4-134443, and 4-293364.

【0004】これらの特許出願に記載された技術によれ
ば、ハステロイテープなどのテープ状の基材上にスパッ
タ装置により多結晶中間薄膜を形成する際に、スパッタ
リングと同時に基材成膜面の斜め方向からイオンビーム
を照射しながら多結晶中間薄膜を成膜する方法(イオン
ビームアシストスパッタリング法)により、結晶配向性
に優れた多結晶中間薄膜を形成することができるもので
ある。この方法によれば、多結晶中間薄膜を形成する多
数の結晶粒のそれぞれの結晶格子のa軸あるいはb軸ど
うしのなす角度(粒界傾角)を30度以下に揃えること
ができ、結晶配向性に優れた多結晶中間薄膜を形成する
ことができる。そして更に、この配向性に優れた多結晶
中間薄膜上にYBaCuO系の超電導層をレーザー蒸着
法等により成膜するならば、酸化物超電導層の結晶配向
性も優れたものになり、これにより、結晶配向性に優
れ、77Kで臨界電流密度が105A/cm2以上と高い
酸化物超電導層を形成することができる。
According to the techniques described in these patent applications, when a polycrystalline intermediate thin film is formed on a tape-like base material such as a Hastelloy tape by a sputtering apparatus, the surface of the base film is obliquely formed simultaneously with sputtering. A polycrystalline intermediate thin film having excellent crystal orientation can be formed by a method of forming an intermediate polycrystalline thin film while irradiating an ion beam from a direction (ion beam assisted sputtering method). According to this method, the angle (grain boundary tilt angle) between the a-axis or the b-axis of each crystal lattice of a number of crystal grains forming the polycrystalline intermediate thin film can be made equal to or less than 30 degrees, and the crystal orientation An excellent polycrystalline intermediate thin film can be formed. Further, if a YBaCuO-based superconducting layer is formed on the polycrystalline intermediate thin film having excellent orientation by a laser vapor deposition method or the like, the crystal orientation of the oxide superconducting layer also becomes excellent. An oxide superconducting layer having excellent crystal orientation and having a critical current density as high as 10 5 A / cm 2 or more at 77 K can be formed.

【0005】図4は、前述のイオンビームアシストスパ
ッタリンング法に用いられる従来の配向制御多結晶薄膜
の蒸着装置の例を示す概略構成図である。この配向制御
多結晶薄膜の蒸着装置は、イオンビームスパッタ装置に
イオンビームアシスト用のイオンガンを設けた構成とな
っており、テープ状の基材2を支持するとともに基材2
を加熱する基材ホルダ3と、この基材ホルダ3に基材2
を送り出すための基材送出ボビン4と、基材ホルダ3上
で配向制御多結晶中間薄膜が形成された基材2を巻き取
る基材巻取ボビン5と、前記基材ホルダ3の斜め上方に
対向配置され、目的の組成の配向制御多結晶中間薄膜と
同じ組成からなるターゲット6と、前記ターゲット6の
斜め上方においてターゲット6の下面に向けて配置され
たスパッタビーム照射装置8と、前記基材ホルダ3の側
方に対向配置され、かつ前記ターゲット6と離間して配
置されたイオンガン7とが、真空排気可能な蒸着処理容
器10内に収納された概略構成となっている。前記イオ
ンガン7は、その中心軸線Sを基材2の成膜面に対して
入射角度θ(基材2の垂線(法線)と中心軸線Sとのな
す角度)でもって傾斜させて対向配置されることによ
り、イオンビームを基材2の成膜面に対して入射角度θ
でもって照射できるようになっている。
FIG. 4 is a schematic structural view showing an example of a conventional apparatus for depositing an orientation-controlled polycrystalline thin film used in the above-mentioned ion beam assisted sputtering method. The deposition apparatus for the orientation control polycrystalline thin film has a configuration in which an ion gun for ion beam assist is provided in an ion beam sputtering apparatus.
And a substrate 2 for heating the substrate.
A substrate feeding bobbin 4 for feeding the substrate, a substrate winding bobbin 5 for winding the substrate 2 on which the orientation control polycrystalline intermediate thin film is formed on the substrate holder 3, and a diagonally above the substrate holder 3. A target 6 disposed oppositely and having the same composition as the orientation-controlling polycrystalline intermediate thin film having a desired composition; a sputter beam irradiation device 8 disposed obliquely above the target 6 toward the lower surface of the target 6; The ion gun 7, which is disposed to face the side of the holder 3 and is spaced apart from the target 6, is housed in a vacuum processing container 10 capable of being evacuated. The ion gun 7 is opposed to the ion gun 7 with its central axis S inclined with respect to the film-forming surface of the substrate 2 at an incident angle θ (an angle between a perpendicular (normal) of the substrate 2 and the central axis S). As a result, the ion beam is incident on the deposition surface of the substrate 2 at an incident angle θ.
Irradiation is possible.

【0006】[0006]

【発明が解決しようとする課題】ところで従来の配向制
御多結晶薄膜の蒸着装置を用いて基材2上に配向制御多
結晶中間薄膜を形成する場合においては、多結晶中間薄
膜の結晶配向性についてはイオンビームの基材2に対す
る入射角度θにより制御することができるものの、この
イオンビームの最適照射領域(最適蒸着領域)は限られ
ているため、最適照射領域以外に位置するテープ状の基
材2上に蒸着した多結晶中間薄膜の結晶配向性が悪く、
従ってこのような結晶配向性が悪い多結晶中間薄膜上に
酸化物超電導層を形成すると、この酸化物超電導層の結
晶配向性が悪くなり、その結果、得られる酸化物超電導
導体の超電導特性が低下してしまうという問題があっ
た。そこで、このような問題を解決するために、板状の
マスク11をテープ状の基材2のイオンガン7との間に
配置し、最適照射領域に位置するテープ状の基材2の表
面に配向制御多結晶中間薄膜を蒸着するようにしてい
た。
In the case where an orientation-controlling polycrystalline intermediate thin film is formed on the substrate 2 using a conventional orientation-controlling polycrystalline thin film deposition apparatus, the crystal orientation of the polycrystalline intermediate thin film is reduced. Can be controlled by the incident angle θ of the ion beam with respect to the base material 2, but since the optimum irradiation area (optimum deposition area) of the ion beam is limited, the tape-shaped base material located outside the optimum irradiation area 2. The polycrystalline intermediate thin film deposited on 2 has poor crystal orientation,
Therefore, when an oxide superconducting layer is formed on such a polycrystalline intermediate thin film having a poor crystal orientation, the crystal orientation of the oxide superconducting layer deteriorates, and as a result, the superconducting properties of the resulting oxide superconducting conductor deteriorate. There was a problem of doing it. Therefore, in order to solve such a problem, a plate-shaped mask 11 is arranged between the tape-shaped substrate 2 and the ion gun 7 to orient the surface of the tape-shaped substrate 2 located in the optimum irradiation area. A control polycrystalline intermediate thin film was deposited.

【0007】しかしながら前述のようなマスク11を配
設しても結晶配向性を向上させる効果が不十分で、蒸着
処理容器10内の真空中に拡散するターゲット6の構成
粒子が基材巻取ボビン5側において基材2上の配向制御
多結晶中間薄膜の表面に付着し、配向制御多結晶中間薄
膜の最表面が結晶配向性が悪い薄い膜で覆われてしま
い、従ってこの結晶配向性が悪い薄い膜上に酸化物超電
導層に形成して得られる酸化物超電導導体の超電導特性
に不満があった。また、このような結晶配向性が悪い薄
い膜をイオンビームで除去しながら成膜する方法も考え
られているが、成膜効率が大幅に低下してしまうという
問題があった。
However, even if the mask 11 as described above is provided, the effect of improving the crystal orientation is insufficient, and the constituent particles of the target 6 diffused in a vacuum in the vapor deposition processing vessel 10 may cause the substrate winding bobbin. On the 5th side, it adheres to the surface of the orientation-controlling polycrystalline intermediate thin film on the base material 2, and the outermost surface of the orientation-controlling polycrystalline intermediate thin film is covered with a thin film having poor crystal orientation, and therefore this crystal orientation is poor. There was dissatisfaction with the superconducting properties of the oxide superconducting conductor obtained by forming the oxide superconducting layer on the thin film. Further, a method of forming a film while removing such a thin film having poor crystal orientation with an ion beam has been considered, but there was a problem that the film formation efficiency was greatly reduced.

【0008】本発明は前記課題を解決するためになされ
たもので、成膜効率を低下させることなく、配向制御多
結晶薄膜の表面の結晶配向性を向上させることができる
配向制御多結晶薄膜の蒸着方法と、これ方法の実施に好
適に用いることができる配向制御多結晶薄膜の蒸着装置
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide an orientation control polycrystalline thin film capable of improving the crystal orientation on the surface of the orientation control polycrystalline thin film without lowering the film forming efficiency. An object of the present invention is to provide a vapor deposition method and an apparatus for depositing an orientation-controlled polycrystalline thin film that can be suitably used for carrying out the method.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
真空排気可能な蒸着処理容器内に設けたターゲットから
発生したターゲットの構成粒子を前記ターゲットの近傍
を移動中のテープ状の基材上に順次堆積させるとともに
この基材成膜面の斜め方向からイオンビームを照射して
配向制御多結晶薄膜を蒸着する配向制御多結晶薄膜の蒸
着方法において、 前記テープ状の基材上にターゲット
の構成粒子を順次堆積させるとともにイオンビームを照
射して配向制御多結晶薄膜を蒸着しながら、この配向制
御多結晶薄膜を蒸着したテープ状の基材の周囲を覆いな
がら巻き取る工程を備えることを特徴とする配向制御多
結晶薄膜の蒸着方法を前記課題の解決手段とした。
According to the first aspect of the present invention,
The constituent particles of the target generated from the target provided in the evaporation processing container capable of being evacuated are sequentially deposited on the tape-shaped substrate moving in the vicinity of the target, and ions are formed obliquely from the film forming surface of the substrate. In a method for depositing an orientation control polycrystalline thin film, the orientation control polycrystal thin film is deposited by sequentially irradiating an ion beam and irradiating an ion beam with the ion beam. Means for solving the above problems are a method for depositing an orientation control polycrystalline thin film, which comprises a step of winding up while covering the periphery of a tape-shaped substrate on which the orientation control polycrystalline thin film is deposited while depositing the thin film. did.

【0010】また、請求項2記載の発明は、ターゲット
と、このターゲットの構成粒子をスパッタしてターゲッ
トの近傍を移動中のテープ状の基材上に堆積するスパッ
タ手段と、前記テープ状の基材上に堆積中のターゲット
の構成粒子にイオンビームを基材成膜面の斜め方向から
照射するイオンガンと、配向制御多結晶薄膜が蒸着され
たテープ状の基材を巻き取る基材巻取装置とが真空排気
可能な蒸着処理容器内に設けられてなる配向制御多結晶
薄膜の蒸着装置において、蒸着後のテープ状の基材と、
前記基材巻取装置に巻き取られた蒸着後のテープ状の基
材を前記基材巻取装置ごと覆うためのカバーが備えら
れ、該カバーには蒸着後のテープ状の基材を導入するた
めのスリットが形成されていることを特徴とする配向制
御多結晶薄膜の蒸着装置を前記課題の解決手段とした。
Further, the invention according to claim 2 provides a target, a sputter means for sputtering the constituent particles of the target and depositing it on a tape-shaped substrate moving near the target, and the tape-shaped base. An ion gun that irradiates the constituent particles of the target being deposited on the material with an ion beam from an oblique direction of the substrate deposition surface, and a substrate winding device that winds a tape-like substrate on which an orientation control polycrystalline thin film is deposited In a vapor deposition apparatus for orientation control polycrystalline thin film that is provided in a vacuum processing container capable of vacuum evacuation, a tape-shaped substrate after vapor deposition,
A cover is provided for covering the tape-shaped base material after evaporation wound by the base material winding device together with the base material winding device, and the tape-shaped base material after evaporation is introduced into the cover. The object of the present invention is to provide an apparatus for depositing an orientation control polycrystalline thin film, characterized in that a slit for forming the same is formed.

【0011】[0011]

【発明の実施の形態】以下、本発明の配向制御多結晶薄
膜の蒸着方法及び蒸着装置を酸化物超電導導体の製造方
法においてテープ状の基材上に配向制御多結晶中間薄膜
(配向制御多結晶薄膜)を蒸着する方法及びこれに用い
る蒸着装置に適用した一実施形態について説明する。図
1は、本発明の配向制御多結晶薄膜の蒸着装置の一実施
形態を示す概略構成図である。この実施形態の配向制御
多結晶薄膜の蒸着装置は、テープ状の基材22を支持す
るとともに所望温度に加熱することができる基材ホルダ
23と、基材ホルダ23上にテープ状の基材22を送り
出すための基材送出ボビン(基材送出装置)24と、配
向制御多結晶中間薄膜(配向制御多結晶薄膜)が形成さ
れたテープ状の基材22を巻き取るための基材巻取ボビ
ン(基材巻取装置)25と、蒸着後のテープ状の基材2
2と基材巻取装置25に巻き取られた蒸着後のテープ状
の基材22を前記基材巻取装置25ごと覆うためのカバ
ー26と、この基材ホルダ23の斜め上方に所定間隔を
もって対向配置された板状のターゲット36と、このタ
ーゲット36の斜め上方においてターゲット36の下面
に向けて配置されたスパッタビーム照射装置(スパッタ
手段)38と、前記基材ホルダ23の側方に所定間隔を
もって対向され、かつ、前記ターゲット36と離間して
配置されたイオンガン39とが真空排気可能な蒸着処理
容器40内に収納された概略構成となっている。
BEST MODE FOR CARRYING OUT THE INVENTION In the following, in a method for producing an oxide superconducting conductor, a method for depositing an orientation-controlled polycrystalline thin film according to the present invention will be described. A method for depositing a thin film and an embodiment applied to a deposition apparatus used for the method will be described. FIG. 1 is a schematic configuration diagram showing one embodiment of an orientation control polycrystalline thin film deposition apparatus of the present invention. The apparatus for depositing an orientation-controlled polycrystalline thin film according to this embodiment includes a substrate holder 23 that supports the tape-shaped substrate 22 and can be heated to a desired temperature, and a tape-shaped substrate 22 on the substrate holder 23. Feeding bobbin (substrate feeding device) 24 for feeding the substrate and a substrate winding bobbin for winding a tape-shaped substrate 22 on which an orientation control polycrystalline intermediate thin film (orientation control polycrystalline thin film) is formed. (Substrate winding device) 25 and tape-shaped substrate 2 after vapor deposition
2 and a cover 26 for covering the tape-shaped base material 22 after evaporation wound up by the base material winding device 25 together with the base material winding device 25, and a predetermined interval diagonally above the base material holder 23. A plate-like target 36 disposed oppositely, a sputter beam irradiator (sputtering means) 38 disposed obliquely above the target 36 toward the lower surface of the target 36, and a predetermined distance beside the substrate holder 23. The ion gun 39, which is opposed to the target 36 and is spaced apart from the target 36, is housed in a vacuum processing container 40 capable of being evacuated.

【0012】前記基材ホルダ23は、内部に加熱ヒータ
を備え、基材ホルダ23の上に送り出されたテープ状の
基材22を必要に応じて所望の温度に加熱できるように
なっている。この基材ホルダ23はピン等により支持体
23aに回動自在に取り付けられており、傾斜角度を調
整できるようになっている。このような基材ホルダ23
は、蒸着処理容器40内のイオンガン39から照射され
るイオンビームの最適照射領域(最適蒸着領域)に配設
されている。テープ状の基材22の構成材料としては、
ステンレス鋼、銅、または、ハステロイなどのニッケル
合金などの合金各種金属材料から適宜選択される長尺の
金属テープを用いることができる。
The substrate holder 23 is provided with a heater therein so that the tape-shaped substrate 22 sent out onto the substrate holder 23 can be heated to a desired temperature as required. The substrate holder 23 is rotatably attached to the support 23a by a pin or the like so that the inclination angle can be adjusted. Such a substrate holder 23
Is disposed in an optimum irradiation area (optimum evaporation area) of the ion beam irradiated from the ion gun 39 in the evaporation processing container 40. As a constituent material of the tape-shaped base material 22,
A long metal tape appropriately selected from various metal materials such as stainless steel, copper, or various alloys such as nickel alloys such as Hastelloy can be used.

【0013】この実施形態の蒸着装置においては、前記
基材送出ボビン24から基材ホルダ23上にテープ状の
基材22を連続的に送り出し、前記最適照射領域で配向
制御多結晶中間薄膜が蒸着された基材2を基材巻取ボビ
ン25で巻き取ることで基材22上に連続成膜すること
ができるようになっている。この基材巻取ボビン25
は、前記最適照射領域の外に配設されている。この基材
巻取ボビン25およびこれに巻き取られた蒸着後のテー
プ状の基材22は、カバー26で覆われている。
In the vapor deposition device of this embodiment, the tape-shaped substrate 22 is continuously fed from the substrate delivery bobbin 24 onto the substrate holder 23, and the orientation-controlled polycrystalline intermediate thin film is deposited in the optimum irradiation region. By winding the base material 2 thus wound by the base material winding bobbin 25, a continuous film can be formed on the base material 22. This substrate winding bobbin 25
Are arranged outside the optimum irradiation area. The substrate winding bobbin 25 and the tape-shaped substrate 22 after evaporation wound thereon are covered with a cover 26.

【0014】カバー26は、図2に示すように前記最適
照射領域内からこの領域外に導出された蒸着後のテープ
状の基材22を導入するためのスリット27を有し、基
材巻取ボビン25に巻き取られた基材22を取り出し可
能な構造のものである。このカバー26の材質として
は、後述するターゲット36の構成粒子と反応しない材
料を用いるのが好ましく、ステンレス鋼、アルミニウム
合金などを挙げることができる。スリット27の形状
は、導入される蒸着後のテープ状の基材22の外形の輪
郭と略同様のものであり、また、このスリット27の大
きさは、これに通される蒸着後のテープ状の基材22と
の間にできる隙間ができるだけ小さくすることが好まし
い。スリット27と蒸着後のテープ状の基材22との隙
間が大きすぎると、蒸着処理容器40内の真空中に拡散
するターゲット26の構成粒子が前記隙間からカバー2
6内に入り、基材22上に形成された配向制御多結晶中
間薄膜の表面に付着し、配向制御多結晶中間薄膜の最表
面の結晶配向性が悪くなってしまう。このようなカバー
26の配設位置は、最適照射領域外に導出された蒸着後
のテープ状の基材22を直ちに覆うことができるように
最適照射領域の直後(基材ホルダ23の直後)にスリッ
ト27が開口する位置に配設するのが好ましい。
As shown in FIG. 2, the cover 26 has a slit 27 for introducing the vapor-deposited tape-like base material 22 led out of the optimum irradiation area to outside this area. The structure is such that the base material 22 wound around the bobbin 25 can be taken out. As a material of the cover 26, it is preferable to use a material that does not react with constituent particles of the target 36 described later, and examples thereof include stainless steel and an aluminum alloy. The shape of the slit 27 is substantially the same as the outline of the outer shape of the tape-shaped base material 22 after the vapor deposition to be introduced. It is preferable that the gap formed between the substrate 22 and the substrate 22 is as small as possible. If the gap between the slit 27 and the tape-shaped base material 22 after the vapor deposition is too large, the constituent particles of the target 26 that diffuse into the vacuum in the vapor deposition processing container 40 will cover the cover 2 from the gap.
6, and adheres to the surface of the orientation-controlling polycrystalline intermediate thin film formed on the base material 22, and the crystal orientation of the outermost surface of the orientation-controlling polycrystalline intermediate thin film deteriorates. The disposition position of such a cover 26 is immediately after the optimum irradiation area (immediately after the base material holder 23) so that the tape-like base material 22 after deposition led out of the optimum irradiation area can be immediately covered. It is preferable to dispose it at a position where the slit 27 opens.

【0015】前記ターゲット36は、目的とする配向制
御多結晶中間薄膜を形成するためのものであり、目的の
組成の配向制御多結晶中間薄膜と同一組成あるいは近似
組成のものなどを用いる。ターゲット36として具体的
には、MgOあるいはY23で安定化したジルコニア
(YSZ)、MgO、SrTiO3などを用いるがこれ
に限るものではなく、形成しようとする配向制御多結晶
中間薄膜に見合うターゲットを適宜用いれば良い。この
ようなターゲット36は、ピン等によりターゲット支持
体36aに回動自在に取り付けられており、傾斜角度を
調整できるようになっている。
The target 36 is for forming a target orientation-controlling polycrystalline intermediate thin film, and has the same composition or a similar composition as the target orientation-controlling polycrystalline intermediate thin film. Specifically, zirconia (YSZ) stabilized with MgO or Y 2 O 3 , MgO, SrTiO 3, or the like is used as the target 36, but the present invention is not limited to this, and is suitable for the orientation control polycrystalline intermediate thin film to be formed. A target may be used as appropriate. Such a target 36 is rotatably attached to a target support 36a by a pin or the like, so that the tilt angle can be adjusted.

【0016】前記スパッタビーム照射装置(スパッタ手
段)38は、容器の内部に、蒸発源を収納し、蒸発源の
近傍に引き出し電極を備えて構成されているものであ
り、ターゲット36に対してイオンビームを照射してタ
ーゲット36の構成粒子を基材22に向けて叩き出すこ
とができるものである。
The sputter beam irradiator (sputtering means) 38 is configured such that an evaporation source is housed in a container and an extraction electrode is provided near the evaporation source. By irradiating the beam, constituent particles of the target 36 can be beaten toward the base material 22.

【0017】前記イオンガン39は、スパッタビーム照
射装置38と略同様の構成のものであり、容器の内部に
蒸発源を収納し、蒸発源の近傍に引き出し電極を備えて
構成されている。そして、前記蒸発源から発生した原子
または分子の一部をイオン化し、そのイオン化した粒子
を引き出し電極で発生させた電界で制御してイオンビー
ムとして照射する装置である。粒子をイオン化するには
直流放電方式、高周波励起方式、フィラメント式、クラ
スタイオンビーム方式などの種々のものがある。フィラ
メント式はタングステン製のフィラメントに通電加熱し
て熱電子を発生させ、高真空中で蒸発粒子と衝突させて
イオン化する方法である。また、クラスタイオンビーム
方式は、原料を入れたるつぼの開口部に設けられたノズ
ルから真空中に出てくる集合分子のクラスタを熱電子で
衝撃してイオン化して放射するものである。この実施形
態の蒸着装置においては、図3に示す構成の内部構造の
イオンガン39を用いる。このイオンガン39は、筒状
の容器45の内部に、引出電極46とフィラメント47
とArガスなどの導入管48とを備えて構成され、容器
45の先端からイオンをビーム状に平行に照射できるも
のである。
The ion gun 39 has substantially the same configuration as that of the sputter beam irradiation device 38. The ion gun 39 accommodates an evaporation source inside a container, and has an extraction electrode near the evaporation source. Then, a part of the atoms or molecules generated from the evaporation source is ionized, and the ionized particles are controlled by an electric field generated by an extraction electrode and irradiated as an ion beam. There are various methods for ionizing particles, such as a DC discharge method, a high-frequency excitation method, a filament method, and a cluster ion beam method. The filament type is a method in which a tungsten filament is energized and heated to generate thermoelectrons, which are collided with evaporated particles in a high vacuum to be ionized. In the cluster ion beam method, clusters of aggregated molecules coming out of vacuum from a nozzle provided at an opening of a crucible containing raw materials are bombarded with thermal electrons to be ionized and emitted. In the vapor deposition apparatus of this embodiment, an ion gun 39 having the internal structure shown in FIG. 3 is used. The ion gun 39 includes an extraction electrode 46 and a filament 47 inside a cylindrical container 45.
And an introduction pipe 48 for Ar gas or the like, and can irradiate ions from the tip of the container 45 in a beam shape in parallel.

【0018】前記イオンガン39は、図1に示すように
その中心軸線Sを基材22の成膜面に対して入射角度θ
(基材22の垂線(法線)と中心線Sとのなす角度)で
もって傾斜させて対向されている。この入射角度θは5
0〜60度の範囲が好ましいが、55〜60度の範囲が
最も好ましい。従ってイオンガン39は基材22の成膜
面に対して入射角度θでもってイオンビームを照射でき
るように配置されている。なお、前記イオンガン39に
よって基材22に照射するイオンビームは、He +、N
+、Ar+、Xe+、Kr+などの希ガスのイオンビー
ム、あるいは、それらと酸素イオンの混合イオンビーム
などで良い。だだし、形成しようとする配向制御多結晶
中間薄膜の結晶構造を整えるためには、ある程度の原子
量が必要であり、あまりに軽量のイオンでは効果が薄く
なることを考慮すると、Ar+、Kr+などのイオンを用
いることが好ましい。
The ion gun 39 is, as shown in FIG.
The center axis S is set to the incident angle θ with respect to the film forming surface of the base material 22.
(The angle between the perpendicular (normal) of the substrate 22 and the center line S)
Thus, they face each other at an angle. This incident angle θ is 5
The range of 0 to 60 degrees is preferable, but the range of 55 to 60 degrees is preferable.
Most preferred. Therefore, the ion gun 39 forms the
Ion beam can be irradiated at an incident angle θ to the surface
It is arranged so that. The ion gun 39
Therefore, the ion beam applied to the base material 22 is He +, N
e+, Ar+, Xe+, Kr+Noble gas ionbee
Or a mixed ion beam of them and oxygen ions
And so on. However, the orientation-controlled polycrystal to be formed
In order to adjust the crystal structure of the intermediate thin film,
It is necessary to have a sufficient amount, and it is not effective with ions that are too light.
Considering that+, Kr+Use ions such as
Is preferred.

【0019】また、前記蒸着処理容器40には、この容
器40内を真空などの低圧状態にするためのロータリー
ポンプ51およびクライオポンプ52と、ガスボンベな
どの雰囲気ガス供給源53がそれぞれ接続されていて、
蒸着処理容器40の内部を真空などの低圧状態で、か
つ、アルゴンガスあるいはその他の不活性ガス雰囲気ま
たは酸素を含む不活性ガス雰囲気にすることができるよ
うになっている。さらに、前記蒸着処理容器40には、
この容器40内のイオンビームの電流密度を測定するた
めの電流密度計測装置54と、前記容器40内の圧力を
測定するための圧力計55が取り付けられている。な
お、この実施形態の蒸着装置では基材ホルダ23をピン
等により支持体23aに回動自在に取り付けることによ
り傾斜角度を調整できるようしたが、イオンガン39の
支持部分に角度調整機構を取り付けてイオンガン39の
傾斜角度を調整し、イオンビームの入射角度を調整する
ようにしても良く、また、角度調整機構はこの例に限る
ものではなく、種々の構成のものを採用することができ
るのは勿論である。
Further, a rotary pump 51 and a cryopump 52 for bringing the inside of the container 40 into a low pressure state such as a vacuum, and an atmosphere gas supply source 53 such as a gas cylinder are connected to the evaporation processing container 40, respectively. ,
The inside of the vapor deposition processing container 40 can be set to a low pressure state such as a vacuum and an argon gas or other inert gas atmosphere or an inert gas atmosphere containing oxygen. Further, the evaporation processing container 40 includes:
A current density measuring device 54 for measuring the current density of the ion beam in the container 40 and a pressure gauge 55 for measuring the pressure in the container 40 are attached. In the vapor deposition apparatus of this embodiment, the tilt angle can be adjusted by rotatably attaching the substrate holder 23 to the support 23a with a pin or the like. The angle of inclination of 39 may be adjusted to adjust the angle of incidence of the ion beam, and the angle adjusting mechanism is not limited to this example, and it is needless to say that various configurations can be employed. It is.

【0020】次に前記構成の蒸着装置を用いてテープ状
の基材22上にYSZの配向制御多結晶中間薄膜を形成
する場合について説明する。テープ状の基材22上に配
向制御多結晶中間薄膜(配向制御多結晶薄膜)を形成す
るには、YSZからなるターゲット36を用い、基材ホ
ルダ23を最適照射領域に配置するとともに傾斜角度を
調節してイオンガン39から照射されるイオンビームを
基材ホルダ23上に移動してきた基材22の成膜面に5
0〜60度の範囲の角度で照射できるようにする。ま
た、テープ状の基材22が巻かれた基材送出装置24を
蒸着処理容器40内に配置し、一方、蒸着処理容器40
内の最適照射領域の外で、最適照射領域外に導出された
蒸着後のテープ状の基材22を直ちに覆うことができる
ように最適照射領域の直後(基材ホルダ23の直後)に
スリット27が開口するようにカバー26を配置し、こ
のカバー26内に基材巻取ボビン25を収納し、基材送
出ボビン24からテープ状の基材22を基材ホルダ23
上に連続的に送り出し、続いてカバー26内の基材巻取
ボビン25で巻き取れるようにセットする。次に、蒸着
処理容器40の内部を真空引きして減圧雰囲気とする。
そして、イオンガン39とスパッタビーム照射装置38
を作動させる。
Next, a case where an YSZ orientation-controlling polycrystalline intermediate thin film is formed on the tape-like base material 22 by using the vapor deposition apparatus having the above structure will be described. In order to form an orientation control polycrystalline intermediate thin film (orientation control polycrystalline thin film) on the tape-like base material 22, a target 36 made of YSZ is used, the base material holder 23 is arranged in the optimum irradiation area, and the inclination angle is adjusted. The adjusted ion beam emitted from the ion gun 39 is applied to the film-forming surface of the base material 22 which has been moved onto the base material holder 23.
Irradiation can be performed at an angle in the range of 0 to 60 degrees. Further, the base material delivery device 24 on which the tape-shaped base material 22 is wound is disposed in the evaporation processing container 40, while the evaporation processing container 40
The slit 27 is provided immediately after the optimum irradiation area (immediately after the base material holder 23) so as to be able to immediately cover the tape-shaped base material 22 after deposition, which is led out of the optimum irradiation area, outside the optimum irradiation area. The base material winding bobbin 25 is accommodated in the cover 26, and the tape-shaped base material 22 is transferred from the base material delivery bobbin 24 to the base material holder 23.
It is set so that it can be continuously fed up and then wound up by the substrate winding bobbin 25 in the cover 26. Next, the inside of the evaporation processing container 40 is evacuated to a reduced pressure atmosphere.
Then, the ion gun 39 and the sputter beam irradiation device 38
Activate

【0021】スパッタビーム照射装置38からターゲッ
ト36にイオンビームを照射すると、ターゲット36の
構成粒子が叩き出されて基材22上に飛来する。そし
て、最適照射領域内にある基材ホルダ23上に送り出さ
れた基材22上にターゲット36から叩き出した構成粒
子を堆積させると同時にイオンガン39からArイオン
と酸素イオンの混合イオンビームを照射して所望の厚み
の配向制御多結晶中間薄膜を蒸着し、続いて最適照射領
域からこの領域外に送り出された蒸着後のテープ状の基
材22をスリット27からカバー26内に導入し、基材
巻取ボビン25に巻き取る。
When the target 36 is irradiated with an ion beam from the sputtering beam irradiation device 38, the constituent particles of the target 36 are beaten out and fly over the substrate 22. Then, the constituent particles struck out of the target 36 are deposited on the base material 22 sent out onto the base material holder 23 located in the optimum irradiation area, and at the same time, a mixed ion beam of Ar ions and oxygen ions is irradiated from the ion gun 39. To deposit a polycrystalline intermediate thin film having a desired thickness in the desired direction, and then introduce the tape-shaped base material 22 after evaporation sent out of the optimum irradiation region to the outside of the region through the slit 27 into the cover 26. It is wound around the winding bobbin 25.

【0022】ここでイオン照射する際の入射角度θは、
50〜60度の範囲が好ましく、55〜60度の範囲が
最も好ましい。ここでθを90度とすると、多結晶中間
薄膜のc軸は基材22上の成膜面に対して直角に配向す
るものの、基材22の成膜面上に(111)面が立つの
で好ましくない。また、θを30度とすると、多結晶中
間薄膜はc軸配向すらしなくなる。前記のような好まし
い範囲の角度でイオンビーム照射するならば多結晶中間
薄膜の結晶の(100)面が立つようになる。このよう
な入射角度でイオンビーム照射を行ないながらスパッタ
リングを行なうことで、基材22上に形成されるYSZ
の配向制御多結晶中間薄膜の結晶軸のa軸とb軸とを配
向させることができるが、これは、堆積されている途中
のスパッタ粒子に対して適切な角度でイオンビーム照射
されたことによるものと思われる。
Here, the incident angle θ at the time of ion irradiation is
A range of 50 to 60 degrees is preferred, and a range of 55 to 60 degrees is most preferred. If θ is 90 degrees, the c-axis of the polycrystalline intermediate thin film is oriented at right angles to the film-forming surface on the substrate 22, but the (111) plane stands on the film-forming surface of the substrate 22. Not preferred. When θ is 30 degrees, the polycrystalline intermediate thin film does not even have c-axis orientation. If the ion beam is irradiated at an angle in the preferable range as described above, the (100) plane of the crystal of the polycrystalline intermediate thin film stands. By performing sputtering while performing ion beam irradiation at such an incident angle, the YSZ
A) and b axis of the crystal axis of the polycrystalline intermediate thin film can be oriented, but this is because the sputter particles being deposited are irradiated with an ion beam at an appropriate angle. It seems to be.

【0023】前述のような配向制御多結晶中間薄膜の蒸
着方法あっては、前記テープ状の基材22上にターゲッ
ト36の構成粒子を順次堆積させるとともにイオンビー
ムを照射して配向制御多結晶中間薄膜を蒸着し、さらに
これとともにこの配向制御多結晶中間薄膜を蒸着したテ
ープ状の基材22の周囲を覆いながら巻き取るようにし
たことにより、蒸着処理容器40内の真空中に拡散する
ターゲット36の構成粒子が基材巻取ボビン25側にお
いて基材22上に形成された配向制御多結晶中間薄膜の
表面に付着することが殆どなく、配向制御多結晶中間薄
膜の最表面に付着する結晶配向性が悪い薄い膜を実用上
殆ど問題のない程度まで大幅に低減することができる。
従って、結晶配向性が悪い薄い膜の付着が殆どなく、し
かも最表面の結晶配向性が優れた配向制御多結晶中間薄
膜上に酸化物超電導層を成膜すると、この酸化物超電導
層も結晶配向性に優れたものとなり、得られる酸化物超
電導導体の超電導特性を向上させることができる。
In the above-described method for depositing the orientation-controlling polycrystalline intermediate thin film, the constituent particles of the target 36 are sequentially deposited on the tape-like base material 22 and irradiated with an ion beam to form the orientation-controlling polycrystalline intermediate thin film. Since the thin film is deposited and wound up while covering the tape-shaped substrate 22 on which the orientation control polycrystalline intermediate thin film is deposited, the target 36 diffused in a vacuum in the deposition processing container 40. Is hardly attached to the surface of the orientation controlling polycrystalline intermediate thin film formed on the substrate 22 on the substrate winding bobbin 25 side, and the crystal orientation is attached to the outermost surface of the orientation controlling polycrystalline intermediate thin film. A thin film having poor properties can be significantly reduced to a practically negligible level.
Therefore, when an oxide superconducting layer is formed on an orientation-controlling polycrystalline intermediate thin film having little crystal adhesion with poor crystal orientation and excellent crystal orientation on the outermost surface, the oxide superconducting layer also has crystal orientation. The superconductivity of the obtained oxide superconducting conductor can be improved.

【0024】[0024]

【実施例】(実施例)図1に示す構成の配向制御多結晶
薄膜の蒸着装置を使用し、テープ状の基材が巻かれた基
材送出装置を蒸着処理容器内に配置し、一方、蒸着後の
テープ状の基材を直ちに覆うことができるように基材ホ
ルダの直後にスリットが開口するようにカバーを配設
し、このカバー内に基材巻取ボビンを収納し、基材送出
ボビンからテープ状の基材を基材ホルダ上に連続的に送
り出し、続いてカバー内の基材巻取ボビンで巻き取れる
ようにセットした。テープ状の基材としては、幅10m
m、厚さ0.1mm、長さ10cmのハステロイC27
6テープを使用した。また、ターゲットはYSZ(安定
化ジルコニア)製のものを用いた。そして、この蒸着装
置の蒸着処理容器内部を真空ポンプで真空引きして3.
0×10-4トールに減圧した。スパッタ電圧1000
V、スパッタ電流100mA、イオン源のビームの入射
角度を55度に各々設定し、イオン源のアシスト電圧を
300Vに、イオンビームの電流密度を100μA/c
2にそれぞれ設定して基材の成膜面上にスパッタリン
グと同時にイオン照射を行ない、テープ速度10cm/
時間でテープ状の基材を送りながら成膜処理することで
厚さ1.0μmのYSZ配向制御多結晶中間薄膜を蒸着
するとともに蒸着後のテープ状の基材をスリットからカ
バー内に導入して該基材の周囲を覆いながら基材巻取ボ
ビンに巻き取った。なお、前記イオンビームの電流密度
とは、蒸着処理容器に取り付けた電流密度計測装置の計
測数値によるものである。
(Embodiment) Using a deposition apparatus for an orientation-controlling polycrystalline thin film having the structure shown in FIG. 1, a substrate feeding device wound with a tape-shaped substrate was disposed in a deposition processing container. A cover is arranged so that a slit is opened immediately after the base material holder so that the tape-shaped base material after vapor deposition can be immediately covered, and a base material winding bobbin is stored in the cover, and the base material is sent out. The tape-shaped substrate was continuously fed from the bobbin onto the substrate holder, and then set so that the substrate could be wound up by the substrate winding bobbin in the cover. 10m width as a tape-shaped substrate
m, thickness 0.1mm, length 10cm Hastelloy C27
Six tapes were used. Further, a target made of YSZ (stabilized zirconia) was used. Then, the inside of the vapor deposition processing container of this vapor deposition apparatus was evacuated with a vacuum pump.
The pressure was reduced to 0 × 10 −4 Torr. Sputtering voltage 1000
V, the sputtering current was set to 100 mA, the beam incident angle of the ion source was set to 55 degrees, the assist voltage of the ion source was set to 300 V, and the current density of the ion beam was set to 100 μA / c.
m 2 , ion irradiation was performed simultaneously with sputtering on the film-forming surface of the substrate, and the tape speed was 10 cm /
The YSZ orientation control polycrystalline intermediate thin film having a thickness of 1.0 μm is deposited by feeding the tape-shaped base material in a time, and the tape-shaped base material after the deposition is introduced from the slit into the cover. The substrate was wound around a substrate winding bobbin while covering the periphery of the substrate. In addition, the current density of the ion beam is based on a numerical value measured by a current density measuring device attached to a deposition processing container.

【0025】次に、前記配向制御多結晶中間薄膜上にレ
ーザ蒸着装置を用いて厚さ1.0μmの酸化物超電導層
を形成し、酸化物超電導導体を作製した。このレーザ蒸
着装置に備えるターゲットとしては、Y0.7Ba1.7Cu
3.07-xなる組成の酸化物超電導体からなるターゲット
を用いた。蒸着処理室の内部を1×10-6トールに減圧
した後、内部に酸素を導入し2×10-3トールとした
後、レーザ蒸着を行なった。ターゲット蒸発用のレーザ
として波長193nmのArFレーザを用いた。この成
膜後、400゜Cで60分間、酸素雰囲気中において薄
膜を熱処理した。以上の処理で得られた酸化物超電導導
体は、厚さ102.0μm、 幅10mm、長さ10c
mのものである。
Next, an oxide superconducting layer having a thickness of 1.0 μm was formed on the orientation-controlling polycrystalline intermediate thin film by using a laser vapor deposition apparatus, thereby producing an oxide superconducting conductor. As a target provided in this laser deposition apparatus, Y 0.7 Ba 1.7 Cu
A target composed of an oxide superconductor having a composition of 3.0 O 7-x was used. After the pressure inside the vapor deposition processing chamber was reduced to 1 × 10 −6 Torr, oxygen was introduced into the interior to 2 × 10 −3 Torr, and laser vapor deposition was performed. An ArF laser having a wavelength of 193 nm was used as a laser for target evaporation. After this film formation, the thin film was heat-treated at 400 ° C. for 60 minutes in an oxygen atmosphere. The oxide superconductor obtained by the above process has a thickness of 102.0 μm, a width of 10 mm, and a length of 10c.
m.

【0026】この酸化物超電導導体を冷却し、臨界電流
密度の測定を行なった結果、臨界電流密度=3.0×1
5A/cm2(77K、0T)を示し、極めて優秀な超
電導特性を発揮することを確認できた。このような超電
導特性が優れた酸化物超電導導体が得られたのは、配向
制御多結晶薄膜の最表面に結晶配向性が悪い薄い膜の付
着がなく、従って最表面の結晶配向性が優れた配向制御
多結晶薄膜上に結晶配向性が優れた酸化物超電導層を成
膜することができためであると考えられる。よって、前
述の実施例の蒸着方法によれば、配向制御多結晶薄膜を
蒸着したテープ状の基材の周囲を覆いながら巻き取る工
程を備えているので、成膜効率を低下させることなく、
配向制御多結晶薄膜の表面の結晶配向性を向上できるこ
とが分った。
This oxide superconductor was cooled and the critical current density was measured. As a result, the critical current density was 3.0 × 1.
It showed 0 5 A / cm 2 (77K, 0T), and it was confirmed that it exhibited extremely excellent superconducting properties. An oxide superconducting conductor having such excellent superconducting properties was obtained because there was no adhesion of a thin film having poor crystal orientation on the outermost surface of the orientation control polycrystalline thin film, and therefore, the crystal orientation on the outermost surface was excellent. This is considered to be because an oxide superconducting layer having excellent crystal orientation can be formed on the orientation control polycrystalline thin film. Therefore, according to the vapor deposition method of the above-described embodiment, since a step of winding while covering the tape-shaped substrate on which the orientation control polycrystalline thin film is vapor-deposited is provided, without lowering the film forming efficiency,
It was found that the crystal orientation of the surface of the orientation controlled polycrystalline thin film could be improved.

【0027】(比較例1)図4に示す構成の従来の配向
制御多結晶薄膜の蒸着装置を使用し、YSZ配向制御多
結晶中間薄膜を蒸着したテープ状の基材を覆わないで基
材巻取ボビンに巻き取る以外は前記実施例と同様にして
酸化物超電導導体を作製した。ここでの酸化物超電導導
体は、厚さ102.0μm程度、幅10mm、長さ10
cmのものであった。ここでのYSZ配向制御多結晶中
間薄膜の成膜時のテープ速度は、10cm/時間であっ
た。この酸化物超電導導体を冷却し、臨界電流密度の測
定を行なった結果、臨界電流密度=1.0×105A/
cm2(77K、0T)を示し、実施例で得られた酸化
物超電導導体に比べて超電導特性が悪いことが分った。
(Comparative Example 1) Using a conventional apparatus for depositing a polycrystalline thin film of orientation control having the structure shown in FIG. An oxide superconducting conductor was produced in the same manner as in the above example except that it was wound around a take-up bobbin. The oxide superconductor here has a thickness of about 102.0 μm, a width of 10 mm, and a length of 10 mm.
cm. The tape speed at the time of forming the YSZ orientation control polycrystalline intermediate thin film here was 10 cm / hour. The oxide superconductor was cooled and the critical current density was measured. As a result, the critical current density was 1.0 × 10 5 A /
cm 2 (77 K, 0 T), indicating that the superconducting properties were poor compared to the oxide superconducting conductor obtained in the example.

【0028】[0028]

【発明の効果】以上説明したように請求項1記載の配向
制御多結晶薄膜の蒸着方法にあっては、テープ状の基材
上にターゲットの構成粒子を順次堆積させるとともにイ
オンビームを照射して配向制御多結晶薄膜を蒸着しなが
ら、この配向制御多結晶薄膜を蒸着したテープ状の基材
の周囲を覆いながら巻き取る工程を備える方法であるの
で、蒸着処理容器内に拡散するターゲットの構成粒子が
基材巻取装置側において基材上に形成された配向制御多
結晶薄膜の表面に付着することが殆どなく、配向制御多
結晶薄膜の最表面に付着する結晶配向性が悪い薄い膜を
実用上殆ど問題のない程度まで大幅に低減することがで
きる。従って、結晶配向性が悪い薄い膜の付着が殆どな
く、しかも最表面の結晶配向性が優れた配向制御多結晶
薄膜上に酸化物超電導層を成膜すると、この酸化物超電
導層も結晶配向性に優れたものとなり、得られる酸化物
超電導導体の超電導特性を向上させることができる。ま
た、配向制御多結晶薄膜の最表面に結晶配向性が悪い薄
い膜が殆ど付着していないため、このような結晶配向性
が悪い薄い膜をイオンビームで除去しながら成膜する必
要もないので、成膜効率が大幅に低下することもない。
As described above, in the method for depositing an orientation-controlling polycrystalline thin film according to the first aspect, constituent particles of a target are sequentially deposited on a tape-shaped base material and an ion beam is irradiated. Since the method comprises a step of winding while covering the tape-shaped base material on which the orientation control polycrystalline thin film is deposited while depositing the orientation control polycrystalline thin film, constituent particles of the target diffused into the deposition processing container Hardly adheres to the surface of the orientation controlling polycrystalline thin film formed on the substrate on the substrate winding device side, and a thin film with poor crystal orientation that adheres to the outermost surface of the orientation controlling polycrystalline thin film is practically used. In addition, it can be greatly reduced to a level where there is almost no problem. Therefore, when an oxide superconducting layer is formed on an orientation-controlling polycrystalline thin film having little crystal adhesion with poor crystal orientation and excellent crystal orientation on the outermost surface, this oxide superconducting layer also has crystal orientation. And the superconducting properties of the resulting oxide superconducting conductor can be improved. Further, since a thin film having poor crystal orientation is hardly attached to the outermost surface of the orientation control polycrystalline thin film, it is not necessary to form such a thin film having poor crystal orientation while removing it with an ion beam. In addition, the film forming efficiency does not significantly decrease.

【0029】また、請求項2記載の配向制御多結晶薄膜
の蒸着装置にあっては、特に、蒸着後のテープ状の基材
と、基材巻取装置に巻き取られた蒸着後のテープ状の基
材を前記基材巻取装置ごと覆うためのカバーが備えら
れ、かつ該カバーには蒸着後のテープ状の基材を導入す
るためのスリットが形成されているので、記載の配向制
御多結晶薄膜の蒸着方法に好適に用いることができる。
In the apparatus for depositing an orientation-controlling polycrystalline thin film according to the second aspect of the present invention, in particular, the tape-shaped base material after the evaporation and the tape-shaped base material after the evaporation wound on the substrate winding device A cover for covering the base material together with the base material winding device is provided, and a slit for introducing the tape-shaped base material after vapor deposition is formed in the cover. It can be suitably used for a deposition method of a crystalline thin film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の配向制御多結晶薄膜の蒸着装置の一
実施形態を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an orientation control polycrystalline thin film deposition apparatus of the present invention.

【図2】 図1の配向制御多結晶薄膜の蒸着装置に備え
られるカバーを示す斜視図である。
FIG. 2 is a perspective view showing a cover provided in the orientation control polycrystalline thin film deposition apparatus of FIG. 1;

【図3】 図3に示す配向制御多結晶薄膜の蒸着装置に
備えられるイオンガンの一例を示す断面図である。
FIG. 3 is a cross-sectional view showing an example of an ion gun provided in the orientation control polycrystalline thin film deposition apparatus shown in FIG.

【図4】 従来の配向制御多結晶薄膜の蒸着装置の例を
示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing an example of a conventional apparatus for depositing an orientation control polycrystalline thin film.

【符号の説明】[Explanation of symbols]

22・・・テープ状の基材、25・・・基材巻取ボビン(基材
巻取装置)、26・・・カバー、27・・・スリット、36・・
・ターゲット、38・・・スパッタビーム照射装置(スパッ
タ手段)、39・・・イオンガン、40・・・蒸着処理容器。
22: tape-shaped base material, 25: base material winding bobbin (base material winding device), 26: cover, 27: slit, 36 ...
-Target, 38 ... Sputter beam irradiation device (sputtering means), 39 ... Ion gun, 40 ... Vapor deposition container.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 隆 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takashi Saito 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空排気可能な蒸着処理容器内に設けた
ターゲットから発生したターゲットの構成粒子を前記タ
ーゲットの近傍を移動中のテープ状の基材上に順次堆積
させるとともにこの基材成膜面の斜め方向からイオンビ
ームを照射して配向制御多結晶薄膜を蒸着する配向制御
多結晶薄膜の蒸着方法において、 前記テープ状の基材上にターゲットの構成粒子を順次堆
積させるとともにイオンビームを照射して配向制御多結
晶薄膜を蒸着しながら、この配向制御多結晶薄膜を蒸着
したテープ状の基材の周囲を覆いながら巻き取る工程を
備えることを特徴とする配向制御多結晶薄膜の蒸着方
法。
1. A target component particle generated from a target provided in an evaporation processing container capable of being evacuated is sequentially deposited on a tape-shaped substrate moving in the vicinity of the target, and the substrate deposition surface In an orientation control polycrystalline thin film deposition method of irradiating an ion beam from an oblique direction to deposit an orientation control polycrystalline thin film, the constituent particles of the target are sequentially deposited on the tape-shaped base material and the ion beam is irradiated. And depositing the orientation control polycrystalline thin film while covering the tape-shaped substrate on which the orientation control polycrystalline thin film is deposited.
【請求項2】 ターゲットと、このターゲットの構成粒
子をスパッタしてターゲットの近傍を移動中のテープ状
の基材上に堆積するスパッタ手段と、前記テープ状の基
材上に堆積中のターゲットの構成粒子にイオンビームを
基材成膜面の斜め方向から照射するイオンガンと、配向
制御多結晶薄膜が蒸着されたテープ状の基材を巻き取る
基材巻取装置とが真空排気可能な蒸着処理容器内に設け
られてなる配向制御多結晶薄膜の蒸着装置において、 蒸着後のテープ状の基材と、前記基材巻取装置に巻き取
られた蒸着後のテープ状の基材を前記基材巻取装置ごと
覆うためのカバーが備えられ、該カバーには蒸着後のテ
ープ状の基材を導入するためのスリットが形成されてい
ることを特徴とする配向制御多結晶薄膜の蒸着装置。
2. A target, sputtering means for sputtering constituent particles of the target and depositing the target on a tape-shaped substrate moving in the vicinity of the target, and a target for depositing the target on the tape-shaped substrate. An ion gun that irradiates the constituent particles with an ion beam from an oblique direction of the substrate deposition surface, and a substrate winding device that winds up a tape-shaped substrate on which an orientation-controlling polycrystalline thin film has been deposited. In a deposition apparatus for an orientation-controlling polycrystalline thin film provided in a container, a tape-shaped base material after evaporation and a tape-like base material after evaporation wound by the base material winding device are used as the base material. An apparatus for depositing an orientation-controlled polycrystalline thin film, comprising a cover for covering the entire winding device, wherein the cover is provided with a slit for introducing a tape-shaped base material after the deposition.
JP35843097A 1997-12-25 1997-12-25 Deposition method and apparatus for depositing orientation-controlled polycrystalline thin film Expired - Lifetime JP3771027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35843097A JP3771027B2 (en) 1997-12-25 1997-12-25 Deposition method and apparatus for depositing orientation-controlled polycrystalline thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35843097A JP3771027B2 (en) 1997-12-25 1997-12-25 Deposition method and apparatus for depositing orientation-controlled polycrystalline thin film

Publications (2)

Publication Number Publication Date
JPH11185544A true JPH11185544A (en) 1999-07-09
JP3771027B2 JP3771027B2 (en) 2006-04-26

Family

ID=18459267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35843097A Expired - Lifetime JP3771027B2 (en) 1997-12-25 1997-12-25 Deposition method and apparatus for depositing orientation-controlled polycrystalline thin film

Country Status (1)

Country Link
JP (1) JP3771027B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984843B2 (en) 2002-03-25 2006-01-10 Seiko Epson Corporation Board for electronic device, electronic device, ferroelectric memory, electronic apparatus, ink-jet recording head, and ink-jet printer
JP2010177161A (en) * 2009-02-02 2010-08-12 Toyobo Co Ltd Transparent conductive film
JP2013028824A (en) * 2011-07-26 2013-02-07 Furukawa Electric Co Ltd:The Reel with case for vacuum film forming apparatus, vacuum film forming apparatus, and method for manufacturing thin film lamination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984843B2 (en) 2002-03-25 2006-01-10 Seiko Epson Corporation Board for electronic device, electronic device, ferroelectric memory, electronic apparatus, ink-jet recording head, and ink-jet printer
JP2010177161A (en) * 2009-02-02 2010-08-12 Toyobo Co Ltd Transparent conductive film
JP2013028824A (en) * 2011-07-26 2013-02-07 Furukawa Electric Co Ltd:The Reel with case for vacuum film forming apparatus, vacuum film forming apparatus, and method for manufacturing thin film lamination

Also Published As

Publication number Publication date
JP3771027B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US6632539B1 (en) Polycrystalline thin film and method for preparing thereof, and superconducting oxide and method for preparation thereof
JP2996568B2 (en) Method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JP3771012B2 (en) Oxide superconducting conductor
JP3447077B2 (en) Thin film laminate, oxide superconducting conductor, and method for producing the same
JP3415888B2 (en) Apparatus and method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JP4059963B2 (en) Manufacturing method of oxide superconductor
JP3856878B2 (en) Method for producing polycrystalline thin film
JP3771027B2 (en) Deposition method and apparatus for depositing orientation-controlled polycrystalline thin film
JP2670391B2 (en) Polycrystalline thin film manufacturing equipment
JP3269841B2 (en) Oxide superconductor and method of manufacturing the same
JP3251034B2 (en) Oxide superconductor and method of manufacturing the same
JPH09120719A (en) Oxide type superconductor
JPH06231940A (en) Abacuo superconducting coil and its manufacture
EP0591588B1 (en) Method of making polycrystalline thin film and superconducting oxide body
JPH1153967A (en) Oxide polycrystalline basic material and oxide superconducting conductor and manufacture thereof
JP3444917B2 (en) Method and apparatus for producing polycrystalline thin film and method for producing oxide superconducting conductor having polycrystalline thin film
JP3459092B2 (en) Method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JP3532253B2 (en) Oxide superconductor and method of manufacturing the same
JP3415874B2 (en) Manufacturing method of oxide superconducting conductor
JP5122045B2 (en) Oxide superconductor and manufacturing method thereof
JP3856879B2 (en) Thin film manufacturing method
JP2000203836A (en) Production of oxide superconductor
JP3242142B2 (en) Oxide superconductor and method of manufacturing the same
JP3269840B2 (en) Oxide superconductor and method of manufacturing the same
JP4128557B2 (en) Oxide superconducting conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term