JPH09120719A - Oxide type superconductor - Google Patents

Oxide type superconductor

Info

Publication number
JPH09120719A
JPH09120719A JP8214806A JP21480696A JPH09120719A JP H09120719 A JPH09120719 A JP H09120719A JP 8214806 A JP8214806 A JP 8214806A JP 21480696 A JP21480696 A JP 21480696A JP H09120719 A JPH09120719 A JP H09120719A
Authority
JP
Japan
Prior art keywords
thin film
intermediate thin
oxide superconducting
polycrystalline
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8214806A
Other languages
Japanese (ja)
Other versions
JP3634078B2 (en
Inventor
Takashi Saito
隆 齊藤
Yasuhiro Iijima
康裕 飯島
Mariko Hosaka
真理子 保坂
Nobuyuki Sadakata
伸行 定方
Tsukasa Kono
宰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP21480696A priority Critical patent/JP3634078B2/en
Publication of JPH09120719A publication Critical patent/JPH09120719A/en
Application granted granted Critical
Publication of JP3634078B2 publication Critical patent/JP3634078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide an oxide type superconductor which is equipped with at least either of the two material traits, i.e., the trait that superconductive layer with no generation of warp in the base member and with a stable superconductivity is formed, and the trait that little strain is generated in the base member and an enhanced critical current density per overall is obtained. SOLUTION: An orientation-controlled multi-crystalline intermediate thin film 22 is formed on the oversurface of a tape-shaped base member 21 of an oxide type superconductor 20, while a multi-crystalline quick formed intermediate thin film 23 is provided on the undersurface of the base member 21, and an oxide type superconductive layer 24 is installed on the intermediate thin film 22. Thereby the resultant oxide superconductor is equipped with at least either of the two material traits, i.e., the trait that a superconductive layer 24 with no generation of warp in the base member 21 due to a compressive force at the time of formation of the intermediate thin film 22 and with a stable superconductivity is formed and the trait that little strain is generated in the base member 21 at the time of evaporative attachment of the layer 24 even in case the base used 21 has a small thickness and an enhanced critical current density per overall is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超電導発電機用マ
グネット、磁気浮上列車用マグネット等に利用される酸
化物超電導導体に係わり、オーバーオール(酸化物超電
導導体全断面積)あたりの臨界電流密度が優れるという
特性と、基材の長さ方向に対する超電導特性が安定した
酸化物超電導層が形成されるという特性のうち少なくと
も一方の特性を備えた酸化物超電導導体に関する。
TECHNICAL FIELD The present invention relates to an oxide superconducting conductor used in a magnet for a superconducting generator, a magnet for a magnetic levitation train, etc., and has a critical current density per overall (total cross-sectional area of oxide superconducting conductor). The present invention relates to an oxide superconducting conductor having at least one of excellent characteristics and a characteristic that an oxide superconducting layer having stable superconducting characteristics in the length direction of a base material is formed.

【0002】[0002]

【従来の技術】近年になって発見された酸化物超電導体
は、液体窒素温度を超える臨界温度を示す優れた超電導
体であるが、現在、この種の酸化物超電導体を実用的な
超電導体として使用するためには、種々の解決するべき
問題点が存在している。その問題点の1つが、酸化物超
電導体の臨界電流密度が低いという問題である。
2. Description of the Related Art Oxide superconductors discovered in recent years are excellent superconductors having a critical temperature exceeding the temperature of liquid nitrogen. At present, this type of oxide superconductor is a practical superconductor. There are various problems to be solved in order to use this. One of the problems is that the critical current density of the oxide superconductor is low.

【0003】前記酸化物超電導体の臨界電流密度が低い
という問題は、酸化物超電導体の結晶自体に電気的な異
方性が存在することが大きな原因となっており、特に酸
化物超電導体はその結晶軸のa軸方向とb軸方向には電
気を流し易いが、c軸方向には電気を流しにくいことが
知られている。このような観点から酸化物超電導体を基
材上に形成してこれを超電導体として使用するために
は、基材上に結晶配向性の良好な状態の酸化物超電導体
を形成し、しかも、電気を流そうとする方向に酸化物超
電導体の結晶のa軸あるいはb軸を配向させ、その他の
方向に酸化物超電導体のc軸を配向させる必要がある。
[0003] The problem that the critical current density of the oxide superconductor is low is largely due to the existence of electrical anisotropy in the crystal itself of the oxide superconductor. It is known that electricity easily flows in the a-axis direction and the b-axis direction of the crystal axis, but hardly flows in the c-axis direction. From such a viewpoint, in order to form an oxide superconductor on a base material and use it as a superconductor, an oxide superconductor having a good crystal orientation is formed on the base material, and It is necessary to orient the a-axis or b-axis of the crystal of the oxide superconductor in the direction in which electricity is to flow, and to orient the c-axis of the oxide superconductor in the other direction.

【0004】[0004]

【発明が解決しようとする課題】ところで、酸化物超電
導体を導電体として使用するためには、テープ状などの
長尺の基材上に結晶配向性の良好な酸化物超電導層を形
成する必要がある。ところが、金属テープなどの基材上
に酸化物超電導層を直接形成すると、金属テープ自体が
多結晶体でその結晶構造も酸化物超電導体と大きく異な
るために、結晶配向性の良好な酸化物超電導層は到底形
成できないものである。しかも、酸化物超電導層を形成
する際に行なう熱処理によって金属テープと酸化物超電
導層との間で拡散反応が生じるために、酸化物超電導層
の結晶構造が崩れ、超電導特性が劣化する問題がある。
By the way, in order to use an oxide superconductor as a conductor, it is necessary to form an oxide superconducting layer having good crystal orientation on a long base material such as a tape. There is. However, if an oxide superconducting layer is formed directly on a base material such as a metal tape, the metal tape itself is polycrystalline and its crystal structure is significantly different from that of the oxide superconductor. Layers cannot be formed at all. In addition, since the heat treatment performed when forming the oxide superconducting layer causes a diffusion reaction between the metal tape and the oxide superconducting layer, there is a problem that the crystal structure of the oxide superconducting layer is destroyed and the superconducting characteristics are deteriorated. .

【0005】そこで本発明者らは、図14に示すような
ハステロイテープなどの金属テープからなる基材1の上
にイットリウム安定化ジルコニア(YSZ)などの多結
晶中間薄膜2を形成し、この多結晶中間薄膜2上に、酸
化物超電導体の中でも臨界温度が約90Kであり、液体
窒素(77K)中で用いることができる安定性に優れた
Y1Ba2Cu3Ox系の超電導層3を形成することで超電
導特性の優れた超電導導体10を製造する試みを種々行
なっている。このような試みの中から本発明者らは先
に、結晶配向性に優れた中間薄膜を形成するために、あ
るいは、超電導特性の優れた超電導テープを得るため
に、特願平3ー126836号、特願平3ー12683
7号、特願平3ー205551号、特願平4ー1344
3号、特願平4ー293464号などにおいて特許出願
を行なっている。
Therefore, the present inventors formed a polycrystalline intermediate thin film 2 such as yttrium-stabilized zirconia (YSZ) on a substrate 1 made of a metal tape such as Hastelloy tape as shown in FIG. on crystalline intermediate thin 2, the critical temperature of about 90K among the oxide superconductor to form a Y1Ba 2 Cu 3 superconducting layer 3 of Ox system with excellent stability can be used in liquid nitrogen (77K) Therefore, various attempts have been made to manufacture the superconducting conductor 10 having excellent superconducting properties. From such attempts, the present inventors have previously proposed, in order to form an intermediate thin film having excellent crystal orientation, or to obtain a superconducting tape having excellent superconducting properties, Japanese Patent Application No. 3-126836. , Japanese Patent Application No. 3-12683
No. 7, Japanese Patent Application No. 3-2055551, Japanese Patent Application No. 4-1344
Patent applications have been filed in Japanese Patent Application No. 3 and Japanese Patent Application No. 4-293464.

【0006】これらの特許出願に記載された技術によれ
ば、ハステロイテープなどの金属テープの基材の片面に
スパッタ装置により多結晶中間薄膜を形成する際に、ス
パッタリングと同時に基材成膜面の斜め方向からイオン
ビームを照射しながら多結晶中間薄膜を成膜する方法
(イオンビームアシストスパッタリング法)により、結
晶配向性に優れた多結晶中間薄膜を形成することができ
るものである。この方法によれば、多結晶中間薄膜を形
成する多数の結晶粒のそれぞれの結晶格子のa軸あるい
はb軸で形成する粒界傾角を30度以下に揃えることが
でき、結晶配向性に優れた多結晶中間薄膜を形成するこ
とができる。そして更に、この配向性に優れた中間薄膜
上にYBaCuO系の超電導層をレーザー蒸着法等によ
り成膜するならば、酸化物超電導層の結晶配向性も優れ
たものになり、これにより、結晶配向性に優れ、77K
で臨界電流密度が105A/cm2以上と高い酸化物超電
導層を形成することができる。
According to the techniques described in these patent applications, when a polycrystalline intermediate thin film is formed on one surface of a base material of a metal tape such as Hastelloy tape by a sputtering apparatus, the surface of the base material film is formed simultaneously with sputtering. A polycrystalline intermediate thin film excellent in crystal orientation can be formed by a method of forming a polycrystalline intermediate thin film while irradiating an ion beam from an oblique direction (ion beam assisted sputtering method). According to this method, the grain boundary tilt angle formed by the a-axis or the b-axis of each crystal lattice of a large number of crystal grains forming the polycrystalline intermediate thin film can be made equal to 30 degrees or less, and the crystal orientation is excellent. A polycrystalline intermediate thin film can be formed. Furthermore, if a YBaCuO-based superconducting layer is formed on the intermediate thin film having excellent orientation by a laser deposition method or the like, the crystal orientation of the oxide superconducting layer will also be excellent, whereby the crystal orientation Excellent, 77K
It is possible to form an oxide superconducting layer having a high critical current density of 10 5 A / cm 2 or more.

【0007】ところが前記特許出願に係る方法にあって
は、基材の片面にイオンビームアシストスパッタリング
法により多結晶中間薄膜を成膜すると圧縮応力により歪
みが生じ、基材に反りが生じてしまう。酸化物超電導層
の蒸着する際には、超電導特性が均質な酸化物超電導層
を形成するために基材の表面温度を一定に保つ必要があ
るが、基材に反りがあると、基材表面を均一に加熱する
ことが困難で基材の表面の温度分布にムラが生じてしま
い、その結果、基材の長さ方向に対する超電導特性が不
安定な酸化物超電導層が得られてしまうという問題があ
った。さらにまた、前記特許出願に係る方法にあって
は、得られる酸化物超電導層の膜厚が数μmであるた
め、金属テープからなる基材の数100μmの厚さに比
べて薄く、オーバーオール(酸化物超電導導体全断面
積)あたりの臨界電流密度としては高くならないという
問題があった。そこで、オーバーオールあたりの臨界電
流密度を向上させるために、基材となる金属テープの厚
さを薄くし、該基材の片面にイオンビームアシストスパ
ッタリング法により多結晶中間薄膜を形成した後、この
多結晶中間薄膜上にレーザ蒸着法等により酸化物超電導
層を形成すると、酸化物超電導層の蒸着時に高温雰囲気
によって基材が熱膨張し、該基材に反りやねじれなどの
歪みが生じ、該基材上に形成されている多結晶中間薄膜
にも歪みが生じてしまう。このような歪みが多結晶中間
薄膜にあると、該多結晶中間薄膜上に形成される酸化物
超電導層の結晶配向性が不良となり、目的とする超電導
特性が得られない。
However, in the method according to the above-mentioned patent application, when a polycrystalline intermediate thin film is formed on one surface of the base material by the ion beam assisted sputtering method, distortion occurs due to compressive stress and the base material warps. When depositing an oxide superconducting layer, it is necessary to keep the surface temperature of the base material constant in order to form an oxide superconducting layer with uniform superconducting properties. It is difficult to uniformly heat the surface of the base material, and the temperature distribution on the surface of the base material becomes uneven. As a result, an oxide superconducting layer with unstable superconducting properties in the length direction of the base material is obtained. was there. Furthermore, in the method according to the above-mentioned patent application, since the oxide superconducting layer obtained has a thickness of several μm, it is thinner than the substrate of a metal tape having a thickness of several hundred μm, and the overall (oxidation) There is a problem that the critical current density per unit superconducting conductor) does not increase. Therefore, in order to improve the critical current density per overall, the thickness of the metal tape as the base material is reduced, and a polycrystalline intermediate thin film is formed on one surface of the base material by the ion beam assisted sputtering method. When an oxide superconducting layer is formed on the crystalline intermediate thin film by a laser deposition method or the like, the base material thermally expands due to a high temperature atmosphere at the time of vapor deposition of the oxide superconducting layer, and distortion such as warpage or twist occurs in the base material, The polycrystalline intermediate thin film formed on the material is also distorted. If such a strain is present in the polycrystalline intermediate thin film, the crystal orientation of the oxide superconducting layer formed on the polycrystalline intermediate thin film becomes poor, and the desired superconducting properties cannot be obtained.

【0008】本発明は前記課題を解決するためになされ
たもので、多結晶中間薄膜の形成時の圧縮応力によって
基材に反りが生じることなく、基材の長さ方向に対する
超電導特性が安定した酸化物超電導層が形成されるとい
う特性と、厚さの薄いテープ状の基材が用いられていて
も、酸化物超電導層の蒸着時の高温雰囲気によって上記
基材に歪みが生じることが少なく、オーバーオールあた
りの臨界電流密度が向上するという特性のうち少なくと
も一方の特性を備えた酸化物超電導導体を提供すること
を目的とする。
The present invention has been made to solve the above-mentioned problems, and the warping of the base material does not occur due to the compressive stress at the time of forming the polycrystalline intermediate thin film, and the superconducting property in the longitudinal direction of the base material is stable. Characteristic that the oxide superconducting layer is formed, even if a thin tape-shaped substrate is used, the substrate is less likely to be strained by the high temperature atmosphere during vapor deposition of the oxide superconducting layer, An object is to provide an oxide superconducting conductor having at least one of the characteristics that the critical current density per overall is improved.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、テープ状の基材と、この基材
の一方の面上に形成されて多数の結晶粒が結合されてな
る配向制御多結晶中間薄膜と、上記基材の他方の面上に
形成された多結晶中間速成薄膜と、上記配向制御多結晶
中間薄膜上に形成された酸化物超電導層を具備してなる
ものである。請求項2記載の発明は前記課題を解決する
ために、テープ状の基材と、この基材の両面上にそれぞ
れ形成されて多数の結晶粒が結合されてなる配向制御多
結晶中間薄膜と、この配向制御多結晶中間薄膜上に形成
された酸化物超電導層を具備してなるものである。
In order to solve the above-mentioned problems, a tape-shaped base material and a large number of crystal grains formed on one surface of the base material are combined. Comprising an orientation-controlled polycrystalline intermediate thin film, a polycrystalline intermediate rapid-forming thin film formed on the other surface of the substrate, and an oxide superconducting layer formed on the orientation-controlled polycrystalline intermediate thin film. It is a thing. In order to solve the above-mentioned problems, the invention according to claim 2 is a tape-shaped base material, and an orientation-controlled polycrystalline intermediate thin film formed on both surfaces of the base material and having a large number of crystal grains bonded to each other, An oxide superconducting layer formed on this orientation-controlled polycrystalline intermediate thin film is provided.

【0010】請求項3記載の発明は前記課題を解決する
ために、テープ状の基材と、この基材の両面上にそれぞ
れ形成されて多数の結晶粒が結合されてなる多結晶速成
中間薄膜と、これら多結晶速成中間薄膜のうち一方の多
結晶速成中間薄膜上に形成された配向制御多結晶中間薄
膜と、この配向制御多結晶中間薄膜上に形成された酸化
物超電導層を具備してなるものである。
In order to solve the above-mentioned problems, a third aspect of the present invention is a polycrystalline rapid-growth intermediate thin film comprising a tape-shaped base material and a large number of crystal grains bonded to both surfaces of the base material. And an orientation-controlled polycrystalline intermediate thin film formed on one of the polycrystalline accelerated intermediate thin films, and an oxide superconducting layer formed on the orientation-controlled polycrystalline intermediate thin film. It will be.

【0011】請求項4記載の発明は前記課題を解決する
ために、テープ状の基材と、この基材の両面上にそれぞ
れ形成されて多数の結晶粒が結合されてなる多結晶速成
中間薄膜と、これら多結晶速成中間薄膜上にそれぞれ形
成された配向制御多結晶中間薄膜と、これら配向制御多
結晶中間薄膜上にそれぞれ形成された酸化物超電導層を
具備してなるものである。
In order to solve the above-mentioned problems, a fourth aspect of the present invention is a polycrystalline quick-deposited intermediate thin film comprising a tape-shaped base material and a large number of crystal grains formed on both surfaces of the base material. And an orientation-controlled polycrystalline intermediate thin film formed on each of these polycrystalline accelerated intermediate thin films, and an oxide superconducting layer formed on each of these orientation-controlled polycrystalline intermediate thin films.

【0012】請求項5記載の発明は前記課題を解決する
ために、請求項1〜4のいずれかに記載の酸化物超電導
導体の配向制御多結晶中間薄膜を形成する多数の結晶粒
のそれぞれの粒界傾角が30度以下とするものである。
請求項6記載の発明は前記課題を解決するために、請求
項1〜5のいずれかに記載の酸化物超電導導体の中間薄
膜がイットリウム安定化ジルコニアからなるものであ
る。請求項7記載の発明は前記課題を解決するために、
請求項2又は4記載の酸化物超電導導体において、配向
制御多結晶中間薄膜がイオンビームアシストスパッタリ
ング法により形成されたものである。
In order to solve the above-mentioned problems, the invention according to claim 5 is characterized in that each of a large number of crystal grains forming the orientation-controlled polycrystalline intermediate thin film of the oxide superconducting conductor according to any one of claims 1 to 4. The grain boundary tilt angle is 30 degrees or less.
In order to solve the above problems, the invention according to claim 6 is such that the intermediate thin film of the oxide superconducting conductor according to any one of claims 1 to 5 is made of yttrium-stabilized zirconia. In order to solve the above-mentioned problems, the invention according to claim 7
The oxide superconducting conductor according to claim 2 or 4, wherein the orientation-controlled polycrystalline intermediate thin film is formed by an ion beam assisted sputtering method.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の例
について説明する。図1は、本発明に係る酸化物超電導
導体の第1の例を示すものであり、この例の酸化物超電
導導体20は、テープ状の基材21の上面上に多数の結
晶粒が結合されてなる配向制御多結晶中間薄膜22が形
成され、上記基材21の下面上に多結晶速成中間薄膜2
3が形成され、上記配向制御多結晶中間薄膜22上に酸
化物超電導層24が形成されてなるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the present invention will be described below with reference to the drawings. FIG. 1 shows a first example of an oxide superconducting conductor according to the present invention. In the oxide superconducting conductor 20 of this example, a large number of crystal grains are bonded on the upper surface of a tape-shaped substrate 21. The orientation-controlled polycrystalline intermediate thin film 22 is formed, and the polycrystalline rapid intermediate thin film 2 is formed on the lower surface of the substrate 21.
3 is formed, and the oxide superconducting layer 24 is formed on the orientation controlling polycrystalline intermediate thin film 22.

【0014】前記基材21の構成材料としては、ステン
レス鋼、銅、または、ハステロイなどのニッケル合金な
どの合金各種金属材料から適宜選択される長尺の金属テ
ープを用いることができる。この基材21の厚みは、
0.01〜0.5mm、好ましくは0.02〜0.15
mmとされる。基材21の厚みが0.5mmを超える
と、後述する酸化物超電導層24の膜厚に比べて厚く、
オーバーオール(酸化物超電導導体全断面積)あたりの
臨界電流密度としては低下してしまう恐れがある。一
方、基材21の厚みが0.01mm未満であると、著し
く基材の強度が低下し、超電導体の補強効果を消失して
しまう恐れがある。
As a constituent material of the base material 21, a long metal tape appropriately selected from various metal materials such as stainless steel, copper, or alloys such as nickel alloys such as Hastelloy can be used. The thickness of this base material 21 is
0.01-0.5 mm, preferably 0.02-0.15
mm. When the thickness of the base material 21 exceeds 0.5 mm, it is thicker than the thickness of the oxide superconducting layer 24 described later,
The critical current density per overall (total cross-sectional area of oxide superconducting conductor) may decrease. On the other hand, if the thickness of the base material 21 is less than 0.01 mm, the strength of the base material is significantly reduced, and the reinforcing effect of the superconductor may be lost.

【0015】前記配向制御多結晶中間薄膜22は、立方
晶系の結晶構造を有する結晶の集合した微細な結晶粒が
多数相互に結晶粒界を介して接合一体化されてなり、各
結晶粒の結晶軸のc軸は基材21の上面(成膜面)に対
してほぼ直角に向けられ、各結晶粒の結晶軸のa軸どう
しおよびb軸どうしは、互いに同一方向に向けられて面
内配向されている。各結晶粒の結晶のa軸(あるいはb
軸)どうしは、それらのなす角度(粒界傾角K)を30
度以内にして接合一体化されているのが好ましい。この
配向制御多結晶中間薄膜22の厚みは、0.1〜1.0
μm、好ましくは0.3〜0.7μmとされる。配向制
御多結晶中間薄膜22の厚みを1.0μmを超えて厚く
してもももはや効果の増大は期待できず、経済的にも不
利となる。一方、配向制御多結晶中間薄膜22の厚みが
0.1μm未満であると、薄すぎて基材21を十分支持
できず、後述する酸化物超電導層24の蒸着時に高温雰
囲気によって基材21に歪みが生じる恐れがあり、ま
た、熱処理時に酸化物超電導層24の元素を基材21側
に拡散させてしまう恐れがあり、酸化物超電導層24の
成分組成が崩れる恐れがあるからである。
The orientation-controlled polycrystalline intermediate thin film 22 is made up of a large number of fine crystal grains, each of which is a collection of crystals having a cubic crystal structure, joined and integrated with each other through grain boundaries. The c-axis of the crystal axis is oriented substantially at right angles to the upper surface (deposition surface) of the base material 21, and the a-axis and the b-axis of the crystal axes of the respective crystal grains are oriented in the same direction with each other. It is oriented. The a-axis (or b) of the crystal of each grain
Axis), the angle they make (grain boundary tilt angle K) is 30
It is preferable that they are joined and integrated within one degree. The thickness of the orientation control polycrystalline intermediate thin film 22 is 0.1 to 1.0.
μm, preferably 0.3 to 0.7 μm. Even if the thickness of the orientation-controlled polycrystalline intermediate thin film 22 is made thicker than 1.0 μm, the effect cannot be expected to increase any more, which is economically disadvantageous. On the other hand, when the thickness of the orientation-controlled polycrystalline intermediate thin film 22 is less than 0.1 μm, the base material 21 cannot be sufficiently supported because it is too thin, and the base material 21 is distorted by a high temperature atmosphere during vapor deposition of the oxide superconducting layer 24 described later. Is likely to occur, and the elements of the oxide superconducting layer 24 may be diffused to the base material 21 side during the heat treatment, and the composition of the oxide superconducting layer 24 may be destroyed.

【0016】前記多結晶速成中間薄膜23は、立方晶系
の結晶構造を有する結晶の集合した微細な結晶粒が多数
相互に結晶粒界を介して接合一体化されてなるものであ
る。この多結晶速成中間薄膜23の厚みは、0.1〜
1.0μm、好ましくは0.3〜0.7μmとされる。
多結晶速成中間薄膜23の厚みを1.0μmを超えて厚
くしてもももはや効果の増大は期待できず、経済的にも
不利となる。一方、多結晶速成中間薄膜23の厚みが
0.1μm未満であると、薄すぎて基材21を十分支持
できず、後述する酸化物超電導層24の蒸着時に高温雰
囲気によって基材21に歪みが生じる恐れがあるからで
ある。
The polycrystalline quick-deposited intermediate thin film 23 is formed by joining and integrating a large number of fine crystal grains, each of which is a collection of crystals having a cubic crystal structure, through crystal grain boundaries. The thickness of the polycrystalline quick-deposition intermediate thin film 23 is 0.1 to
The thickness is 1.0 μm, preferably 0.3 to 0.7 μm.
Even if the thickness of the polycrystalline rapid-deposited intermediate thin film 23 exceeds 1.0 μm, the effect cannot be expected to increase any more, which is economically disadvantageous. On the other hand, when the thickness of the polycrystalline quick-deposited intermediate thin film 23 is less than 0.1 μm, the base material 21 cannot be sufficiently supported because it is too thin, and the base material 21 is distorted by a high temperature atmosphere during vapor deposition of the oxide superconducting layer 24 described later. This may occur.

【0017】前記酸化物超電導層24は、Y1Ba2Cu3
Ox、Y2Ba4Cu8Ox、Y3Ba3Cu6Oxなる組成、
(Bi,Pb)2Ca2Sr2Cu3Ox、(Bi,Pb)2
2Sr3Cu4Oxなる組成、あるいはTl2Ba2Ca2
Cu3Ox、Tl1Ba2Ca2Cu3Ox、Tl1Ba2Ca3
Cu4Oxなる組成などに代表される臨界温度の高い超電
導材料からなるものである。この酸化物超電導層24の
厚みは0.5〜5μm程度とされる。
The oxide superconducting layer 24 is formed of Y 1 Ba 2 Cu 3
Ox, Y 2 Ba 4 Cu 8 Ox, Y 3 Ba 3 Cu 6 Ox composition,
(Bi, Pb) 2 Ca 2 Sr 2 Cu 3 Ox, (Bi, Pb) 2 C
a 2 Sr 3 Cu 4 Ox composition or Tl 2 Ba 2 Ca 2
Cu 3 Ox, Tl 1 Ba 2 Ca 2 Cu 3 Ox, Tl 1 Ba 2 Ca 3
It is made of a superconducting material having a high critical temperature represented by a composition such as Cu 4 Ox. The oxide superconducting layer 24 has a thickness of about 0.5 to 5 μm.

【0018】次に、前記配向制御多結晶中間薄膜22と
多結晶速成中間薄膜23を製造する装置と製造方法につ
いて説明する。図2は、前記多結晶速成中間薄膜23を
製造する装置の一例を示すものであり、この例の装置
は、高周波スパッタ装置である。本例の装置は、基材2
1を保持する基材ホルダ31と、この基材ホルダ31の
上方に所定間隔をもって対向配置された板状のターゲッ
ト32を主体として構成されている。また、図中符号3
3は、ターゲット32を保持したターゲットホルダを示
し、このターゲットホルダ33は高周波電源34に接続
され、この高周波電源34と前述の基材ホルダ31はそ
れぞれ接地されている。また、図中符号35は、テープ
状の基材21の送出装置、36は基材21の巻取装置を
示し、この送出装置35から連続的に基材ホルダ31上
に基材21を送り出し、続いて巻取装置36で巻き取る
ことで基材21上に連続成膜することができるようにな
っている。
Next, an apparatus and a manufacturing method for manufacturing the orientation-controlled polycrystalline intermediate thin film 22 and the polycrystalline quick-deposited intermediate thin film 23 will be described. FIG. 2 shows an example of an apparatus for producing the polycrystalline quick-deposited intermediate thin film 23, and the apparatus of this example is a high frequency sputtering apparatus. The apparatus of this example is based on the base material 2
1 is mainly composed of a base material holder 31 that holds 1 and a plate-shaped target 32 that is disposed above the base material holder 31 and faces each other at a predetermined interval. Also, reference numeral 3 in the drawing
Reference numeral 3 denotes a target holder that holds a target 32. The target holder 33 is connected to a high frequency power source 34, and the high frequency power source 34 and the base material holder 31 are grounded. In addition, reference numeral 35 in the drawing denotes a tape-shaped substrate 21 feeding device, and 36 denotes a winding device for the substrate 21, and the feeding device 35 continuously feeds the substrate 21 onto the substrate holder 31, Then, the film is continuously wound by the winding device 36 so that continuous film formation can be performed on the base material 21.

【0019】また、基材ホルダ31、ターゲットホルダ
33は図示略の真空容器に収納されていて、基材ホルダ
31とターゲットホルダ33の周囲を真空雰囲気に保持
できるようになっている。更に前記真空容器には、ガス
ボンベなどの雰囲気ガス供給源が接続されていて、必要
に応じて真空容器の内部を真空などの低圧状態で、か
つ、アルゴンガスあるいはその他の不活性ガス雰囲気ま
たは酸素を含む不活性ガス雰囲気にすることができるよ
うになっている。以上の構成により、真空容器の内部を
減圧してから高周波電源34を作動させることによって
基材21の上方空間にプラズマを発生させることがで
き、このプラズマの作用によりターゲット32の粒子を
スパッタして基材21側に向けて飛ばすことができるよ
うになっている。
The base material holder 31 and the target holder 33 are housed in a vacuum container (not shown) so that the surroundings of the base material holder 31 and the target holder 33 can be kept in a vacuum atmosphere. Further, an atmosphere gas supply source such as a gas cylinder is connected to the vacuum container, and if necessary, the inside of the vacuum container is in a low pressure state such as vacuum, and an argon gas or other inert gas atmosphere or oxygen is supplied. It can be made to contain an inert gas atmosphere. With the above configuration, plasma can be generated in the space above the base material 21 by operating the high frequency power source 34 after depressurizing the inside of the vacuum container, and the particles of the target 32 are sputtered by the action of this plasma. It can be blown toward the base material 21 side.

【0020】前記基材ホルダ31は内部に加熱ヒータを
備えて構成され、基材ホルダ31上に配置された基材2
1を必要に応じて所望の温度に加熱できるようになって
いる。前記ターゲット32は、目的とする多結晶速成中
間薄膜23を形成するためのものであって、目的の組成
の多結晶中間薄膜と同一組成あるいは近似組成のものな
どが用いられる。ターゲット32として具体的には、M
gOあるいはY23で安定化したジルコニア(YS
Z)、MgO、SrTiO3などを用いることができる
がこれらに限るものではなく、形成しようとする多結晶
速成中間薄膜23に見合うターゲットを適宜用いれば良
い。
The base material holder 31 is constructed with a heater inside, and the base material 2 placed on the base material holder 31.
1 can be heated to a desired temperature as needed. The target 32 is for forming the desired polycrystalline rapid-deposited intermediate thin film 23, and has the same or similar composition as the polycrystalline intermediate thin film of the desired composition. Specifically, as the target 32, M
Zirconia stabilized with gO or Y 2 O 3 (YS
Z), MgO, SrTiO 3 or the like can be used, but the present invention is not limited to these, and a target suitable for the polycrystalline rapid intermediate film 23 to be formed may be used as appropriate.

【0021】次に前記構成の装置を用いて基材21上に
YSZの多結晶速成中間薄膜23を形成する場合につい
て説明する。基材21上に多結晶速成中間薄膜23を形
成するには、YSZのターゲットを用いるとともに基材
21を収納している真空容器の内部を真空引きして減圧
雰囲気とする。そして、高周波電源34を作動させる。
これによりターゲット32の構成粒子がスパッタされて
基材21上に飛来する。この粒子を所用時間かけて堆積
させるならば、基材21上に所望の厚さの多結晶速成中
間薄膜を形成することができる。このようにして得られ
た多結晶速成中間薄膜23を構成する多数の結晶粒の結
晶軸のa軸とb軸とc軸は、いずれも任意な方向を向い
ていても良いし配向性があるものでも良い。
Next, the case of forming the YSZ polycrystalline rapid intermediate thin film 23 on the substrate 21 by using the apparatus having the above-mentioned structure will be described. In order to form the polycrystalline rapid intermediate thin film 23 on the base material 21, a YSZ target is used and the inside of the vacuum container accommodating the base material 21 is evacuated to a reduced pressure atmosphere. Then, the high frequency power supply 34 is operated.
As a result, the constituent particles of the target 32 are sputtered and fly onto the base material 21. If these particles are deposited over the required time, a polycrystalline rapid-deposited intermediate thin film having a desired thickness can be formed on the base material 21. The a-axis, the b-axis, and the c-axis of the crystal axes of a large number of crystal grains forming the polycrystalline rapid-deposited intermediate thin film 23 thus obtained may be oriented in arbitrary directions or have orientation. Anything is fine.

【0022】次に、図3は前述の配向制御多結晶中間薄
膜22を製造する装置の一例を示すものであり、この例
の装置は、イオンビームスパッタ装置にイオンビームア
シスト用のイオンガンを設けた構成となっている。本例
の装置は、基材21を保持する基材ホルダ45と、この
基材ホルダ45の斜め上方に所定間隔をもって対向配置
された板状のターゲット46と、前記基材ホルダ45の
斜め上方に所定間隔をもって対向され、かつ、前記ター
ゲット46と離間して配置されたイオンガン47と、前
記ターゲット46の斜め下方においてターゲット46の
下面に向けて配置されたスパッタビーム照射装置48を
主体として構成されている。また、図中符号49は、タ
ーゲット46を保持したターゲットホルダを示してい
る。また、図中符号55は、テープ状の基材21の送出
装置、56は基材21の巻取装置を示し、この送出装置
55から連続的に基材ホルダ45上に基材21を送り出
し、続いて巻取装置56で巻き取ることで基材21上に
連続成膜することができるようになっている。
Next, FIG. 3 shows an example of an apparatus for manufacturing the above-mentioned orientation-controlled polycrystalline intermediate thin film 22. In this apparatus, an ion beam sputtering apparatus is provided with an ion gun for ion beam assist. It is composed. The apparatus of this example includes a base material holder 45 that holds the base material 21, a plate-shaped target 46 that is diagonally above and facing the base material holder 45 with a predetermined interval, and a diagonally above the base material holder 45. The main components are an ion gun 47 facing each other at a predetermined interval and spaced apart from the target 46, and a sputter beam irradiation device 48 disposed obliquely below the target 46 toward the lower surface of the target 46. There is. Reference numeral 49 in the figure denotes a target holder that holds the target 46. Further, reference numeral 55 in the drawing denotes a tape-shaped base material 21 feeding device, and 56 denotes a base material 21 winding device. The base material 21 is continuously fed from the feeding device 55 onto the base material holder 45. Subsequently, the film is wound by the winding device 56 so that continuous film formation can be performed on the base material 21.

【0023】また、本の例の装置は図示略の真空容器に
収納されていて、基材21の周囲を真空雰囲気に保持で
きるようになっている。更に前記真空容器には、ガスボ
ンベなどの雰囲気ガス供給源が接続されていて、真空容
器の内部を真空などの低圧状態で、かつ、アルゴンガス
あるいはその他の不活性ガス雰囲気または酸素を含む不
活性ガス雰囲気にすることができるようになっている。
The apparatus of this example is housed in a vacuum container (not shown) so that the periphery of the base material 21 can be kept in a vacuum atmosphere. Further, an atmosphere gas supply source such as a gas cylinder is connected to the vacuum vessel, and the inside of the vacuum vessel is kept in a low pressure state such as a vacuum, and an inert gas atmosphere containing argon gas or another inert gas atmosphere or oxygen. The atmosphere can be set.

【0024】前記基材ホルダ45は内部に加熱ヒータを
備え、基材ホルダ45の上に位置された基材21を必要
に応じて所望の温度に加熱できるようになっている。ま
た、基材ホルダ45の底部には角度調整機構Dが付設さ
れている。この角度調整機構Dは、基材ホルダ45の底
部に接合された上部支持板60と、この上部支持板60
にピン結合された下部支持板61と、この下部支持板6
1を支持する基台62を主体として構成されている。前
記上部支持板60と下部支持板61とはピン結合部分を
介して互いに回動自在に構成されており、基材ホルダ4
5の傾斜角度を調整できるようになっている。なお、本
例の装置では基材ホルダ45の角度を調整する角度調整
機構Dを設けたが、角度調整機構Dをイオンガン47の
支持部分に取り付けてイオンガン47の傾斜角度を調整
し、イオンビームの入射角度を調整するようにしても良
い。また、角度調整機構は本の例の構成に限るものでは
なく、種々の構成のものを採用することができるのは勿
論である。
The substrate holder 45 has a heater inside so that the substrate 21 positioned on the substrate holder 45 can be heated to a desired temperature as needed. An angle adjusting mechanism D is attached to the bottom of the base material holder 45. The angle adjusting mechanism D includes an upper support plate 60 joined to the bottom of the base material holder 45 and the upper support plate 60.
A lower support plate 61 pin-connected to the lower support plate 6 and the lower support plate 6
The base 62 which supports 1 is mainly constituted. The upper support plate 60 and the lower support plate 61 are configured to be rotatable with respect to each other via a pin coupling portion, and the base material holder 4
The tilt angle of 5 can be adjusted. Although the apparatus of this example is provided with the angle adjusting mechanism D for adjusting the angle of the base material holder 45, the angle adjusting mechanism D is attached to the supporting portion of the ion gun 47 to adjust the inclination angle of the ion gun 47 to adjust the ion beam. The incident angle may be adjusted. Further, the angle adjusting mechanism is not limited to the structure of this example, and it goes without saying that various structures can be adopted.

【0025】前記ターゲット46は、目的とする配向制
御多結晶中間薄膜を形成するためのものであり、目的の
組成の配向制御多結晶中間薄膜と同一組成あるいは近似
組成のものなどを用いる。ターゲット46として具体的
には、MgOあるいはY23で安定化したジルコニア
(YSZ)、MgO、SrTiO3などを用いるがこれ
に限るものではなく、形成しようとする配向制御多結晶
中間薄膜に見合うターゲッを適宜用いれば良い。
The target 46 is for forming a target orientation-controlled polycrystalline intermediate thin film, and has the same composition as or similar composition to the orientation-controlled polycrystalline intermediate thin film having a desired composition. As the target 46, specifically, zirconia (YSZ) stabilized with MgO or Y 2 O 3 , MgO, SrTiO 3 or the like is used, but the target 46 is not limited to this, and is suitable for the orientation control polycrystalline intermediate thin film to be formed. A target may be used as appropriate.

【0026】前記イオンガン47は、容器の内部に、蒸
発源を収納し、蒸発源の近傍に引き出し電極を備えて構
成されている。そして、前記蒸発源から発生した原子ま
たは分子の一部をイオン化し、そのイオン化した粒子を
引き出し電極で発生させた電界で制御してイオンビーム
として照射する装置である。粒子をイオン化するには直
流放電方式、高周波励起方式、フィラメント式、クラス
タイオンビーム方式などの種々のものがある。フィラメ
ント式はタングステン製のフィラメントに通電加熱して
熱電子を発生させ、高真空中で蒸発粒子と衝突させてイ
オン化する方法である。また、クラスタイオンビーム方
式は、原料を入れたるつぼの開口部に設けられたノズル
から真空中に出てくる集合分子のクラスタを熱電子で衝
撃してイオン化して放射するものである。本の例におい
ては、図4に示す構成の内部構造のイオンガン47を用
いる。このイオンガン47は、筒状の容器65の内部
に、引出電極66とフィラメント67とArガスなどの
導入管68とを備えて構成され、容器65の先端からイ
オンをビーム状に平行に照射できるものである。
The ion gun 47 is constructed so that an evaporation source is housed inside the container and an extraction electrode is provided near the evaporation source. Then, a part of the atoms or molecules generated from the evaporation source is ionized, and the ionized particles are controlled by an electric field generated by an extraction electrode and irradiated as an ion beam. There are various methods for ionizing particles, such as a DC discharge method, a high-frequency excitation method, a filament method, and a cluster ion beam method. The filament type is a method in which a tungsten filament is energized and heated to generate thermoelectrons, which are collided with evaporated particles in a high vacuum to be ionized. In the cluster ion beam method, clusters of aggregated molecules coming out of vacuum from a nozzle provided at an opening of a crucible containing raw materials are bombarded with thermal electrons to be ionized and emitted. In this example, the ion gun 47 having the internal structure shown in FIG. 4 is used. The ion gun 47 is configured by providing an extraction electrode 66, a filament 67, and an introduction tube 68 for Ar gas or the like inside a cylindrical container 65, and is capable of irradiating ions from the tip of the container 65 in a beam shape in parallel. Is.

【0027】前記イオンガン47は、図3に示すように
その中心軸線Sを基材21の上面(成膜面)に対して入
射角度θ(基材21の垂線(法線)と中心線Sとのなす
角度)でもって傾斜させて対向されている。この入射角
度θは50〜60度の範囲が好ましいが、55〜60度
の範囲が最も好ましい。従ってイオンガン47は基材2
1の上面に対して入射角度θでもってイオンビームを照
射できるように配置されている。なお、前記イオンガン
47によって基材21に照射するイオンビームは、He
+、Ne+、Ar+、Xe+、Kr+などの希ガスのイオン
ビーム、あるいは、それらと酸素イオンの混合イオンビ
ームなどで良い。だだし、形成しようとする配向制御多
結晶中間薄膜の結晶構造を整えるためには、ある程度の
原子量が必要であり、あまりに軽量のイオンでは効果が
薄くなることを考慮すると、Ar+、Kr+などのイオン
を用いることが好ましい。前記スパッタビーム照射装置
48は、イオンガン47と同等の構成をなし、ターゲッ
ト46に対してイオンビームを照射してターゲット46
の構成粒子を基材21に向けて叩き出すことができるも
のである。
As shown in FIG. 3, the ion gun 47 has its central axis S with respect to the upper surface (deposition surface) of the base material 21 at an incident angle θ (perpendicular line (normal line) of the base material 21 and center line S). The angle is made by the angle) and the two are opposed to each other. The incident angle θ is preferably in the range of 50 to 60 degrees, but most preferably in the range of 55 to 60 degrees. Therefore, the ion gun 47 is the base material 2
The upper surface of No. 1 is arranged so that the ion beam can be irradiated at an incident angle θ. The ion beam applied to the base material 21 by the ion gun 47 is He.
An ion beam of a rare gas such as + , Ne + , Ar + , Xe + , and Kr + , or a mixed ion beam of those and oxygen ions may be used. However, in order to arrange the crystal structure of the orientation-controlled polycrystalline intermediate thin film to be formed, a certain amount of atomic weight is required, and considering that the effect becomes too thin with an ion that is too light, Ar + , Kr +, etc. It is preferable to use the above ions. The sputter beam irradiation device 48 has the same configuration as the ion gun 47, and irradiates the target 46 with an ion beam so as to irradiate the target 46.
It is possible to knock out the constituent particles of (1) toward the base material 21.

【0028】次に前記構成の装置を用いてテープ状の基
材21の他方の面(多結晶速成中間薄膜23が形成され
ていない側の面)上にYSZの配向制御多結晶中間薄膜
22をイオンビームアシストスパッタリング法により形
成する場合について説明する。基材21の多結晶速成中
間薄膜23が形成されていない側の面上に配向制御多結
晶中間薄膜22を形成するには、YSZのターゲットを
用いるとともに、角度調整機構Dを調節してイオンガン
47から照射されるイオンビームを基材21の上面に5
0〜60度の範囲の角度で照射できるようにする。次に
基材21を収納している容器の内部を真空引きして減圧
雰囲気とする。この際の真空容器内の圧力は、イオンビ
ームを使用する関係から図2に示す高周波スパッタ装置
の真空容器内の圧力よりも低い値となる。そして、イオ
ンガン47とスパッタビーム照射装置48を作動させ
る。
Next, by using the apparatus having the above-mentioned structure, a YSZ orientation control polycrystalline intermediate thin film 22 is formed on the other surface (the surface on which the polycrystalline rapid intermediate thin film 23 is not formed) of the tape-shaped substrate 21. A case of forming by the ion beam assisted sputtering method will be described. In order to form the orientation-controlled polycrystalline intermediate thin film 22 on the surface of the base material 21 on which the polycrystalline rapid intermediate thin film 23 is not formed, a YSZ target is used and the angle adjusting mechanism D is adjusted to adjust the ion gun 47. The ion beam emitted from the
Irradiation is possible at an angle in the range of 0 to 60 degrees. Next, the inside of the container accommodating the base material 21 is evacuated to create a reduced pressure atmosphere. At this time, the pressure inside the vacuum container is lower than the pressure inside the vacuum container of the high frequency sputtering apparatus shown in FIG. 2 because of the use of the ion beam. Then, the ion gun 47 and the sputter beam irradiation device 48 are operated.

【0029】スパッタビーム照射装置48からターゲッ
ト46にイオンビームを照射すると、ターゲット46の
構成粒子が叩き出されて基材21上に飛来する。そし
て、基材21上に、ターゲット46から叩き出した構成
粒子を堆積させると同時にイオンガン47からArイオ
ンと酸素イオンの混合イオンビームを照射して所望の厚
みの配向制御多結晶中間薄膜22を形成する。このイオ
ン照射する際の入射角度θは、50〜60度の範囲が好
ましく、55〜60度の範囲が最も好ましい。ここでθ
を90度とすると、多結晶中間薄膜22のc軸は基材2
1上の成膜面に対して直角に配向するものの、基材21
の成膜面上に(111)面が立つので好ましくない。ま
た、θを30度とすると、多結晶中間薄膜22はc軸配
向すらしなくなる。前記のような好ましい範囲の角度で
イオンビーム照射するならば多結晶中間薄膜22の結晶
の(100)面が立つようになる。
When the target 46 is irradiated with the ion beam from the sputter beam irradiation device 48, the constituent particles of the target 46 are knocked out and fly onto the substrate 21. Then, the constituent particles knocked out from the target 46 are deposited on the base material 21, and at the same time, the mixed ion beam of Ar ions and oxygen ions is irradiated from the ion gun 47 to form the orientation control polycrystalline intermediate thin film 22 having a desired thickness. To do. The incident angle θ at the time of ion irradiation is preferably in the range of 50 to 60 degrees, and most preferably in the range of 55 to 60 degrees. Where θ
Is 90 degrees, the c-axis of the polycrystalline intermediate thin film 22 is the base material 2
Although it is oriented at right angles to the film-forming surface on 1, the substrate 21
Since the (111) plane stands on the film formation surface of, it is not preferable. When θ is 30 degrees, the polycrystalline intermediate thin film 22 does not even have c-axis orientation. If the ion beam irradiation is carried out at an angle within the above-mentioned preferable range, the (100) plane of the crystal of the polycrystalline intermediate thin film 22 will stand.

【0030】このような入射角度でイオンビーム照射を
行ないながらスパッタリングを行なうことで、基材21
上に形成されるYSZの配向制御多結晶中間薄膜22の
結晶軸のa軸とb軸とを配向させることができるが、こ
れは、堆積されている途中のスパッタ粒子に対して適切
な角度でイオンビーム照射されたことによるものと思わ
れる。
By performing sputtering while irradiating the ion beam at such an incident angle, the substrate 21
Although the a-axis and the b-axis of the crystal axes of the YSZ orientation control polycrystalline intermediate thin film 22 formed above can be oriented, this is at an appropriate angle with respect to the sputtered particles being deposited. Probably because it was irradiated with an ion beam.

【0031】なお、この配向制御多結晶中間薄膜22の
結晶配向性が整う要因として本発明らは、以下のことを
想定している。YSZの配向制御多結晶中間薄膜22の
結晶の単位格子は、図5に示すように立方晶系であり、
この結晶格子においては、基板法線方向が<100>軸
であり、他の<010>軸と<001>軸はいずれも図
5に示す方向となる。これらの方向に対し、基板法線に
対して斜め方向から入射するイオンビームを考慮する
と、図5の原点Oに対して単位格子の対角線方向、即
ち、<111>軸に沿って入射する場合は54.7度の
入射角度となる。
The inventors of the present invention assume the following as a factor for adjusting the crystal orientation of the orientation-controlled polycrystalline intermediate thin film 22. The unit cell of the crystal of the orientation control polycrystalline intermediate thin film 22 of YSZ is a cubic system as shown in FIG.
In this crystal lattice, the substrate normal direction is the <100> axis, and the other <010> axes and the <001> axes are the directions shown in FIG. Considering an ion beam that is incident on these directions obliquely with respect to the substrate normal, in the case where the ion beam is incident on the origin O of FIG. 5 along the diagonal direction of the unit lattice, that is, along the <111> axis, The incident angle is 54.7 degrees.

【0032】ここで、前記のように入射角度50〜60
度の範囲内でイオンビームを照射する際に最も良好な結
晶配向性を示すということは、イオンビームの入射角度
が前記54.7度と一致するかその前後になった場合、
イオンチャンネリングが最も効果的に起こり、基材21
上に堆積しつつある結晶において、基材21の上面で前
記角度に一致する配置関係になった原子のみが選択的に
残り易くなり、その他の乱れた原子配列のものは斜め方
向からのイオンビームのスパッタ効果によりスパッタさ
れて除去される結果、配向性の良好な原子の集合した結
晶のみが選択的に残って堆積してゆくことによるものと
推定している。ただし、このように堆積された結晶のう
ち、乱れた原子配列のものをイオンビームで除去しなが
ら成膜するので、成膜レートは悪くなり、成膜速度は通
常のスパッタリングで成膜するよりも遅くなる。
Here, the incident angle is 50 to 60 as described above.
The best crystal orientation when irradiating with an ion beam within a range of degrees means that when the incident angle of the ion beam coincides with or is around 54.7 degrees,
Ion channeling occurs most effectively and the substrate 21
In the crystal that is being deposited on top, only the atoms that have a positional relationship that matches the angle on the upper surface of the base material 21 tend to remain selectively, and other disordered atomic arrangements cause an ion beam from an oblique direction. It is presumed that, as a result of being sputtered and removed by the sputtering effect of No. 3, only the crystals in which the atoms with good orientation are gathered selectively remain and are deposited. However, among the crystals thus deposited, the ones with disordered atomic arrangement are removed while being deposited by the ion beam, so the deposition rate becomes worse and the deposition rate is slower than that of ordinary sputtering. Become slow.

【0033】図6に、前記の方法で基材21の一方の面
上にYSZの配向制御多結晶中間薄膜22が形成され、
基材21の他方の面上に多結晶速成中間薄膜23が形成
された薄膜積層体25を示す。なお、図6では結晶粒2
7が1層のみ形成された状態を示しているが、結晶粒2
7を多層構造としても差し支えないのは勿論である。
In FIG. 6, the YSZ orientation control polycrystalline intermediate thin film 22 is formed on one surface of the substrate 21 by the method described above.
The thin film laminated body 25 in which the polycrystalline rapid-transition intermediate | middle thin film 23 was formed on the other surface of the base material 21 is shown. In addition, in FIG.
7 shows a state in which only one layer is formed, but crystal grains 2
It goes without saying that 7 may have a multilayer structure.

【0034】以上のように構成された薄膜積層体25に
あっては、更にその上に酸化物超電導層を形成すること
で実用に供される。そして、薄膜積層体25の最上部に
は配向制御多結晶中間薄膜22が形成されているので、
この上に成膜される酸化物超電導層は結晶配向性に優れ
たものとなり、これにより超電導特性が向上する。
The thin film laminate 25 having the above structure is put into practical use by further forming an oxide superconducting layer thereon. Since the orientation control polycrystalline intermediate thin film 22 is formed on the uppermost part of the thin film stack 25,
The oxide superconducting layer formed thereon has excellent crystal orientation, which improves superconducting properties.

【0035】次に、前記薄膜積層体25の上に酸化物超
電導層を形成して酸化物超電導導体を製造する装置と製
造する方法について説明する。図7は酸化物超電導層を
成膜法により形成する装置の一例を示すもので、図7は
レーザ蒸着装置を示している。この例のレーザ蒸着装置
70は、処理容器71を有し、この処理容器71の内部
の蒸着処理室72に薄膜積層体25とターゲット73を
設置できるようになっている。即ち、蒸着処理室72の
底部には基台74が設けられ、この基台74の上面に薄
膜積層体25を設置できるようになっているとともに、
基台74の斜め上方に支持ホルダ73aによって支持さ
れたターゲット73が傾斜状態で設けられている。ま
た、図中符号75は薄膜積層体25の送出装置、76は
薄膜積層体25の巻取装置を示し、この送出装置75か
ら連続的に基台74上に薄膜積層体25を送り出し、続
いて巻取装置76で巻き取ることで薄膜積層体25上に
連続成膜することができるようになっている。また、処
理容器71は、排気孔77aを介して真空排気装置77
に接続されて蒸着処理室72を所定の圧力に減圧できる
ようになっている。
Next, an apparatus for producing an oxide superconducting conductor by forming an oxide superconducting layer on the thin film laminate 25 and a method for producing the same will be described. FIG. 7 shows an example of an apparatus for forming an oxide superconducting layer by a film forming method, and FIG. 7 shows a laser vapor deposition apparatus. The laser vapor deposition apparatus 70 of this example has a processing container 71, and the thin film laminate 25 and the target 73 can be installed in a vapor deposition processing chamber 72 inside the processing container 71. That is, the base 74 is provided at the bottom of the vapor deposition processing chamber 72, and the thin film stack 25 can be installed on the upper surface of the base 74.
A target 73 supported by a support holder 73a is provided obliquely above the base 74 in an inclined state. Further, in the figure, reference numeral 75 is a delivery device for the thin film laminate 25, and 76 is a winding device for the thin film laminate 25. The delivery device 75 continuously delivers the thin film laminate 25 onto the base 74, and By winding with the winding device 76, it is possible to continuously form a film on the thin film laminate 25. Further, the processing container 71 has a vacuum exhaust device 77 through the exhaust hole 77a.
It is possible to reduce the pressure of the vapor deposition processing chamber 72 to a predetermined pressure.

【0036】前記ターゲット73は、形成しようとする
酸化物超電導層と同等または近似した組成、あるいは、
成膜中に逃避しやすい成分を多く含有させた複合酸化物
の焼結体あるいは酸化物超電導体などの板体からなって
いる。従ってターゲット73は、Y1Ba2Cu3Ox、Y2
Ba4Cu8Ox、Y3Ba3Cu6Oxなる組成、(Bi,P
b)2Ca2Sr2Cu3Ox、(Bi,Pb)2Ca2Sr3
Cu4Oxなる組成、あるいはTl2Ba2Ca2Cu3
x、Tl1Ba2Ca2Cu3Ox、Tl1Ba2Ca3Cu4
xなる組成などに代表される臨界温度の高い酸化物超電
導層を形成するために使用するので、これと同一の組成
か近似した組成のものを用いることが好ましい。前記基
台74は加熱ヒータを内蔵したもので、薄膜積層体25
を必要に応じて所望の温度に加熱できるようになってい
る。
The target 73 has the same or similar composition as the oxide superconducting layer to be formed, or
It is composed of a sintered body of a complex oxide or a plate body such as an oxide superconductor containing a large amount of components that easily escape during film formation. Therefore, the target 73 is Y 1 Ba 2 Cu 3 Ox, Y 2
Ba 4 Cu 8 Ox, Y 3 Ba 3 Cu 6 Ox, (Bi, P
b) 2 Ca 2 Sr 2 Cu 3 Ox, (Bi, Pb) 2 Ca 2 Sr 3
Cu 4 Ox composition or Tl 2 Ba 2 Ca 2 Cu 3 O
x, Tl 1 Ba 2 Ca 2 Cu 3 Ox, Tl 1 Ba 2 Ca 3 Cu 4 O
Since it is used for forming an oxide superconducting layer having a high critical temperature represented by the composition x, etc., it is preferable to use the same composition or a similar composition. The base 74 has a built-in heater, and is a thin film stack 25.
Can be heated to a desired temperature as needed.

【0037】一方、処理容器71の側方には、レーザ発
光装置78と第1反射鏡79と集光レンズ80と第2反
射鏡81とが設けられ、レーザ発光装置78が発生させ
たレーザビームを処理容器71の側壁に取り付けられた
透明窓82を介してターゲット73に集光照射できるよ
うになっている。レーザ発光装置78はターゲット73
から構成粒子を叩き出すことができるものであれば、Y
AGレーザ、CO2レーザ、エキシマレーザなどのいず
れのものを用いても良い。
On the other hand, a laser emitting device 78, a first reflecting mirror 79, a condenser lens 80, and a second reflecting mirror 81 are provided on the side of the processing container 71, and a laser beam generated by the laser emitting device 78 is provided. The target 73 can be focused and irradiated through the transparent window 82 attached to the side wall of the processing container 71. The laser emitting device 78 is the target 73.
If it is possible to knock out the constituent particles from
Any of AG laser, CO 2 laser, excimer laser, etc. may be used.

【0038】次に前記YSZの配向制御多結晶中間薄膜
22の上に、酸化物超電導層24を形成する方法につい
て説明する。まず、薄膜積層体25をこれの配向制御多
結晶中間薄膜22側を上にして図7に示すレーザ蒸着装
置70の基台74上に設置し、蒸着処理室72を真空排
気装置77で減圧する。ここで必要に応じて蒸着処理室
72に酸素ガスを導入して蒸着処理室72を酸素雰囲気
としても良い。また、基台74の加熱ヒータを作動させ
て薄膜積層体25を所望の温度に加熱しても良い。
Next, a method of forming the oxide superconducting layer 24 on the YSZ orientation control polycrystalline intermediate thin film 22 will be described. First, the thin film layered product 25 is placed on the base 74 of the laser deposition device 70 shown in FIG. 7 with the orientation control polycrystalline intermediate thin film 22 side facing up, and the deposition processing chamber 72 is decompressed by the vacuum exhaust device 77. . Here, if necessary, an oxygen gas may be introduced into the vapor deposition processing chamber 72 to create an oxygen atmosphere in the vapor deposition processing chamber 72. Further, the heater of the base 74 may be operated to heat the thin film laminate 25 to a desired temperature.

【0039】次にレーザ発光装置78から発生させたレ
ーザビームを蒸着処理室72のターゲット73に集光照
射する。これによってターゲット73の構成粒子がえぐ
り出されるか蒸発されてその粒子が配向制御多結晶中間
薄膜22上に堆積する。ここで構成粒子の堆積の際に配
向制御多結晶中間薄膜22が予めc軸配向し、a軸とb
軸でも配向しているので、配向制御多結晶中間薄膜22
上に形成される酸化物超電導層24の結晶のc軸とa軸
とb軸も配向制御多結晶中間薄膜22に整合するように
エピタキシャル成長して結晶化する。これにより結晶配
向性の良好な酸化物超電導層24が得られる。なお、成
膜後に必要に応じて酸化物超電導層24の結晶構造を整
えるための熱処理を施しても良い。上述の方法により薄
膜積層体25の上に酸化物超電導層24を形成すると、
図1に示すような第1の例の酸化物超電導導体20が得
られる。前記配向制御多結晶中間薄膜22上に形成され
た酸化物超電導層24は、多結晶状態となるが、この酸
化物超電導層24の結晶粒の1つ1つにおいては、基材
21の厚さ方向に電気を流しにくいc軸が配向し、基材
21の面方向にa軸どうしあるいはb軸どうしが配向し
た結晶配向性が良好なものとなる。従って得られた酸化
物超電導層24は結晶粒界における量子的結合性に優
れ、結晶粒界における超電導特性の劣化が少ないので、
基材21の面方向に電気を流し易く、臨界電流密度の優
れたものが得られる。
Next, the laser beam emitted from the laser emitting device 78 is focused and irradiated onto the target 73 in the vapor deposition processing chamber 72. As a result, the constituent particles of the target 73 are scooped out or evaporated and the particles are deposited on the orientation-controlled polycrystalline intermediate thin film 22. Here, during the deposition of the constituent particles, the orientation control polycrystalline intermediate thin film 22 is preliminarily c-axis oriented, and the a-axis and b
Since it is also oriented in the axis, the orientation-controlled polycrystalline intermediate thin film 22
Crystals of the oxide superconducting layer 24 formed above are epitaxially grown and crystallized so that the c-axis, a-axis, and b-axis also match the orientation-controlled polycrystalline intermediate thin film 22. Thereby, the oxide superconducting layer 24 having good crystal orientation is obtained. After the film formation, a heat treatment for adjusting the crystal structure of the oxide superconducting layer 24 may be performed if necessary. When the oxide superconducting layer 24 is formed on the thin film laminate 25 by the method described above,
The oxide superconducting conductor 20 of the first example as shown in FIG. 1 is obtained. The oxide superconducting layer 24 formed on the orientation-controlled polycrystalline intermediate thin film 22 is in a polycrystalline state, and in each of the crystal grains of the oxide superconducting layer 24, the thickness of the base material 21 is different. In this direction, the c-axis, in which electricity is difficult to flow, is oriented, and the a-axis or the b-axis is oriented in the plane direction of the base material 21 to provide good crystal orientation. Therefore, the obtained oxide superconducting layer 24 is excellent in the quantum coupling property at the crystal grain boundaries and the deterioration of the superconducting properties at the crystal grain boundaries is small.
It is easy to pass electricity in the surface direction of the base material 21, and a material having an excellent critical current density can be obtained.

【0040】第1の例の酸化物超電導導体20にあって
は、前述の構成としたことにより、テープ状の基材21
の厚さが薄くても、該基材21が両面の配向制御多結晶
中間薄膜22と多結晶速成中間薄膜23で支持されるの
で、酸化物超電導層24の蒸着時に高温雰囲気によって
基材21に歪みが生じることが抑制される。これによっ
て基材21上の配向制御多結晶中間薄膜22に歪みが生
じることも少なくなり、配向制御多結晶中間薄膜22の
表面の平面性が向上するので、配向制御多結晶中間薄膜
22上に形成される酸化物超電導層24の結晶配向性が
良好となり、臨界電流密度が優れたものとなる。従っ
て、この第1の例の酸化物超電導導体20にあっては、
厚みの薄いテープ状の基材21が用いらているので、酸
化物超電導導体の厚みが薄くなり、オーバーオール(酸
化物超電導導体全断面積)あたりの臨界電流密度を向上
させることができ、電流容量の大きい長尺の酸化物超電
導導体を容易に提供することができる。
In the oxide superconducting conductor 20 of the first example, the tape-shaped base material 21 is obtained by adopting the above-mentioned constitution.
Even if the thickness of the base material 21 is thin, the base material 21 is supported by the orientation-controlled polycrystalline intermediate thin film 22 and the polycrystalline rapid-growth intermediate thin film 23 on both sides, so that the base material 21 may be supported by the high temperature atmosphere during the deposition of the oxide superconducting layer 24. Distortion is suppressed. This reduces distortion in the orientation control polycrystalline intermediate thin film 22 on the base material 21 and improves the flatness of the surface of the orientation control polycrystalline intermediate thin film 22. The crystal orientation of the oxide superconducting layer 24 is improved, and the critical current density is excellent. Therefore, in the oxide superconducting conductor 20 of the first example,
Since the tape-shaped base material 21 having a small thickness is used, the thickness of the oxide superconducting conductor is reduced, and the critical current density per overall (total cross-sectional area of the oxide superconducting conductor) can be improved, and the current capacity can be improved. It is possible to easily provide a long oxide superconducting conductor having a large size.

【0041】また、この第1の例の酸化物超電導導体2
0は、基材21の下面に形成された多結晶速成中間薄膜
23が絶縁層として機能するので、酸化物超電導層24
側のみさらに絶縁層を形成すればよく、また、マグネッ
ト等として用いる場合は、絶縁層を形成することなくそ
のまま巻き込むことが可能である。また、配向制御多結
晶中間薄膜22を形成する多数の結晶粒のそれぞれの粒
界傾角を30度以下としたものにあっては、配向制御多
結晶中間薄膜22上に成膜された酸化物超電導層24の
結晶配向性がより良好になるので、より優れた超電導特
性を示すものとなる。上記第1の例の酸化物超電導導体
20にあっては、多結晶速成中間薄膜23を高周波スパ
ッタにより形成される場合について説明したが、CVD
法、真空蒸着法、電子ビーム蒸着法、レーザ蒸着法など
の圧縮応力が入るプロセスで多結晶速成中間薄膜を成膜
する必要があり、また、高エネルギープラズマによりア
シストが必要であり、通常、Ar等の希ガスが膜中にト
ラップされることが必要であるのでPVD法が好まし
い。
Also, the oxide superconducting conductor 2 of the first example
The oxide superconducting layer 24 is 0 because the polycrystalline rapid-growth intermediate thin film 23 formed on the lower surface of the base material 21 functions as an insulating layer.
It suffices to further form an insulating layer only on the side, and when it is used as a magnet or the like, it can be wound as it is without forming an insulating layer. Further, in the case where the grain boundary tilt angle of each of a large number of crystal grains forming the orientation-controlled polycrystalline intermediate thin film 22 is 30 degrees or less, the oxide superconductivity formed on the orientation-controlled polycrystalline intermediate thin film 22. Since the crystal orientation of the layer 24 becomes better, it exhibits more excellent superconducting properties. In the oxide superconducting conductor 20 of the first example described above, the case where the polycrystalline quick-deposited intermediate thin film 23 is formed by high frequency sputtering has been described.
Method, vacuum vapor deposition method, electron beam vapor deposition method, laser vapor deposition method, etc., it is necessary to form a polycrystalline rapid-deposited intermediate thin film by a process in which a compressive stress is applied, and high energy plasma is required to assist, and usually Ar The PVD method is preferable because it is necessary to trap a rare gas such as the above in the film.

【0042】また、上記第1の例の酸化物超電導導体2
0にあっては、基材21の下面に形成される中間薄膜が
多結晶速成中間薄膜23である場合について説明した
が、この多結晶速成中間薄膜23の代わりに配向制御多
結晶中間薄膜22が形成されていてもよく、すなわち図
10に示すような基材21の両面上に多数の結晶粒が結
合されてなる配向制御多結晶中間薄膜22,22が形成
されたものであってもよい。基材21の両面上に配向制
御多結晶中間薄膜22,22を形成する場合、各配向制
御多結晶中間薄膜22はそれぞれイオンビームアシスト
スパッタリング法により形成されたものであることが好
ましい。図10のような基材21の両面上に配向制御多
結晶中間薄膜22,22がイオンビームアシストスパッ
タリング法により形成された薄膜積層体25にあって
は、圧縮応力が入っているものの両面の配向制御多結晶
中間薄膜22,22によって圧縮応力が打ち消されるた
め基材21に反りが生じることを防止でき、さらに、基
材21の下面(加熱される面)にも配向制御多結晶中間
薄膜22が形成されているので、基材31の酸化が防止
される。これによって、配向制御多結晶中間薄膜22上
に酸化物超電導層24を蒸着する時に薄膜積層体25表
面を均一に加熱し易くなり、薄膜積層体25表面の温度
分布にムラが生じることが殆どなく、薄膜積層体25の
温度が安定するので、基材21の長さ方向に対する超電
導特性が安定した酸化物超電導層24を形成することが
できる。従って、図10に示した酸化物超電導導体20
にあっては、配向制御多結晶中間薄膜の形成時の圧縮応
力によって基材に反りが生じることなく、基材の長さ方
向に対する超電導特性が安定した酸化物超電導層が形成
されるという特性と、厚さの薄いテープ状の基材が用い
られていても、酸化物超電導層の蒸着時の高温雰囲気に
よって上記基材に歪みが生じることが少なく、オーバー
オールあたりの臨界電流密度が向上するという特性の両
方を備えているいう利点がある。
Further, the oxide superconducting conductor 2 of the first example described above.
In 0, the case where the intermediate thin film formed on the lower surface of the base material 21 is the polycrystalline accelerated intermediate thin film 23 has been described. However, in place of the polycrystalline accelerated intermediate thin film 23, the orientation control polycrystalline intermediate thin film 22 is used. It may be formed, that is, the orientation controlling polycrystalline intermediate thin films 22, 22 in which a large number of crystal grains are bonded to each other may be formed on both surfaces of the base material 21 as shown in FIG. When the orientation-controlled polycrystalline intermediate thin films 22 and 22 are formed on both surfaces of the base material 21, each orientation-controlled polycrystalline intermediate thin film 22 is preferably formed by an ion beam assisted sputtering method. In the thin film stack 25 in which the orientation control polycrystalline intermediate thin films 22 and 22 are formed on both surfaces of the base material 21 by the ion beam assisted sputtering method as shown in FIG. Since the control polycrystalline intermediate thin films 22 and 22 cancel the compressive stress, it is possible to prevent the base material 21 from warping, and further, the orientation control polycrystalline intermediate thin film 22 is formed on the lower surface (heated surface) of the base material 21. Since it is formed, the base material 31 is prevented from being oxidized. Accordingly, when the oxide superconducting layer 24 is vapor-deposited on the orientation-controlled polycrystalline intermediate thin film 22, the surface of the thin film laminate 25 is easily heated uniformly, and the temperature distribution on the surface of the thin film laminate 25 is hardly uneven. Since the temperature of the thin film stack 25 is stable, the oxide superconducting layer 24 having stable superconducting properties in the longitudinal direction of the base material 21 can be formed. Therefore, the oxide superconducting conductor 20 shown in FIG.
In that case, the warp does not occur in the base material due to the compressive stress during the formation of the orientation-controlled polycrystalline intermediate thin film, and the oxide superconducting layer having stable superconducting characteristics in the length direction of the base material is formed. Even if a thin tape-shaped substrate is used, the substrate is less likely to be distorted by the high temperature atmosphere during vapor deposition of the oxide superconducting layer, and the critical current density per overall is improved. It has the advantage of having both.

【0043】図8は、本発明に係る酸化物超電導導体の
第2の例を示すものである。この第2の例の酸化物超電
導導体90は、テープ状の基材21の両面上にそれぞれ
多結晶速成中間薄膜23a,23bが形成され、これら
多結晶速成中間薄膜23a,23bのうち一方の多結晶
速成中間薄膜23b上に配向制御多結晶中間薄膜22b
が形成され、この配向制御多結晶中間薄膜22b上に酸
化物超電導層24が形成されてなるものである。
FIG. 8 shows a second example of the oxide superconducting conductor according to the present invention. In the oxide superconducting conductor 90 of the second example, polycrystalline quick-acting intermediate thin films 23a and 23b are formed on both surfaces of a tape-shaped substrate 21, and one of these polycrystalline quick-acting intermediate thin films 23a and 23b is formed. An orientation-controlled polycrystalline intermediate thin film 22b is formed on the crystallized rapid intermediate thin film 23b.
And an oxide superconducting layer 24 is formed on the orientation-controlled polycrystalline intermediate thin film 22b.

【0044】この例の多結晶速成中間薄膜23a,23
bは、先に説明した第1の例の多結晶中間速成薄膜23
と同等に多数の結晶粒が結合されてなるものであり、先
に説明した方法とほぼ同様にして図2の高周波スパッタ
装置を用いて形成でき、また、多結晶速成中間薄膜23
bの各結晶粒の結晶軸においてa軸とb軸は特別には配
向されていないが、c軸は基材21の上面(成膜面)に
対してほぼ直角に向けられていることが好ましい。この
配向制御多結晶中間薄膜22bは、先に説明した方法と
ほぼ同様にして、図3のイオンビームスパッタ装置にイ
オンビームアシスト用のイオンガンを備えた装置を用い
て形成できるが、先の例のものと異なるところは、多結
晶速成中間薄膜23b上に形成されている点である。
The polycrystalline rapid-growth intermediate thin films 23a, 23 of this example
b is the polycrystalline intermediate-rate thin film 23 of the first example described above.
A large number of crystal grains are bonded to each other in the same manner as described above, and can be formed by using the high frequency sputtering apparatus of FIG. 2 in substantially the same manner as described above.
Although the a-axis and the b-axis are not particularly oriented in the crystal axis of each crystal grain of b, it is preferable that the c-axis be oriented substantially at right angles to the upper surface (film-forming surface) of the base material 21. . This orientation-controlled polycrystalline intermediate thin film 22b can be formed by using an apparatus equipped with an ion beam assisting ion gun in the ion beam sputtering apparatus of FIG. 3 in a manner similar to the method described above. The difference from that is that it is formed on the polycrystalline rapid-growth intermediate thin film 23b.

【0045】基材21に対して上側の中間薄膜の厚みの
合計、すなわち配向制御多結晶中間薄膜22bと多結晶
速成中間薄膜23bとの厚みの合計は、0.1〜1.0
μmとされる。上側の中間薄膜の厚みの合計を1.0μ
mを超えて厚くしてもももはや効果の増大は期待でき
ず、経済的にも不利となる。一方、上側の中間薄膜の厚
みの合計が0.1μm未満であると、薄すぎて基材21
を十分支持できず、後述する酸化物超電導層24の蒸着
時に高温雰囲気によって基材21に歪みが生じる恐れが
あり、また、熱処理時に酸化物超電導層24の元素を基
材21側に拡散させてしまう恐れがあり、酸化物超電導
層24の成分組成が崩れる恐れがあるからである。ま
た、基材21に対して下側の中間薄膜の厚み、すなわち
多結晶速成中間薄膜23bの厚みは、前記第1のの例の
多結晶速成中間薄膜23と同様の理由から0.1〜1.
0μmとされる。
The total thickness of the intermediate thin film on the upper side of the base material 21, that is, the total thickness of the orientation-controlled polycrystalline intermediate thin film 22b and the polycrystalline accelerated intermediate thin film 23b is 0.1 to 1.0.
μm. The total thickness of the upper intermediate thin film is 1.0μ
Even if the thickness exceeds m, the effect cannot be expected to increase any more, which is economically disadvantageous. On the other hand, if the total thickness of the upper intermediate thin film is less than 0.1 μm, it is too thin and the base material 21
May not be sufficiently supported, and the substrate 21 may be distorted due to a high temperature atmosphere during the vapor deposition of the oxide superconducting layer 24, which will be described later, and the elements of the oxide superconducting layer 24 may be diffused to the substrate 21 side during the heat treatment. This is because the composition of the oxide superconducting layer 24 may be destroyed. In addition, the thickness of the intermediate thin film on the lower side of the base material 21, that is, the thickness of the polycrystalline rapid accelerating intermediate thin film 23b is 0.1 to 1 for the same reason as the polycrystalline rapid accelerating intermediate thin film 23 of the first example. .
0 μm.

【0046】この第2の例のように基材21に対して上
側の中間薄膜を多結晶速成薄膜23bと配向制御多結晶
薄膜22bとの二層から構成するならば、多結晶速成中
間薄膜23bと配向制御多結晶中間薄膜22bとを合わ
せた膜厚分を全て配向制御多結晶中間薄膜とするよりも
短時間で成膜処理できるようになる。その理由は、第1
の例のようにイオンビームを斜め方向から照射しながら
スパッタリングすることによって基材21に対して上側
の中間薄膜である配向制御多結晶中間薄膜22を形成す
る場合、その成膜速度は通常のイオンビームスパッタや
高周波スパッタリングによって多結晶速成中間薄膜を形
成する場合に比べて低下することになる。例えば、高周
波スパッタリングによれば、通常、0.5μm/時間程
度の速度で成膜処理できるが、斜め方向からイオンビー
ムを照射しながらのスパッタリングによれば、0.1μ
m/時間程度の速度での成膜処理となる。
If the intermediate thin film on the upper side of the base material 21 is composed of two layers of the polycrystalline rapid-deposited thin film 23b and the orientation control polycrystalline thin film 22b as in the second example, the polycrystalline rapid-deposited intermediate thin film 23b is formed. It becomes possible to perform the film forming process in a shorter time than the case where the entire film thickness of the orientation control polycrystalline intermediate thin film 22b and the orientation control polycrystalline intermediate thin film 22b is formed. The reason is the first
When the orientation-controlled polycrystalline intermediate thin film 22 which is the upper intermediate thin film with respect to the base material 21 is formed by sputtering while irradiating the ion beam from an oblique direction as in the example of FIG. This is lower than in the case of forming a polycrystalline rapid-deposited intermediate thin film by beam sputtering or high frequency sputtering. For example, high-frequency sputtering can usually form a film at a rate of about 0.5 μm / hour, but sputtering by irradiating an ion beam from an oblique direction can produce a film thickness of 0.1 μm.
The film forming process is performed at a speed of about m / hour.

【0047】従って、第2の例の酸化物超電導導体90
にあっては、特に中間薄膜を多結晶速成薄膜と配向制御
多結晶薄膜との二層から構成したことにより、多結晶速
成中間薄膜23bと配向制御多結晶中間薄膜22bとを
合わせた膜厚分を全て配向制御多結晶中間薄膜とするよ
りも、成膜に時間のかかる配向制御多結晶中間薄膜の部
分が少なくなるうえ、多結晶速成中間薄膜部分は成膜速
度が早いので、成膜時間が短縮される。また、多結晶速
成中間薄膜23bと配向制御多結晶中間薄膜22bを同
一材料から構成すると、両薄膜23b、22bの接合性
は良好になり、両者の接合強度も十分に高いものとな
る。
Therefore, the oxide superconducting conductor 90 of the second example.
In this case, in particular, since the intermediate thin film is composed of two layers of the polycrystalline quick-deposited thin film and the orientation control polycrystalline thin film, the total thickness of the polycrystalline fast-deposited intermediate thin film 23b and the orientation control polycrystalline intermediate thin film 22b is reduced. Compared with the case where all the orientation-controlled polycrystalline intermediate thin films are used, it takes less time to form the orientation-controlled polycrystalline intermediate thin film, and the polycrystalline rapid-deposited intermediate thin-film portion has a faster film forming speed. Shortened. Further, when the polycrystalline rapid-deposited intermediate thin film 23b and the orientation-controlled polycrystalline intermediate thin film 22b are made of the same material, the bondability between the two thin films 23b and 22b becomes good, and the bonding strength between them becomes sufficiently high.

【0048】図9は、本発明に係る酸化物超電導導体の
第3の例を示すものである。この第3の例の酸化物超電
導導体100は、テープ状の基材21の両面上にそれぞ
れ多数の結晶粒が結合されてなる多結晶速成中間薄膜2
3a,23bが形成され、これら多結晶速成中間薄膜2
3a,23b上にそれぞれ配向制御多結晶中間薄膜22
a,22bが形成され、これら配向制御多結晶中間薄膜
22a,22b上にそれぞれ酸化物超電導層24a、2
4bが形成されてなるものである。
FIG. 9 shows a third example of the oxide superconducting conductor according to the present invention. The oxide superconducting conductor 100 of the third example is a polycrystalline rapid intermediate thin film 2 in which a large number of crystal grains are bonded on both surfaces of a tape-shaped substrate 21.
3a, 23b are formed, and these polycrystalline rapid intermediate thin films 2 are formed.
Alignment control polycrystalline intermediate thin film 22 on 3a and 23b, respectively.
a and 22b are formed, and oxide superconducting layers 24a and 2b are formed on the orientation control polycrystalline intermediate thin films 22a and 22b, respectively.
4b is formed.

【0049】この第3の例の酸化物超電導導体100
が、先に説明した第2の例の酸化物超電導導体90と異
るところは、基材に対して下側の多結晶速成中間薄膜2
3a上にも配向制御多結晶中間薄膜22aが形成され、
さらに該配向制御多結晶中間薄膜22a上に酸化物超電
導層24aが形成されている点である。この例の多結晶
速成中間薄膜23aは、先に説明した第1の例の多結晶
中間速成薄膜23と同等に多数の結晶粒が結合されてな
るものであり、先に説明した方法とほぼ同様にして図2
の高周波スパッタ装置を用いて形成でき、また、多結晶
速成中間薄膜23aの各結晶粒の結晶軸においてa軸と
b軸は特別には配向されていないが、c軸は基材21の
上面(成膜面)に対してほぼ直角に向けられていること
が好ましい。また、この配向制御多結晶中間薄膜22a
は、先に説明した方法とほぼ同様にして、図3のイオン
ビームスパッタ装置にイオンビームアシスト用のイオン
ガンを備えた装置を用いて形成できる。基材21の両面
上に多結晶速成中間薄膜23a,23bを介して形成さ
れる配向制御多結晶中間薄膜22a,22bは、それぞ
れイオンビームアシストスパッタリング法により形成さ
れたものであることが好ましい。このように配向制御多
結晶中間薄膜22a,22bがイオンビームアシストス
パッタリング法により形成された薄膜積層体25にあっ
ては、圧縮応力が入っているものの両面の配向制御多結
晶中間薄膜22a,22bによって圧縮応力が打ち消さ
れるため基材21に反りが生じることを防止でき、さら
に、基材21の下面(加熱される面)にも多結晶速成中
間薄膜23aや配向制御多結晶中間薄膜22aが形成さ
れているので、基材31の酸化が防止される。これによ
って、配向制御多結晶中間薄膜22a,22b上に酸化
物超電導層24a,24bを蒸着する時に薄膜積層体2
5表面を均一に加熱し易くなり、薄膜積層体25表面の
温度分布にムラが生じることが殆どなく、薄膜積層体2
5の温度が安定するので、基材21の長さ方向に対する
超電導特性が安定した酸化物超電導層24a,24bを
形成することができる。
The oxide superconducting conductor 100 of the third example
However, the point different from the oxide superconducting conductor 90 of the second example described above is that the polycrystalline rapid-deposited intermediate thin film 2 on the lower side with respect to the base material.
An orientation control polycrystalline intermediate thin film 22a is also formed on 3a,
Furthermore, the oxide superconducting layer 24a is formed on the orientation control polycrystalline intermediate thin film 22a. The polycrystalline rapid-growth intermediate thin film 23a of this example has a large number of crystal grains bonded in the same manner as the polycrystalline intermediate-speed thin film 23 of the first example described above, and is similar to the method described above. And then Figure 2
Can be formed by using the high-frequency sputtering apparatus, and the a-axis and the b-axis are not specially oriented in the crystal axes of the crystal grains of the polycrystalline rapid-deposited intermediate thin film 23a, but the c-axis is the upper surface of the substrate 21 ( It is preferable that the film is oriented substantially at right angles to the film forming surface). Further, this orientation control polycrystalline intermediate thin film 22a
Can be formed by using an apparatus provided with an ion beam assisting ion gun in the ion beam sputtering apparatus of FIG. 3 in substantially the same manner as described above. The orientation-controlled polycrystalline intermediate thin films 22a and 22b formed on both surfaces of the base material 21 via the polycrystalline accelerated intermediate thin films 23a and 23b are preferably formed by ion beam assisted sputtering. In the thin film stack 25 in which the orientation-controlled polycrystalline intermediate thin films 22a and 22b are formed by the ion beam assisted sputtering method as described above, the orientation-controlled polycrystalline intermediate thin films 22a and 22b on both sides have a compressive stress. Since the compressive stress is canceled out, it is possible to prevent the base material 21 from being warped, and further, the polycrystalline quick-deposited intermediate thin film 23a and the orientation control polycrystalline intermediate thin film 22a are formed on the lower surface (heated surface) of the base material 21. Therefore, the base material 31 is prevented from being oxidized. Accordingly, when the oxide superconducting layers 24a and 24b are vapor-deposited on the orientation control polycrystalline intermediate thin films 22a and 22b, the thin film stack 2 is formed.
5 It becomes easier to heat the surface uniformly, and the temperature distribution on the surface of the thin film laminate 25 is hardly uneven.
Since the temperature of 5 is stable, it is possible to form the oxide superconducting layers 24a and 24b having stable superconducting properties in the longitudinal direction of the base material 21.

【0050】基材21に対して下側の中間薄膜の厚みの
合計、すなわち配向制御多結晶中間薄膜22aと多結晶
速成中間薄膜23aとの厚みの合計は、前記第2の例の
配向制御多結晶中間薄膜22bと多結晶速成中間薄膜2
3bと同様の理由から0.1〜1.0μmとされる。酸
化物超電導層24aは、先に説明した方法とほぼ同様に
して、図7のレーザ蒸着装置を用いて形成でき、その厚
みは前記第1の例の酸化物超電導層24と同様に0.5
〜5μm程度とされる。
The total thickness of the intermediate thin films on the lower side of the base material 21, that is, the total thickness of the orientation-controlled polycrystalline intermediate thin film 22a and the polycrystalline rapid-growth intermediate thin film 23a is the orientation-controlled polycrystalline thin film of the second example. Crystal intermediate thin film 22b and polycrystalline rapid intermediate thin film 2
For the same reason as 3b, the thickness is 0.1 to 1.0 μm. The oxide superconducting layer 24a can be formed by using the laser vapor deposition apparatus shown in FIG. 7 in a manner substantially similar to the method described above, and the thickness thereof is 0.5 as in the oxide superconducting layer 24 of the first example.
Approximately 5 μm.

【0051】第3の例の酸化物超電導導体100にあっ
ては、特に基材21の両面上に中間薄膜を介して酸化物
超電導層が形成されているので、オーバーオール(酸化
物超電導導体全断面積)あたりの臨界電流密度が第1の
例の酸化物超電導導体20や第2の例の酸化物超電導導
体90の約2倍程度となり、オーバーオールあたりの臨
界電流密度が大きくなり、電流容量のより大きい長尺の
酸化物超電導導体を容易に提供することができるという
利点がある。さらに、第3の例の酸化物超電導導体10
0において、配向制御多結晶中間薄膜22a,22bを
それぞれイオンビームアシストスパッタリング法により
形成したものにあっては、配向制御多結晶中間薄膜の形
成時の圧縮応力によって基材21に反りが生じることな
く、基材21の長さ方向に対する超電導特性が安定した
酸化物超電導層が形成されるという特性も備えているい
う利点がある。
In the oxide superconducting conductor 100 of the third example, since the oxide superconducting layer is formed on both surfaces of the base material 21 through the intermediate thin film, the overall (oxide superconducting conductor is completely cut off). The critical current density per area is about twice as large as that of the oxide superconducting conductor 20 of the first example and the oxide superconducting conductor 90 of the second example, and the critical current density per overall is large, resulting in a larger current capacity. There is an advantage that a large and long oxide superconducting conductor can be easily provided. Furthermore, the oxide superconducting conductor 10 of the third example
0, in which the orientation control polycrystalline intermediate thin films 22a and 22b are respectively formed by the ion beam assisted sputtering method, the base material 21 does not warp due to the compressive stress during the formation of the orientation controlling polycrystalline intermediate thin films. There is also an advantage in that the oxide superconducting layer having stable superconducting properties in the length direction of the base material 21 is formed.

【0052】(本発明の作用)本発明においては、テー
プ状の基材の両面上にそれぞれ中間薄膜を形成し、さら
にこれら中間薄膜のうち配向制御多結晶中間薄膜上に酸
化物超電導層を形成したことにより、テープ状の基材の
厚さが薄くても、該基材が両面の中間薄膜で支持される
ので、酸化物超電導層の蒸着時に高温雰囲気によって基
材に歪みが生じることが抑制される。これによって基材
上の中間薄膜に歪みが生じることも少なくなり、中間薄
膜の表面の平面性が向上するので、配向制御多結晶中間
薄膜上に形成される酸化物超電導層の結晶配向性が良好
となる。
(Operation of the present invention) In the present invention, the intermediate thin films are formed on both surfaces of the tape-shaped substrate, and the oxide superconducting layer is formed on the orientation-controlled polycrystalline intermediate thin film among these intermediate thin films. As a result, even if the thickness of the tape-shaped base material is thin, the base material is supported by the intermediate thin films on both sides, so that the base material is prevented from being distorted by the high temperature atmosphere during the vapor deposition of the oxide superconducting layer. To be done. This reduces distortion in the intermediate thin film on the substrate and improves the flatness of the surface of the intermediate thin film, so that the crystal orientation of the oxide superconducting layer formed on the orientation-controlled polycrystalline intermediate thin film is good. Becomes

【0053】また、中間薄膜を多結晶速成薄膜と配向制
御多結晶薄膜との二層から構成したことにより、多結晶
速成中間薄膜と配向制御多結晶中間薄膜とを合わせた膜
厚分を全て配向制御多結晶中間薄膜とするよりも、成膜
に時間のかかる配向制御多結晶中間薄膜の部分が少なく
なるうえ、多結晶速成中間薄膜部分は成膜速度が早いの
で、成膜時間が短縮される。また、粒界傾角を30度以
下とした配向制御多結晶薄膜上に成膜された酸化物超電
導層は結晶配向性がより良好になるので、より優れた超
電導特性を示す。さらに、基材の両面上の配向制御多結
晶中間薄膜をイオンビームアシストスパッタリング法に
より形成したことにより、圧縮応力が入っているものの
両面の配向制御多結晶中間薄膜によって圧縮応力が打ち
消されるため基材に反りが生じることを防止でき、さら
に、基材の下面(加熱される面)にも多結晶速成中間薄
膜や配向制御多結晶中間薄膜が形成されているので、基
材の酸化が防止される。これによって、配向制御多結晶
中間薄膜上に酸化物超電導層を蒸着する時に薄膜積層体
表面を均一に加熱し易くなり、薄膜積層体表面の温度分
布にムラが生じることが殆どなく、薄膜積層体の温度が
安定する。
Further, since the intermediate thin film is composed of two layers of the polycrystalline rapid-deposited thin film and the orientation control polycrystalline thin film, the total thickness of the polycrystalline fast-deposited intermediate thin film and the orientation-controlled polycrystalline intermediate thin film is all oriented. Compared with the control polycrystalline intermediate thin film, it takes less time to form the orientation-controlled polycrystalline intermediate thin film, and the polycrystalline rapid-growth intermediate thin film portion has a higher film forming speed, so the film forming time is shortened. . Further, since the oxide superconducting layer formed on the orientation-controlled polycrystalline thin film having the grain boundary tilt angle of 30 degrees or less has a better crystal orientation, it exhibits more excellent superconducting properties. Furthermore, by forming the orientation-controlled polycrystalline intermediate thin films on both sides of the substrate by the ion beam assisted sputtering method, the orientation-controlled polycrystalline intermediate thin films on both sides cancel the compressive stress, but the substrate Can be prevented from warping, and further, since the polycrystalline rapid-deposited intermediate thin film and the orientation control polycrystalline intermediate thin film are formed on the lower surface (heated surface) of the base material, the base material is prevented from being oxidized. . This facilitates uniform heating of the surface of the thin film stack when depositing the oxide superconducting layer on the orientation-controlled polycrystalline intermediate thin film, and there is almost no unevenness in the temperature distribution on the surface of the thin film stack. Temperature stabilizes.

【0054】[0054]

【実施例】【Example】

(実施例1)図2に示す構成の高周波スパッタ装置を使
用し、この装置の真空容器の内部を真空ポンプで真空引
きして1×10-3トールに減圧した。基材として、幅1
0mm、厚さ0.1mm、長さ10cmのハステロイC
276テープを使用した。ターゲットはYSZ(安定化
ジルコニア)製のものを用い、スパッタ電圧300V、
スパッタ電流100mAに設定し、スパッタリングを1
時間行なって基材の一方の面(下面)上に厚さ0.5μ
mの膜状のYSZの多結晶速成中間薄膜を形成した。
(Example 1) The high frequency sputtering apparatus having the structure shown in FIG. 2 was used, and the inside of the vacuum container of this apparatus was evacuated by a vacuum pump to reduce the pressure to 1 × 10 −3 Torr. As a base material, width 1
Hastelloy C 0 mm thick, 0.1 mm thick and 10 cm long
276 tape was used. A target made of YSZ (stabilized zirconia) is used, and the sputtering voltage is 300V,
Sputtering current is set to 100 mA and sputtering is set to 1
0.5μ thickness on one surface (lower surface) of substrate
m film-like YSZ polycrystalline rapid intermediate thin film was formed.

【0055】次に、図3に示す構成のイオンビームスパ
ッタ装置を使用し、この装置を収納した真空容器内部を
真空ポンプで真空引きして3.0×10-4トールに減圧
した。ターゲットはYSZ(安定化ジルコニア)製のも
のを用い、スパッタ電圧1000V、スパッタ電流10
0mA、イオン源のビームの入射角度を55度に各々設
定し、イオン源のアシスト電圧を300Vに、イオンビ
ームの電流密度を20μA/cm2にそれぞれ設定して
基材の他方の面(上面)上にスパッタリングと同時にイ
オン照射を行なって5時間成膜処理することで厚さ0.
5μmのYSZ配向制御多結晶中間薄膜を形成し、図6
と同様の薄膜積層体を得た。なお、前記イオンビームの
電流密度とは、試料近くに接地した電流密度計測装置の
計測数値によるものである。
Next, using the ion beam sputtering apparatus having the structure shown in FIG. 3, the inside of the vacuum container accommodating this apparatus was evacuated by a vacuum pump to reduce the pressure to 3.0 × 10 −4 Torr. A target made of YSZ (stabilized zirconia) was used, and the sputtering voltage was 1000 V and the sputtering current was 10
The other side of the substrate (upper surface) was set to 0 mA, the incident angle of the beam of the ion source was set to 55 degrees, the assist voltage of the ion source was set to 300 V, and the current density of the ion beam was set to 20 μA / cm 2. Ion irradiation is performed at the same time as sputtering, and a film is formed for 5 hours to obtain a thickness of 0.
A YSZ orientation control polycrystalline intermediate thin film of 5 μm was formed, and FIG.
A thin film laminate similar to the above was obtained. The current density of the ion beam is measured by a current density measuring device grounded near the sample.

【0056】次に、前記配向制御多結晶中間薄膜上に図
7に示す構成のレーザ蒸着装置を用いて厚さ1.0μm
の酸化物超電導層を形成し、図1と同様の酸化物超電導
導体を作製した。ターゲットとして、Y0.7Ba1.7Cu
3.07-xなる組成の酸化物超電導体からなるターゲット
を用いた。蒸着処理室の内部を1×10-6トールに減圧
した後、内部に酸素を導入し2×10-3トールとした
後、レーザ蒸着を行なった。ターゲット蒸発用のレーザ
として波長193nmのArFレーザを用いた。この成
膜後、400゜Cで60分間、酸素雰囲気中において薄
膜を熱処理した。ここでの蒸着および熱処理の際、上記
基材には歪みが生じなかった。以上の処理で得られた酸
化物超電導導体は、厚さ102.0μm、 幅10m
m、長さ10cmのものである。
Then, a thickness of 1.0 μm was formed on the orientation-controlled polycrystalline intermediate thin film by using a laser vapor deposition apparatus having the structure shown in FIG.
The oxide superconducting layer of 1 was formed, and an oxide superconducting conductor similar to that shown in FIG. 1 was produced. As a target, Y 0.7 Ba 1.7 Cu
A target made of an oxide superconductor having a composition of 3.0 O 7-x was used. After depressurizing the inside of the vapor deposition processing chamber to 1 × 10 −6 Torr, oxygen was introduced into the interior to 2 × 10 −3 Torr, and then laser vapor deposition was performed. An ArF laser with a wavelength of 193 nm was used as a laser for target evaporation. After this film formation, the thin film was heat-treated in an oxygen atmosphere at 400 ° C. for 60 minutes. During the vapor deposition and heat treatment here, no strain was generated in the substrate. The oxide superconducting conductor obtained by the above treatment has a thickness of 102.0 μm and a width of 10 m.
m, 10 cm in length.

【0057】この酸化物超電導導体を冷却し、臨界電流
密度の測定を行なった結果、臨界電流密度=5.1×1
5A/cm2(77K、0T)を示し、オーバーオール
あたりの臨界電流密度=5,000A/cm2(77
K、0T)を示し、極めて優秀な超電導特性を発揮する
ことを確認できた。よって得られた酸化物超電導導体
は、厚さが0.1mmと薄い基材を用いても、酸化物超
電導層の蒸着時に高温雰囲気によって上記基材に歪みが
生じることがなく、オーバーオールあたりの臨界電流密
度が向上することが明らかになった。
The oxide superconducting conductor was cooled, and the critical current density was measured. As a result, the critical current density = 5.1 × 1
0 5 A / cm 2 (77 K, 0 T), and critical current density per overall = 5,000 A / cm 2 (77
K, 0T) was exhibited, and it was confirmed that extremely excellent superconducting properties were exhibited. Thus, the obtained oxide superconducting conductor does not cause distortion in the above-mentioned base material due to a high temperature atmosphere at the time of vapor deposition of the oxide superconducting layer even if a base material having a thin thickness of 0.1 mm is used, and the criticality per overall It was revealed that the current density was improved.

【0058】(実施例2)基材として、幅10mm、厚
さ0.05mm、長さ10cmのハステロイテープを用
いた以外は、前記実施例1と同様にして酸化物超電導導
体を作製した。ここでの酸化物超電導導体は、厚さ5
2.0μm、幅10mm、長さ10cmのものである。
この酸化物超電導導体を冷却し、臨界電流密度の測定を
行なった結果、臨界電流密度=4.8×105A/cm2
(77K、0T)を示し、オーバーオールあたりの臨界
電流密度=9.2×103A/cm2を示し、極めて優秀
な超電導特性を発揮することを確認できた。よって得ら
れた酸化物超電導導体は、厚さが0.05mmと薄い基
材を用いても、酸化物超電導層の蒸着時に高温雰囲気に
よって上記基材に歪みが生じることがなく、オーバーオ
ールあたりの臨界電流密度が向上することが明らかにな
った。
Example 2 An oxide superconducting conductor was produced in the same manner as in Example 1 except that a Hastelloy tape having a width of 10 mm, a thickness of 0.05 mm and a length of 10 cm was used as the base material. The oxide superconducting conductor here has a thickness of 5
It has a width of 2.0 μm, a width of 10 mm, and a length of 10 cm.
The oxide superconducting conductor was cooled and the critical current density was measured. As a result, the critical current density = 4.8 × 10 5 A / cm 2
(77K, 0T), the critical current density per overall was 9.2 × 10 3 A / cm 2, and it was confirmed that extremely excellent superconducting properties were exhibited. Thus, the obtained oxide superconducting conductor does not have distortion in the above-mentioned base material due to a high temperature atmosphere at the time of vapor deposition of the oxide superconducting layer even if a base material having a thin thickness of 0.05 mm is used, and the criticality per overall It was revealed that the current density was improved.

【0059】(比較例1)基材として、幅10mm、厚
さ0.5mm、長さ10cmのハステロイテープを用
い、かつ該基材の下面に多結晶速成中間薄膜を形成しな
い以外は、前記実施例1と同様にして酸化物超電導導体
を作製した。ここでの酸化物超電導導体は、厚さ50
1.5μm、幅0.5mm、長さ10cmのものであっ
た。この酸化物超電導導体を冷却し、臨界電流密度の測
定を行なった結果、臨界電流密度=5.2×105A/
cm2(77K、0T)を示したが、オーバーオールあ
たりの臨界電流密度=1.0×103A/cm2と低いも
のであった。
(Comparative Example 1) The same procedure as described above was carried out except that a Hastelloy tape having a width of 10 mm, a thickness of 0.5 mm and a length of 10 cm was used as a base material and no polycrystalline rapid intermediate thin film was formed on the lower surface of the base material. An oxide superconducting conductor was produced in the same manner as in Example 1. The oxide superconducting conductor here has a thickness of 50.
It had a thickness of 1.5 μm, a width of 0.5 mm and a length of 10 cm. The oxide superconducting conductor was cooled, and the critical current density was measured. As a result, the critical current density = 5.2 × 10 5 A /
Although cm 2 (77 K, 0 T) was shown, the critical current density per overall was as low as 1.0 × 10 3 A / cm 2 .

【0060】(比較例2)基材の下面に多結晶速成中間
薄膜を形成しない以外は、前記実施例1と同様にして酸
化物超電導導体を作製した。ここでの酸化物超電導導体
は、厚さ101.5μm、幅10mm、長さ10cmの
ものであった。この酸化物超電導導体を冷却し、臨界電
流密度の測定を行なった結果、臨界電流密度=1.1×
104A/cm2(77K、0T)を示し、オーバーオー
ルあたりの臨界電流密度=1×102A/cm2と低いも
のであった。また、この酸化物超電導導体は、酸化物超
電導層の蒸着時に高温雰囲気によって上記基材に歪みが
生じた。
(Comparative Example 2) An oxide superconducting conductor was produced in the same manner as in Example 1 except that the polycrystalline quick-deposited intermediate thin film was not formed on the lower surface of the substrate. The oxide superconducting conductor here had a thickness of 101.5 μm, a width of 10 mm, and a length of 10 cm. The oxide superconducting conductor was cooled and the critical current density was measured. As a result, the critical current density = 1.1 ×
It showed 10 4 A / cm 2 (77 K, 0 T), which was a low critical current density per overall = 1 × 10 2 A / cm 2 . Further, in the oxide superconducting conductor, the base material was distorted by the high temperature atmosphere during the vapor deposition of the oxide superconducting layer.

【0061】(実施例3)図7に示す構成のレーザ蒸着
装置を使用し、幅10mm、厚さ0.2mm、長さ10
cmのハステロイC276テープからなる基材の両面上
にそれぞれ厚さ0.5μmの膜状のYSZの多結晶速成
中間薄膜を形成した。ターゲットとして、YSZ(安定
化ジルコニア)室温にてレーザ蒸着を行なった。ターゲ
ット蒸発用のレーザとして波長193nmのArFレー
ザを用いた。ここで基材の片面に厚さ0.5μmの多結
晶速成中間薄膜を成膜するのに要した時間は10分であ
り、従って両面に多結晶速成中間薄膜を成膜するのに要
した時間は20分であった。次に、図3に示す構成のイ
オンビームスパッタ装置を使用し、この装置を収納ター
ゲットはYSZ(安定化ジルコニア)製のものを用い、
スパッタ電圧1000V、スパッタ電流100mA、イ
オン源のビームの入射角度を55度に各々設定し、イオ
ン源のアシスト電圧を300Vに、イオンビームの電流
密度を20μA/cm2にそれぞれ設定して前記基材の
両面に形成された多結晶速成中間薄膜のうち、一方の多
結晶速成中間薄膜上にスパッタリングと同時にイオン照
射を行なうイオンビームアシストスパッタリング法によ
り1時間成膜処理することで厚さ0.1μmのYSZ配
向制御多結晶中間薄膜を形成した。
(Embodiment 3) Using a laser vapor deposition apparatus having the structure shown in FIG. 7, a width of 10 mm, a thickness of 0.2 mm and a length of 10
A 0.5 μm thick film-form YSZ polycrystalline rapid intermediate film was formed on both surfaces of a substrate made of a cm Hastelloy C276 tape. As a target, YSZ (stabilized zirconia) was laser-deposited at room temperature. An ArF laser with a wavelength of 193 nm was used as a laser for target evaporation. Here, it took 10 minutes to form a 0.5 μm-thick polycrystalline rapid intermediate thin film on one side of the substrate, and therefore, time required to form a polycrystalline rapid intermediate thin film on both sides. Was 20 minutes. Next, an ion beam sputtering apparatus having the structure shown in FIG. 3 is used, and this apparatus is housed using a target made of YSZ (stabilized zirconia).
The sputter voltage is set to 1000 V, the sputter current is set to 100 mA, the beam angle of the ion source is set to 55 degrees, the assist voltage of the ion source is set to 300 V, and the current density of the ion beam is set to 20 μA / cm 2 , respectively. Of one of the polycrystalline rapid-deposited intermediate thin films formed on both surfaces of the film, a film having a thickness of 0.1 μm was formed by performing an ion beam assisted sputtering method in which ion irradiation is performed simultaneously with sputtering on one of the polycrystalline rapid-deposited intermediate thin films. A YSZ orientation controlled polycrystalline intermediate thin film was formed.

【0062】ここで前述の多結晶速成中間薄膜は、厚さ
0.5μmのものを10分で成膜したが、配向制御多結
晶中間薄膜は、厚さ0.1μmのものを1時間成膜でき
たので、レーザ蒸着により多結晶速成中間薄膜を形成す
る方が、イオンビームアシストを適用したスパッタリン
グで配向制御多結晶中間薄膜を製造するよりも5倍程度
の速度で成膜できることが明かになった。
Here, the above-mentioned polycrystalline rapid-deposited intermediate thin film having a thickness of 0.5 μm was deposited in 10 minutes, but the orientation-controlled polycrystalline intermediate thin film was deposited at a thickness of 0.1 μm for 1 hour. Since it was possible, it was revealed that forming a polycrystalline rapid-deposited intermediate thin film by laser vapor deposition can be performed at a speed about 5 times faster than producing an orientation-controlled polycrystalline intermediate thin film by sputtering using ion beam assist. It was

【0063】次に、前記配向制御多結晶中間薄膜上に図
7に示すレーザ蒸着装置を用いて前記実施例1と同様に
して厚さ1.0μmの酸化物超電導層を形成し、図8と
同様の酸化物超電導導体を作製した。ここでの熱処理の
際、上記基材には歪みが生じなかった。以上の処理で得
られた酸化物超電導導体は、厚さ202.1μm、幅1
0mm、長さ10cmのものである。
Next, an oxide superconducting layer having a thickness of 1.0 μm was formed on the orientation-controlled polycrystalline intermediate thin film by using the laser deposition apparatus shown in FIG. A similar oxide superconducting conductor was produced. During the heat treatment here, no strain was generated in the base material. The oxide superconducting conductor obtained by the above treatment has a thickness of 202.1 μm and a width of 1
It has a length of 0 mm and a length of 10 cm.

【0064】この酸化物超電導導体を冷却し、臨界電流
密度の測定を行なった結果、臨界電流密度=5.2×1
5A/cm2(77K、0T)を示し、オーバーオール
あたりの臨界電流密度=2.5×103A/cm2(77
K、0T)を示し、極めて優秀な超電導特性を発揮する
ことを確認できた。よって得られた酸化物超電導導体
は、厚さが0.2mmと薄い基材を用いても、酸化物超
電導層の蒸着時に高温雰囲気によって上記基材に歪みが
生じることがなく、オーバーオールあたりの臨界電流密
度が向上することが明かになった。
The oxide superconducting conductor was cooled, and the critical current density was measured. As a result, the critical current density = 5.2 × 1.
0 5 A / cm 2 (77K, 0T), and critical current density per overall = 2.5 × 10 3 A / cm 2 (77
K, 0T) was exhibited, and it was confirmed that extremely excellent superconducting properties were exhibited. Thus, the obtained oxide superconducting conductor does not have distortion in the base material due to a high temperature atmosphere during vapor deposition of the oxide superconducting layer even when a base material having a thin thickness of 0.2 mm is used. It was revealed that the current density was improved.

【0065】(比較例3)基材の下面に多結晶速成中間
薄膜を形成しない以外は、前記実施例3と同様にして酸
化物超電導導体を作製した。ここでの酸化物超電導導体
は、厚さ201.6μm、幅10mm、長さ10cmの
ものであった。この酸化物超電導導体を冷却し、臨界電
流密度の測定を行なった結果、臨界電流密度=2.3×
104A/cm2(77K、0T)を示したが、オーバー
オールあたりの臨界電流密度=1.1×102A/cm2
と低いものであった。また、この酸化物超電導導体は、
酸化物超電導層の蒸着時に高温雰囲気によって上記基材
に歪みが生じた。
(Comparative Example 3) An oxide superconducting conductor was produced in the same manner as in Example 3 except that the polycrystalline quick-deposited intermediate thin film was not formed on the lower surface of the base material. The oxide superconducting conductor here had a thickness of 201.6 μm, a width of 10 mm, and a length of 10 cm. As a result of cooling this oxide superconducting conductor and measuring the critical current density, the critical current density = 2.3 ×
Although 10 4 A / cm 2 (77K, 0T) was shown, the critical current density per overall = 1.1 × 10 2 A / cm 2
Was low. Also, this oxide superconducting conductor is
The substrate was distorted due to the high temperature atmosphere during the deposition of the oxide superconducting layer.

【0066】(実施例4)前記実施例3と同様にして基
材の両面に多結晶速成中間薄膜を形成した。次に、図3
に示す構成のイオンビームスパッタ装置を使用し、前記
実施例3と同様にして基材の両面に形成された多結晶速
成中間薄膜のうち、一方の多結晶速成中間薄膜上にスパ
ッタリングと同時にイオン照射を行なって1時間成膜処
理することで厚さ0.1μmのYSZ配向制御多結晶中
間薄膜を形成した。この後、他方の多結晶速成中間薄膜
上に前述の方法と同様にして厚さ0.1μmのYSZ配
向制御多結晶中間薄膜を形成した。
(Example 4) In the same manner as in Example 3, polycrystalline quick-deposited intermediate thin films were formed on both surfaces of the substrate. Next, FIG.
Using the ion beam sputtering apparatus having the structure shown in FIG. 3, one of the polycrystalline rapid-deposited intermediate thin films formed on both sides of the substrate in the same manner as in Example 3 was ion-irradiated at the same time as sputtering. Then, a film-forming process was performed for 1 hour to form a YSZ orientation-controlled polycrystalline intermediate thin film having a thickness of 0.1 μm. After that, a YSZ orientation-controlled polycrystalline intermediate thin film having a thickness of 0.1 μm was formed on the other polycrystalline accelerated intermediate thin film in the same manner as described above.

【0067】次に、基材の両側の前記配向制御多結晶中
間薄膜上に図7に示す構成のレーザ蒸着装置を用いて前
記実施例1と同様にして厚さ1.0μmの酸化物超電導
層をそれぞれ形成し、図9と同様の酸化物超電導導体を
作製した。ここでの熱処理の際、上記基材には歪みが生
じなかった。以上の処理で得られた酸化物超電導導体
は、厚さ203.2μm、幅0.5mm、長さ10cm
のものである。
Then, on the orientation-controlled polycrystalline intermediate thin films on both sides of the substrate, an oxide superconducting layer having a thickness of 1.0 μm was formed in the same manner as in Example 1 by using the laser vapor deposition apparatus shown in FIG. To form an oxide superconducting conductor similar to that shown in FIG. During the heat treatment here, no strain was generated in the base material. The oxide superconducting conductor obtained by the above treatment has a thickness of 203.2 μm, a width of 0.5 mm, and a length of 10 cm.
belongs to.

【0068】この酸化物超電導導体を冷却し、臨界電流
密度の測定を行なった結果、臨界電流密度=4.8×1
5A/cm2(77K、0T)を示し、オーバーオール
あたりの臨界電流密度=4.7×103A/cm2(77
K、0T)を示し、極めて優秀な超電導特性を発揮する
ことを確認できた。よって得られた酸化物超電導導体
は、厚さが0.2mmと薄い基材を用いても、酸化物超
電導層の蒸着時に高温雰囲気によって上記基材に歪みが
生じることがなく、オーバーオールあたりの臨界電流密
度が実施例3の酸化物超電導導体の約2倍程度と大きい
ことが明かになった。
The oxide superconductor was cooled and the critical current density was measured. As a result, the critical current density = 4.8 × 1.
0 5 A / cm 2 (77K, 0T), and critical current density per overall = 4.7 × 10 3 A / cm 2 (77
K, 0T) was exhibited, and it was confirmed that extremely excellent superconducting properties were exhibited. Thus, the obtained oxide superconducting conductor does not have distortion in the base material due to a high temperature atmosphere during vapor deposition of the oxide superconducting layer even when a base material having a thin thickness of 0.2 mm is used. It was revealed that the current density was about twice as large as that of the oxide superconducting conductor of Example 3.

【0069】(実施例5)基材として幅10mm、厚さ
0.2mm、長さ80cmのハステロイテープを用い、
基材の上面上に形成するYSZ配向制御多結晶中間薄膜
の厚みを0.7μmとし、基材の下面上に厚さ0.7μ
mのYSZ配向制御多結晶中間薄膜をイオンビームアシ
ストスパッタリング法により形成した以外は実施例1と
略同様にして薄膜積層体を得た。ついで、一方の配向制
御多結晶中間薄膜上に図7に示す構成のレーザ蒸着装置
を用いて厚さ1.0μmの酸化物超電導層を形成し、図
10と同様の酸化物超電導導体を作製した。
Example 5 Hastelloy tape having a width of 10 mm, a thickness of 0.2 mm and a length of 80 cm was used as a base material,
The thickness of the YSZ orientation control polycrystalline intermediate thin film formed on the upper surface of the base material is 0.7 μm, and the thickness on the lower surface of the base material is 0.7 μm.
A thin film laminate was obtained in substantially the same manner as in Example 1 except that the YSZ orientation-controlled polycrystalline intermediate thin film of m was formed by the ion beam assisted sputtering method. Then, an oxide superconducting layer having a thickness of 1.0 μm was formed on one of the orientation-controlled polycrystalline intermediate thin films by using the laser vapor deposition apparatus having the configuration shown in FIG. 7, and an oxide superconducting conductor similar to that shown in FIG. 10 was produced. .

【0070】(比較例4)基材の下面に配向制御多結晶
中間薄膜を形成しない以外は前記実施例5と同様にして
積層体を得た。ついで、基材の上面に形成された厚さ
0.7μmのYSZ配向制御多結晶中間薄膜上に図7に
示す構成のレーザ蒸着装置を用いて厚さ1.0μmの酸
化物超電導層を形成し、図14と同様の酸化物超電導導
体を作製した。
(Comparative Example 4) A laminate was obtained in the same manner as in Example 5 except that the orientation controlling polycrystalline intermediate thin film was not formed on the lower surface of the substrate. Then, an oxide superconducting layer having a thickness of 1.0 μm was formed on the YSZ orientation control polycrystalline intermediate thin film having a thickness of 0.7 μm formed on the upper surface of the base material by using the laser deposition apparatus having the configuration shown in FIG. An oxide superconducting conductor similar to that shown in FIG. 14 was produced.

【0071】前記実施例5で得られた薄膜積層体ならび
に比較例4で得られた積層体を900〜950℃で加熱
し、1m/hで移動させたときの幅方向に沿った表面形
状を測定することにより、反り状態を調べた。図11に
実施例5で得られた薄膜積層体の表面形状のプロファイ
ルを示す。また、図12に比較例4で得られた積層体の
表面形状のプロファイルを示す。図11、図12中、横
軸は幅方向の長さ(μm)であり、縦軸は厚み方向の高
さ(オングストローム)である。
The thin film laminate obtained in Example 5 and the laminate obtained in Comparative Example 4 were heated at 900 to 950 ° C. and moved at 1 m / h to obtain the surface shape along the width direction. The warp state was investigated by measuring. FIG. 11 shows the profile of the surface shape of the thin film laminate obtained in Example 5. Further, FIG. 12 shows the profile of the surface shape of the laminate obtained in Comparative Example 4. In FIGS. 11 and 12, the horizontal axis represents the length in the width direction (μm), and the vertical axis represents the height in the thickness direction (angstrom).

【0072】表面形状のプロファイルから反りの曲率半
径は以下の式(I)により算出することができる。 R=(X2+Y2)/2Y ・・・(I) 式I中、Rは曲率半径、Xは表面形状のプロファイル中
の高さがピークのときの幅方向の長さ(μm)、Yは表
面形状のプロファイル中の高さがピークのときの厚み方
向の高さ(オングストローム)を表す。
The curvature radius of the warp can be calculated from the profile of the surface shape by the following equation (I). R = (X 2 + Y 2 ) / 2Y (I) In the formula I, R is the radius of curvature, X is the length in the width direction (μm) when the height in the profile of the surface shape is the peak, Y Represents the height in the thickness direction (angstrom) when the height in the profile of the surface shape has a peak.

【0073】実施例5の薄膜積層体は図11よりX=4
500(μm)、Y=|−100,000|(オングス
トローム)であるから、これらをI式に代入するとR=
964(cm)であった。これに対して比較例4の積層
体では図12よりX=4500(μm)、Y=400,
000(オングストローム)であるから、これらをI式
に代入するとR=25.3(cm)である。これより実
施例5で得られた薄膜積層体(基材の両面に配向制御多
結晶中間薄膜を形成したもの)は、比較例4で得られた
積層体(基材の片面のみに配向制御多結晶中間薄膜を形
成したもの)に比べて曲率半径が大きく、反り量が小さ
いことが分った。
In the thin film laminate of Example 5, X = 4 from FIG.
Since 500 (μm) and Y = | −100,000 | (angstrom), substituting these into the formula I gives R =
It was 964 (cm). On the other hand, in the laminated body of Comparative Example 4, from FIG. 12, X = 4500 (μm), Y = 400,
Since it is 000 (angstrom), when these are substituted into the formula I, R = 25.3 (cm). From this, the thin film laminate obtained in Example 5 (where the orientation-controlled polycrystalline intermediate thin film was formed on both sides of the substrate) was the laminate obtained in Comparative Example 4 (only one side of the substrate was controlled in orientation). It was found that the radius of curvature was larger and the amount of warpage was smaller than that of the one in which the crystalline intermediate thin film was formed).

【0074】実施例5ならびに比較例4で得られた酸化
物超電導導体を、それぞれ酸化物超電導導体の中央部分
側に対し、スパッタ装置によりAgコーティングを施
し、更に両端部側にそれぞれAgの電極を形成し、Ag
コーティング後に純酸素雰囲気中にて500℃で2時間
熱処理を施して測定試料とした。そして、これら試料を
液体窒素で77Kに冷却し、外部磁場0T(テスラ)の
条件で各試料における長さ方向ごとの臨界電流(Ic)
を測定した結果を図13に示す。図13中、実線は実
施例5で得られた酸化物超電導導体の長さ方向の位置ご
との臨界電流を示すものであり、破線は比較例4で得
られた酸化物超電導導体の長さ方向の位置ごとの臨界電
流を示すものである。
The oxide superconducting conductors obtained in Example 5 and Comparative Example 4 were Ag-coated on the central portion side of the oxide superconducting conductors by a sputtering device, and Ag electrodes were formed on both end sides. Form and Ag
After the coating, a heat treatment was performed at 500 ° C. for 2 hours in a pure oxygen atmosphere to obtain a measurement sample. Then, these samples were cooled to 77 K with liquid nitrogen, and the critical current (Ic) in each length direction in each sample under the condition of an external magnetic field of 0 T (Tesla).
The result of measurement is shown in FIG. In FIG. 13, the solid line indicates the critical current for each position in the length direction of the oxide superconducting conductor obtained in Example 5, and the broken line indicates the length direction of the oxide superconducting conductor obtained in Comparative Example 4. It shows the critical current for each position.

【0075】図13から明らかなように、比較例4で得
られた酸化物超電導導体は、長さ方向の臨界電流がいず
れの箇所においても15A以下の値を示しており、基材
の長さ方向に対して超電導特性が不良な酸化物超電導薄
膜が形成されていることが分る。これに対して実施例5
で得られた酸化物超電導導体は、長さ方向の臨界電流が
いずれの箇所においても18A以上の特性が得られてお
り、さらに、この実施例5の酸化物超電導導体の臨界電
流の平均値は、比較例4のものの約2倍であり、従って
基材の長さ方向に対して超電導特性が良好な酸化物超電
導薄膜が形成されていることが分る。
As is clear from FIG. 13, the oxide superconducting conductor obtained in Comparative Example 4 has a critical current in the length direction of 15 A or less at any position, and the length of the base material is long. It can be seen that an oxide superconducting thin film having poor superconducting properties in the direction is formed. On the other hand, Example 5
The oxide superconducting conductor obtained in the above step has a characteristic that the critical current in the length direction is 18 A or more at any position. Furthermore, the average value of the critical current of the oxide superconducting conductor of this Example 5 is It is found that the oxide superconducting thin film having the superconducting property in the longitudinal direction of the base material is about twice as large as that of Comparative Example 4, and thus the superconducting thin film is formed.

【0076】[0076]

【発明の効果】以上説明したように本発明の酸化物超電
導導体は、テープ状の基材の両面上にそれぞれ中間薄膜
が形成され、さらにこれら中間薄膜のうち配向制御多結
晶中間薄膜上に酸化物超電導層を形成されたものである
ので、テープ状の基材の厚さが薄くても、該基材が両面
の中間薄膜で支持されるので、酸化物超電導層の蒸着時
に高温雰囲気によって基材に歪みが生じることが抑制さ
れる。これによって基材上の中間薄膜に歪みが生じるこ
とも少なくなり、配向制御多結晶中間薄膜の表面の平面
性が向上するので、配向制御多結晶中間薄膜上に形成さ
れる酸化物超電導層の結晶配向性が良好となり、臨界電
流密度が優れたものとなる。従って、本発明の酸化物超
電導導体にあっては、厚みの薄いテープ状の基材が使用
できるので、酸化物超電導導体の厚みを薄くすることが
でき、オーバーオール(酸化物超電導導体全断面積)あ
たりの臨界電流密度を向上させることができ、電流容量
の大きい長尺の酸化物超電導導体を容易に提供すること
ができるという利点がある。また、本発明の酸化物超電
導導体は、基材の両面に形成された中間薄膜が絶縁層と
して機能するので、酸化物超電導層側のみさらに絶縁層
を形成すればよく、また、マグネット等として用いる場
合は、絶縁層を形成することなくそのまま巻き込むこと
が可能である。
As described above, in the oxide superconducting conductor of the present invention, the intermediate thin films are formed on both surfaces of the tape-shaped base material, and the orientation-controlled polycrystalline intermediate thin film is oxidized on these intermediate thin films. Since the superconducting layer is formed, even if the thickness of the tape-shaped substrate is thin, the substrate is supported by the intermediate thin films on both sides. Strain in the material is suppressed. This reduces distortion in the intermediate thin film on the base material and improves the flatness of the surface of the orientation-controlled polycrystalline intermediate thin film, so that the crystal of the oxide superconducting layer formed on the orientation-controlled polycrystalline intermediate thin film is improved. The orientation becomes good, and the critical current density becomes excellent. Therefore, in the oxide superconducting conductor of the present invention, since the tape-shaped base material having a small thickness can be used, the thickness of the oxide superconducting conductor can be reduced, and the overall (the oxide superconducting conductor total cross-sectional area) can be obtained. There is an advantage that the critical current density per unit can be improved, and a long oxide superconducting conductor having a large current capacity can be easily provided. Further, in the oxide superconducting conductor of the present invention, since the intermediate thin films formed on both surfaces of the base material function as an insulating layer, it suffices to further form an insulating layer only on the oxide superconducting layer side, and used as a magnet or the like. In this case, it is possible to roll in as it is without forming an insulating layer.

【0077】また、特に中間薄膜を多結晶速成薄膜と配
向制御多結晶薄膜との二層から構成した酸化物超電導導
体にあっては、多結晶速成中間薄膜と配向制御多結晶中
間薄膜とを合わせた膜厚分を全て配向制御多結晶中間薄
膜とするよりも、成膜に時間のかかる配向制御多結晶中
間薄膜の部分が少なくなるうえ、多結晶速成中間薄膜部
分は成膜速度が早いので、成膜時間が短縮される。
In particular, in an oxide superconducting conductor in which the intermediate thin film is composed of two layers of a polycrystalline rapid-deposited thin film and an orientation-controlled polycrystalline thin film, the polycrystalline rapid-deposited intermediate thin film and the orientation-controlled polycrystalline intermediate thin film are combined. The film thickness of the orientation-controlled polycrystalline intermediate thin film, which takes a long time to form a film, is smaller than that of the entire film thickness of the orientation-controlled polycrystalline intermediate thin film. The film formation time is shortened.

【0078】また、基材の両面上に中間薄膜を介して酸
化物超電導層が形成された酸化物超電導導体にあって
は、オーバーオール(酸化物超電導導体全断面積)あた
りの臨界電流密度が基材の一方の面上だけに酸化物超電
導層が形成された酸化物超電導導体の約2倍程度とな
り、オーバーオールあたりの臨界電流密度が大きく、電
流容量のより大きい長尺の酸化物超電導導体を容易に提
供することができるという利点がある。また、配向制御
多結晶中間薄膜を形成する多数の結晶粒のそれぞれの粒
界傾角を30度以下としたものにあっては、配向制御多
結晶中間薄膜上に成膜された酸化物超電導層の結晶配向
性がより良好になるので、より優れた超電導特性を示す
ものとなる。
Further, in an oxide superconducting conductor in which an oxide superconducting layer is formed on both sides of a base material via an intermediate thin film, the critical current density per overall (total cross-sectional area of oxide superconducting conductor) is based on The oxide superconducting conductor has an oxide superconducting layer formed on only one side of the material, which is about twice as much, and the critical current density per overall is large, making it easy to use a long oxide superconducting conductor with a larger current capacity. Has the advantage that it can be provided to. Further, in the case where the grain boundary tilt angle of each of a large number of crystal grains forming the orientation-controlled polycrystalline intermediate thin film is 30 degrees or less, the oxide superconducting layer formed on the orientation-controlled polycrystalline intermediate thin film is Since the crystal orientation becomes better, more excellent superconducting properties are exhibited.

【0079】さらに、基材の両面上の配向制御多結晶中
間薄膜をイオンビームアシストスパッタリング法により
形成したものにあっては、圧縮応力が入っているものの
両面の配向制御多結晶中間薄膜によって圧縮応力が打ち
消されるため基材に反りが生じることを防止でき、しか
も、基材の下面(加熱される面)にも多結晶速成中間薄
膜や配向制御多結晶中間薄膜が形成されているので、基
材の酸化が防止される。これによって、配向制御多結晶
中間薄膜上に酸化物超電導層を蒸着する時に薄膜積層体
表面を均一に加熱し易くなり、薄膜積層体表面の温度分
布にムラが生じることが殆どなく、薄膜積層体の温度が
安定するので、基材の長さ方向に対する超電導特性が安
定した酸化物超電導層を形成することができる。従っ
て、本発明の酸化物超電導導体によれば、配向制御多結
晶中間薄膜の形成時の圧縮応力によって基材に反りが生
じることなく、基材の長さ方向に対する超電導特性が安
定した酸化物超電導層が形成されるという特性と、厚さ
の薄いテープ状の基材が用いられていても、酸化物超電
導層の蒸着時の高温雰囲気によって上記基材に歪みが生
じることが少なく、オーバーオールあたりの臨界電流密
度が向上するという特性の少なくとも一方の特性を備え
た酸化物超電導導体を提供することができる。
Further, in the case where the orientation control polycrystalline intermediate thin films on both sides of the base material are formed by the ion beam assisted sputtering method, the compressive stress is generated by the orientation control polycrystalline intermediate thin films on both sides although the compressive stress is applied. Since the substrate is prevented from warping because it is canceled out, and the polycrystalline quick-deposited intermediate thin film and the orientation control polycrystalline intermediate thin film are formed on the lower surface (heated surface) of the substrate, Oxidation is prevented. This facilitates uniform heating of the surface of the thin film stack when depositing the oxide superconducting layer on the orientation-controlled polycrystalline intermediate thin film, and there is almost no unevenness in the temperature distribution on the surface of the thin film stack. Since the temperature is stable, it is possible to form an oxide superconducting layer having stable superconducting properties in the length direction of the substrate. Therefore, according to the oxide superconducting conductor of the present invention, the warp does not occur in the base material due to the compressive stress at the time of forming the orientation-controlled polycrystalline intermediate thin film, and the oxide superconducting material having stable superconducting properties in the longitudinal direction of the base material is obtained. Even if a thin tape-shaped base material is used, the base material is less likely to be distorted by the high temperature atmosphere at the time of vapor deposition of the oxide superconducting layer. It is possible to provide an oxide superconducting conductor having at least one of the characteristics that the critical current density is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る酸化物超電導導体の第1の例を
示す断面図である。
FIG. 1 is a sectional view showing a first example of an oxide superconducting conductor according to the present invention.

【図2】 本発明に係る酸化物超電導導体の製造に好適
に用いられる、基材上に多結晶速成中間薄膜を形成する
高周波スパッタ装置の一例を示す構成図である。
FIG. 2 is a configuration diagram showing an example of a high-frequency sputtering apparatus that is preferably used for manufacturing an oxide superconducting conductor according to the present invention and that forms a polycrystalline rapid-deposited intermediate thin film on a substrate.

【図3】 本発明に係る酸化物超電導導体の製造に好適
に用いられる、基材上に配向制御多結晶中間薄膜を形成
するイオンビームスパッタ装置の一例を示す構成図であ
る。
FIG. 3 is a configuration diagram showing an example of an ion beam sputtering apparatus that is preferably used for manufacturing an oxide superconducting conductor according to the present invention and forms an orientation-controlled polycrystalline intermediate thin film on a substrate.

【図4】 図3に示す装置に用いられるイオンガンの一
例を示す断面図である。
FIG. 4 is a cross-sectional view showing an example of an ion gun used in the device shown in FIG.

【図5】 イオンビーム照射とともに成膜処理を行う場
合に、イオンビームの入射角度と立方晶系の結晶格子と
の角度関係を示す説明図である。
FIG. 5 is an explanatory diagram showing an angular relationship between an incident angle of an ion beam and a cubic crystal lattice when a film forming process is performed together with ion beam irradiation.

【図6】 本発明に係る酸化物超電導導体の薄膜積層体
を示す構成図である。
FIG. 6 is a structural diagram showing a thin film laminate of an oxide superconducting conductor according to the present invention.

【図7】 本発明に係る酸化物超電導導体の製造に好適
に用いられる、配向制御多結晶中間薄膜上に酸化物超電
導層を形成するための装置の一例を示す構成図である。
FIG. 7 is a configuration diagram showing an example of an apparatus for forming an oxide superconducting layer on an orientation-controlled polycrystalline intermediate thin film, which is preferably used for producing an oxide superconducting conductor according to the present invention.

【図8】 本発明に係る酸化物超電導導体の第2の例を
示す断面図である。
FIG. 8 is a cross-sectional view showing a second example of an oxide superconducting conductor according to the present invention.

【図9】 本発明に係る酸化物超電導導体の第3の例を
示す断面図である。
FIG. 9 is a sectional view showing a third example of an oxide superconducting conductor according to the present invention.

【図10】 本発明に係わる酸化物超電導体のその他の
例を示す断面図である。
FIG. 10 is a cross-sectional view showing another example of the oxide superconductor according to the present invention.

【図11】 実施例5で得られた薄膜積層体の表面形状
のプロファイルである。
FIG. 11 is a profile of the surface shape of the thin film laminate obtained in Example 5.

【図12】 比較例4で得られた積層体の表面形状のプ
ロファイルである。
FIG. 12 is a profile of the surface shape of the laminate obtained in Comparative Example 4.

【図13】 実施例5、比較例4で得られた酸化物超電
導導体の長さ方向の位置ごとの臨界電流を示すグラフで
ある。
13 is a graph showing the critical current for each position in the length direction of the oxide superconducting conductors obtained in Example 5 and Comparative Example 4. FIG.

【図14】 従来の酸化物超電導導体の例を示す断面図
である。
FIG. 14 is a cross-sectional view showing an example of a conventional oxide superconducting conductor.

【符号の説明】[Explanation of symbols]

20、90、100・・・酸化物超電導導体、 21・・・基材、 22、22a、22b…多結晶速成中間薄膜、 23、23a、23b・・・配向制御多結晶中間薄膜、 24、24a、24b…酸化物超電導層。 20, 90, 100 ... Oxide superconducting conductor, 21 ... Base material, 22, 22a, 22b ... Polycrystalline rapid intermediate thin film, 23, 23a, 23b ... Orientation control polycrystalline intermediate thin film, 24, 24a , 24b ... Oxide superconducting layer.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 H01L 39/24 Z H01L 39/24 ZAAB ZAA C04B 35/00 ZAA (72)発明者 保坂 真理子 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 定方 伸行 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 河野 宰 東京都江東区木場一丁目5番1号 株式会 社フジクラ内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical location H01B 13/00 565 H01L 39/24 Z H01L 39/24 ZAAB ZAA C04B 35/00 ZAA (72) Inventor Mariko Hosaka 1-5-1, Kiba, Koto-ku, Tokyo In Fujikura Co., Ltd. (72) Inventor Nobuyuki Kata 1-5-1, Kiba, Koto-ku, Tokyo In Fujikura, Co. (72) Inventor Kono, Saito Koto, Tokyo 1-5-1, Kiba, ward Fujikura stock company

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 テープ状の基材と、この基材の一方の面
上に形成されて多数の結晶粒が結合されてなる配向制御
多結晶中間薄膜と、上記基材の他方の面上に形成された
多結晶速成中間薄膜と、前記配向制御多結晶中間薄膜上
に形成された酸化物超電導層を具備してなることを特徴
とする酸化物超電導導体。
1. A tape-shaped base material, an orientation-controlled polycrystalline intermediate thin film formed on one surface of the base material and having a large number of crystal grains bonded to each other, and on the other surface of the base material. An oxide superconducting conductor comprising the formed polycrystalline rapid-moving intermediate thin film and an oxide superconducting layer formed on the orientation-controlled polycrystalline intermediate thin film.
【請求項2】 テープ状の基材と、この基材の両面上に
それぞれ形成されて多数の結晶粒が結合されてなる配向
制御多結晶中間薄膜と、この配向制御多結晶中間薄膜上
に形成された酸化物超電導層を具備してなることを特徴
とする酸化物超電導導体。
2. A tape-shaped substrate, an orientation-controlled polycrystalline intermediate thin film formed on both surfaces of the substrate and having a large number of crystal grains bonded to each other, and formed on this orientation-controlled polycrystalline intermediate thin film. Oxide superconducting conductor, comprising:
【請求項3】 テープ状の基材と、この基材の両面上に
それぞれ形成されて多数の結晶粒が結合されてなる多結
晶速成中間薄膜と、これら多結晶速成中間薄膜のうち一
方の多結晶速成中間薄膜上に形成された配向制御多結晶
中間薄膜と、この配向制御多結晶中間薄膜上に形成され
た酸化物超電導層を具備してなることを特徴とする酸化
物超電導導体。
3. A tape-shaped base material, a polycrystalline quick-deposition intermediate thin film formed on both surfaces of this base material and having a large number of crystal grains bonded to each other, and one of these polycrystal rapid-deposition intermediate thin films. An oxide superconducting conductor comprising an orientation-controlled polycrystalline intermediate thin film formed on a crystallized rapid-moving intermediate thin film, and an oxide superconducting layer formed on the orientation-controlled polycrystalline intermediate thin film.
【請求項4】 テープ状の基材と、この基材の両面上に
それぞれ形成されて多数の結晶粒が結合されてなる多結
晶速成中間薄膜と、これら多結晶速成中間薄膜上にそれ
ぞれ形成された配向制御多結晶中間薄膜と、これら配向
制御多結晶中間薄膜上にそれぞれ形成された酸化物超電
導層を具備してなることを特徴とする酸化物超電導導
体。
4. A tape-shaped base material, a polycrystalline quick-deposition intermediate thin film formed on both surfaces of this base material and having a large number of crystal grains bonded to each other, and formed on each of these polycrystalline fast-deposition intermediate thin films. An oxide superconducting conductor comprising: an orientation-controlled polycrystalline intermediate thin film; and an oxide superconducting layer formed on each of the orientation-controlled polycrystalline intermediate thin films.
【請求項5】 請求項1〜4のいずれかに記載の酸化物
超電導導体において、上記配向制御多結晶中間薄膜を形
成する多数の結晶粒のそれぞれの粒界傾角が30度以下
であることを特徴とする酸化物超電導導体。
5. The oxide superconductor according to claim 1, wherein a large number of crystal grains forming the orientation-controlled polycrystalline intermediate thin film have a grain boundary inclination angle of 30 degrees or less. Characteristic oxide superconducting conductor.
【請求項6】 請求項1〜5のいずれかに記載の酸化物
超電導導体において、中間薄膜がイットリウム安定化ジ
ルコニアからなることを特徴とする酸化物超電導導体。
6. The oxide superconducting conductor according to any one of claims 1 to 5, wherein the intermediate thin film is made of yttrium-stabilized zirconia.
【請求項7】 請求項2又は4記載の酸化物超電導導体
において、配向制御多結晶中間薄膜がイオンビームアシ
ストスパッタリング法により形成されたものであること
を特徴とする酸化物超電導導体。
7. The oxide superconducting conductor according to claim 2, wherein the orientation-controlled polycrystalline intermediate thin film is formed by an ion beam assisted sputtering method.
JP21480696A 1995-08-18 1996-08-14 Oxide superconducting conductor Expired - Lifetime JP3634078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21480696A JP3634078B2 (en) 1995-08-18 1996-08-14 Oxide superconducting conductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21083195 1995-08-18
JP7-210831 1995-08-18
JP21480696A JP3634078B2 (en) 1995-08-18 1996-08-14 Oxide superconducting conductor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004291991A Division JP4128557B2 (en) 1995-08-18 2004-10-04 Oxide superconducting conductor

Publications (2)

Publication Number Publication Date
JPH09120719A true JPH09120719A (en) 1997-05-06
JP3634078B2 JP3634078B2 (en) 2005-03-30

Family

ID=26518293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21480696A Expired - Lifetime JP3634078B2 (en) 1995-08-18 1996-08-14 Oxide superconducting conductor

Country Status (1)

Country Link
JP (1) JP3634078B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220315B2 (en) 2002-08-02 2007-05-22 Fujikura Ltd. Method of producing polycrystalline thin film and method of producing an oxide superconducting element
JP2010225458A (en) * 2009-03-24 2010-10-07 Furukawa Electric Co Ltd:The Thin-film superconducting wire and method of manufacturing the same
JP2011009106A (en) * 2009-06-26 2011-01-13 Fujikura Ltd Substrate for oxide superconductor, and oxide superconductor
JP2011113662A (en) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd Metal base material for thin film superconducting wire, method of manufacturing the same, and method of manufacturing thin film superconducting wire
JP2012119125A (en) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd Metal base for thin-film superconductive wire material, method of manufacturing the same, and thin-film superconductive wire material
JP2013503422A (en) * 2009-08-26 2013-01-31 シーメンス アクチエンゲゼルシヤフト Multifilament conductor and manufacturing method thereof
WO2013157076A1 (en) * 2012-04-17 2013-10-24 住友電気工業株式会社 Metal base material for thin-film superconducting wire, production method therefor, and thin-film superconducting wire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220315B2 (en) 2002-08-02 2007-05-22 Fujikura Ltd. Method of producing polycrystalline thin film and method of producing an oxide superconducting element
JP2010225458A (en) * 2009-03-24 2010-10-07 Furukawa Electric Co Ltd:The Thin-film superconducting wire and method of manufacturing the same
JP2011009106A (en) * 2009-06-26 2011-01-13 Fujikura Ltd Substrate for oxide superconductor, and oxide superconductor
JP2013503422A (en) * 2009-08-26 2013-01-31 シーメンス アクチエンゲゼルシヤフト Multifilament conductor and manufacturing method thereof
US9024192B2 (en) 2009-08-26 2015-05-05 Siemens Aktiengesellschaft Multifilament conductor and method for producing same
JP2011113662A (en) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd Metal base material for thin film superconducting wire, method of manufacturing the same, and method of manufacturing thin film superconducting wire
JP2012119125A (en) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd Metal base for thin-film superconductive wire material, method of manufacturing the same, and thin-film superconductive wire material
WO2013157076A1 (en) * 2012-04-17 2013-10-24 住友電気工業株式会社 Metal base material for thin-film superconducting wire, production method therefor, and thin-film superconducting wire

Also Published As

Publication number Publication date
JP3634078B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
US6632539B1 (en) Polycrystalline thin film and method for preparing thereof, and superconducting oxide and method for preparation thereof
US7220315B2 (en) Method of producing polycrystalline thin film and method of producing an oxide superconducting element
WO1998017846A1 (en) Process for preparing polycrystalline thin film, process for preparing oxide superconductor, and apparatus therefor
JP2996568B2 (en) Method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JP3771012B2 (en) Oxide superconducting conductor
JP3447077B2 (en) Thin film laminate, oxide superconducting conductor, and method for producing the same
JP3634078B2 (en) Oxide superconducting conductor
JP4131771B2 (en) Polycrystalline thin film, manufacturing method thereof and oxide superconducting conductor
JP4059963B2 (en) Manufacturing method of oxide superconductor
JP3415888B2 (en) Apparatus and method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JP4033945B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP3856878B2 (en) Method for producing polycrystalline thin film
JPH06231940A (en) Abacuo superconducting coil and its manufacture
JP3251034B2 (en) Oxide superconductor and method of manufacturing the same
EP0591588B1 (en) Method of making polycrystalline thin film and superconducting oxide body
JP4128557B2 (en) Oxide superconducting conductor
JPH1149599A (en) Polycrystal thin film, its production, oxide superconducting conductor and manufacture of the same conductor
JP3771027B2 (en) Deposition method and apparatus for depositing orientation-controlled polycrystalline thin film
JP2614948B2 (en) Polycrystalline thin film
JP5122045B2 (en) Oxide superconductor and manufacturing method thereof
JP3532253B2 (en) Oxide superconductor and method of manufacturing the same
JP3444917B2 (en) Method and apparatus for producing polycrystalline thin film and method for producing oxide superconducting conductor having polycrystalline thin film
JP2000203836A (en) Production of oxide superconductor
JP3459092B2 (en) Method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JP3415874B2 (en) Manufacturing method of oxide superconducting conductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term