WO2013157076A1 - Metal base material for thin-film superconducting wire, production method therefor, and thin-film superconducting wire - Google Patents

Metal base material for thin-film superconducting wire, production method therefor, and thin-film superconducting wire Download PDF

Info

Publication number
WO2013157076A1
WO2013157076A1 PCT/JP2012/060310 JP2012060310W WO2013157076A1 WO 2013157076 A1 WO2013157076 A1 WO 2013157076A1 JP 2012060310 W JP2012060310 W JP 2012060310W WO 2013157076 A1 WO2013157076 A1 WO 2013157076A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal substrate
superconducting wire
thin film
film superconducting
layer
Prior art date
Application number
PCT/JP2012/060310
Other languages
French (fr)
Japanese (ja)
Inventor
康太郎 大木
優樹 新海
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2012/060310 priority Critical patent/WO2013157076A1/en
Publication of WO2013157076A1 publication Critical patent/WO2013157076A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control

Definitions

  • the present invention relates to a metal substrate for a thin film superconducting wire, a method for producing the same, and a thin film superconducting wire produced using the metal substrate for a thin film superconducting wire.
  • Such a thin film superconducting wire is generally formed on a surface of a long tape-shaped metal substrate by using a reel-to-reel method to form an oriented ceramic layer as an intermediate layer to form a metal base material.
  • an oxide superconducting layer and a stabilizing layer are sequentially laminated (Patent Documents 1 and 2).
  • the material used to form the orientational ceramic layer as the intermediate layer is ceramic such as CeO 2 or YSZ, and its thermal expansion coefficient is much smaller than that of the metal substrate, and it is in close contact with the metal substrate.
  • the intermediate layer is formed on the metal substrate by performing film formation at a high temperature using a sputtering apparatus or the like.
  • reference numeral 10 denotes a metal substrate
  • 20 denotes an intermediate layer
  • A denotes a deformation height due to warpage.
  • the intermediate layer in which this warp has occurred may cause unevenness in film thickness when the oxide superconducting layer is formed, and there is a possibility that the variation of the critical current value Ic is increased in the thin film superconducting wire.
  • the present invention provides a thin film in which the occurrence of warpage is suppressed, the occurrence of unevenness in film thickness is not caused when the oxide superconducting layer is formed, the variation in Ic is suppressed, and the handling is not problematic. It is an object of the present invention to provide a metal substrate for a superconducting wire, a manufacturing method thereof, and a thin film superconducting wire having a high Ic.
  • An intermediate layer is formed on both sides of the metal substrate, A metal base material for a thin film superconducting wire, wherein a ratio D / L of a maximum deformation height D in the width direction to a width L is 0.02 or less.
  • the intermediate layer is formed on both surfaces of the metal substrate, when cooling to room temperature, the difference in thermal shrinkage generated between the intermediate layer formed on each surface and the metal substrate is balanced. It is well offset and the occurrence of warpage of the metal substrate can be suppressed.
  • the invention described in claim 2 It is a manufacturing method of the metal substrate for thin film superconducting wires according to claim 1, An intermediate layer is simultaneously formed on both surfaces of a metal substrate to produce a metal substrate for a thin film superconducting wire, which is a method for producing a metal substrate for a thin film superconducting wire.
  • the formation of the intermediate layer can be performed one side at a time. However, by forming the intermediate layer on both sides of the metal substrate at the same time, the thermal history of the metal substrate remains as if the intermediate layer was formed one side at a time. Therefore, the occurrence of warpage of the metal substrate can be further suppressed.
  • a metal substrate is disposed between two targets arranged in parallel to each other at a position rotated by 90 degrees with respect to the target, and an intermediate layer is formed on both surfaces of the metal substrate using an off-axis sputtering method. It is a manufacturing method of the metal base material for thin film superconducting wires of Claim 2 characterized by the above-mentioned.
  • the invention of this claim stipulates a preferable manufacturing method for forming the intermediate layer on the metal substrate simultaneously on both sides.
  • the off-axis sputtering method is a sputtering method in which a substrate on which a film is formed and a target are arranged at positions rotated by 90 degrees with each other, and film formation is performed on the substrate.
  • damage caused by impact on the growth surface of sputtered particles can be reduced, deterioration of film quality (such as crystallinity) can be effectively suppressed.
  • two targets are arranged with a metal substrate in between.
  • the film thickness does not decrease as the distance from the target is reduced as in the case of one target, and the same over the entire front and back surfaces of the metal substrate.
  • An intermediate layer having a thickness can be formed.
  • the invention according to claim 4 4.
  • the film thickness may vary.
  • a heating means such as a lamp heater close to the metal substrate, but to place it at a position that does not hinder the progress of sputtered particles flying from the target.
  • An oxide superconducting layer is formed on an intermediate layer on one or both sides of the metal substrate for a thin film superconducting wire according to claim 1.
  • a thin film superconducting wire can be provided.
  • a thin film superconducting wire having a high Ic can be provided.
  • the occurrence of warpage of the metal substrate is suppressed, and when the oxide superconducting layer is formed, there is no occurrence of film thickness unevenness, Ic variation is suppressed, and a problem occurs in handling and the like. It is possible to provide a thin metal substrate for a thin film superconducting wire, a manufacturing method thereof, and a high Ic thin film superconducting wire.
  • FIG. 1 is a cross-sectional view schematically showing a thin film superconducting wire according to an embodiment of the present invention.
  • a thin film superconducting wire 2 according to an embodiment of the present invention is formed by laminating an intermediate layer 20 made of an oriented ceramic layer on both the front and back surfaces of a metal substrate 10.
  • the intermediate substrate 20 is laminated with an oxide superconducting layer 30, and each oxide superconducting layer 30 is laminated with a stabilizing layer 40.
  • FIG. 2 is a cross-sectional view schematically showing a metal substrate for a thin film superconducting wire according to an embodiment of the present invention.
  • the metal substrate 10 a tape-shaped metal substrate having a thickness of 20 to 200 ⁇ m and a width of 3 cm or more, for example, a width of 5 cm is preferably used.
  • the SUS plate 11 thermal expansion coefficient: 16.0 to 20 ⁇ 10 ⁇ 6
  • the core material of the metal substrate is laminated on both the front and back surfaces of the SUS plate 11.
  • Cu layers 12 and Ni layers 13 stacked on each Cu layer 12.
  • Each Cu layer 12 is set to have the same thickness and the same thermal expansion coefficient. It is set to have the same thermal expansion coefficient at the same thickness.
  • the intermediate layer 20 has a thickness of 0.1 to 2 ⁇ m and a first CeO 2 layer 21 (thermal expansion coefficient: 10.5 to 14 ⁇ 10 ⁇ 6 ), YSZ layer 22 (coefficient of thermal expansion: 10.3 ⁇ 10 ⁇ 6 ) and second CeO 2 layer 23.
  • the intermediate layer 20 is not limited to such a structure, and may be, for example, an intermediate layer made of a biaxially oriented CeO 2 single layer.
  • the oxide superconducting layer 30 is a layer having a thickness of 0.1 to 5 ⁇ m and made of REBa 2 Cu 3 O X (RE: rare earth element, x: 6 to 7.5).
  • RE rare earth element
  • x 6 to 7.5
  • YBCO YBa 2 Cu 3 O X
  • Stabilization layer As the stabilization layer 40, a layer having a thickness of 0.1 to 100 ⁇ m and made of Ag or Cu is preferably used.
  • FIG. 3 is a diagram for explaining a method of forming an intermediate layer using an off-axis sputtering apparatus.
  • the film forming apparatus 5 includes an upper target 6 and a lower target 7, a metal substrate 10 is arranged at the center between the targets 6, 7, and 90 degrees with the targets 6, 7.
  • the heating means 8 and the heat collecting mirror 9 are respectively arranged in the left and right symmetrical positions around the metal substrate 10. Note that the metal substrate 10 proceeds from the front side to the back side in FIG.
  • the heating means 8 is provided at a position that does not hinder the progress of sputtered particles flying from the targets 6 and 7.
  • a lamp heater method or an induction heating method is used as the heating means 8.
  • FIG. 4 is a diagram showing a manufacturing process of the thin film superconducting wire according to the embodiment of the present invention. Next, a method for manufacturing a thin film superconducting wire will be described with reference to FIGS.
  • the Cu layer 12 is formed on the elongate tape-shaped SUS board 11, and the metal substrate 10 which formed the Ni layer 13 on it is prepared. At this time, it is confirmed that the metal substrate 10 is not warped.
  • the intermediate layer 20 having the same film thickness and the same thermal expansion coefficient is formed on both surfaces of the metal substrate 10 by an off-axis sputtering method using the film forming apparatus 5. Thereby, the metal base material 1 for a thin film superconducting wire without warping is formed.
  • the oxide superconducting layer 30 is formed on the intermediate layer 20 using a known method such as the MOD method or the PLD method. At this time, it is preferable to form the oxide superconducting layers 30 on both surfaces of the metal substrate 1.
  • the stabilization layer 40 which consists of Ag, Cu, etc. is formed on the oxide superconducting layer 30 using well-known methods, such as PLD method.
  • the thin film superconducting wire 2 is formed by slitting to a predetermined width.
  • the metal substrate 10 is heated to 700 ° C. by off-axis sputtering by the film forming apparatus 5 described above, and the first CeO 2 layer 21 as the first layer and the first layer are simultaneously formed on both the front and back surfaces of the metal substrate 10.
  • a YSZ layer 22 as a second layer and a second CeO 2 layer 23 as a third layer are sequentially formed at each thickness shown in Table 1 to form an intermediate layer 20 having a three-layer structure.
  • a metal substrate 1 for a thin film superconducting wire was prepared.
  • Comparative Example 4 As the intermediate layer, three layers are formed on both surfaces of the metal substrate 10 in the same manner as in Examples 1 to 3, except that the first to third layers having the materials and thicknesses shown in Table 1 were sequentially formed on each side. A metal substrate 1 for a thin film superconducting wire of Comparative Example 4 in which an intermediate layer 20 having a structure was formed was produced.
  • the measuring method of the warp of the metal substrate 1 for thin film superconducting wire is defined as a ratio D / L with respect to the width L of the substrate as a warp rate, with the maximum height difference of the surface of the metal substrate 10 as the maximum deformation height D.
  • the warpage rate was calculated.
  • an oxide superconducting layer 30 made of YBCO having a thickness of 2 ⁇ m is formed on the intermediate layer 20 of the metal substrate 10 on which the intermediate layer 20 of the example and the comparative example is formed by the PLD method. Further, an Ag stabilizing layer having a thickness of 8 ⁇ m is formed on the oxide superconducting layer 30 to produce a thin film superconducting wire 2 having a width of 3 cm and a length of 1 m to obtain a critical current value Ic of the superconducting wire. It was measured.
  • Ic in each example is much larger than Ic in each comparative example, and an intermediate layer is formed on both sides to sufficiently reduce the warp (0.02 or less). ) could be confirmed.
  • SYMBOLS 1 Metal base material for thin film superconducting wire 2 Thin film superconducting wire 5 Film-forming apparatus 6 Upper target 7 Lower target 8 Heating means 9 Heat collecting mirror 10 Metal substrate 11 SUS board 12 Cu layer 13 Ni layer 20 Intermediate layer 21 1st CeO 2 Layer 22 YSZ layer 23 second CeO 2 layer 30 oxide superconducting layer 40 stabilization layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Provided is a metal base material for a thin-film superconducting wire, that suppresses the occurrence of warping, and for which, when an oxide superconducting layer is being formed, there is no occurrence of film thickness inconsistency, variation of the critical current value (Ic) is suppressed, and there are no issues with handling, etc. Also provided are a production method therefor and the thin-film superconducting wire. The metal base material for the thin-film superconducting wire has an intermediate layer formed on both surfaces of a metal substrate, and a ratio (D/L) between a maximum deformation height (D) in the width direction and the width (L) that is no more than 0.02. The production method for the metal base material for the thin-film superconducting wire produces same by forming the intermediate layers simultaneously on both surfaces of the metal substrate. The thin-film superconducting wire has an oxide superconducting layer formed upon the intermediate layer on one or both surfaces of the metal base material for the thin-film superconducting wire.

Description

薄膜超電導線材用金属基材とその製造方法および薄膜超電導線材Metal substrate for thin film superconducting wire, method for producing the same, and thin film superconducting wire
 本発明は、薄膜超電導線材用金属基材とその製造方法および前記薄膜超電導線材用金属基材を用いて作製された薄膜超電導線材に関する。 The present invention relates to a metal substrate for a thin film superconducting wire, a method for producing the same, and a thin film superconducting wire produced using the metal substrate for a thin film superconducting wire.
 高温超電導体の発見以来、ケーブル、コイル、マグネットなどの電力機器への応用を目指した薄膜超電導線材の開発が精力的に行われている。このような薄膜超電導線材は、一般に、リール to リール方式により、長尺のテープ状金属基板の表面に、配向性のセラミックス層を中間層として形成して金属基材とし、さらに、中間層の上に、酸化物超電導層、安定化層を順次積層することにより得られている(特許文献1、2)。 Since the discovery of high-temperature superconductors, thin-film superconducting wires have been vigorously developed for application to power devices such as cables, coils, and magnets. Such a thin film superconducting wire is generally formed on a surface of a long tape-shaped metal substrate by using a reel-to-reel method to form an oriented ceramic layer as an intermediate layer to form a metal base material. In addition, an oxide superconducting layer and a stabilizing layer are sequentially laminated (Patent Documents 1 and 2).
 上記において、中間層である配向性のセラミックス層を形成するために用いられる材料はCeOやYSZ等のセラミックスであり、金属基板と比べて熱膨張係数が遙かに小さく、金属基板との密着性や結晶性を考慮して、スパッタ装置などを用いて、高温で成膜処理することにより金属基板上へ中間層として形成される。 In the above, the material used to form the orientational ceramic layer as the intermediate layer is ceramic such as CeO 2 or YSZ, and its thermal expansion coefficient is much smaller than that of the metal substrate, and it is in close contact with the metal substrate. In consideration of the property and crystallinity, the intermediate layer is formed on the metal substrate by performing film formation at a high temperature using a sputtering apparatus or the like.
 中間層が形成された金属基板、即ち金属基材は、その後、室温まで冷却されるが、この際、前記した熱膨張係数の相違により、金属基板と中間層との間で熱収縮差を生じるため、図5に示すように、中間層を上にした場合逆U字状に反りを生じる。なお、図5において、10は金属基板、20は中間層であり、Aは反りによる変形高さを示している。 The metal substrate on which the intermediate layer is formed, that is, the metal base material is then cooled to room temperature. At this time, a difference in thermal expansion coefficient is caused between the metal substrate and the intermediate layer. Therefore, as shown in FIG. 5, when the intermediate layer is turned up, warping occurs in an inverted U shape. In FIG. 5, reference numeral 10 denotes a metal substrate, 20 denotes an intermediate layer, and A denotes a deformation height due to warpage.
 この反りが生じた中間層は、酸化物超電導層を成膜する際に、膜厚ムラを生じさせる原因ともなり、薄膜超電導線材において臨界電流値Icのバラツキを大きくさせる恐れがある。 The intermediate layer in which this warp has occurred may cause unevenness in film thickness when the oxide superconducting layer is formed, and there is a possibility that the variation of the critical current value Ic is increased in the thin film superconducting wire.
 また、このような反りがあると、長手方向に曲げることが困難となるため、薄膜超電導線材を製造する際のハンドリングなどに問題が生じる。 Also, if there is such a warp, it becomes difficult to bend in the longitudinal direction, which causes a problem in handling when manufacturing a thin film superconducting wire.
特開2007-80780号公報JP 2007-80780 A 特開2007-311234号公報JP 2007-311234 A
 そこで、本発明は、反りの発生が抑制されて、酸化物超電導層を成膜する際に、膜厚ムラの発生がなく、Icのバラツキが抑制され、また、ハンドリングなどに問題が生じない薄膜超電導線材用金属基材とその製造方法、および高いIcの薄膜超電導線材を提供することを課題とする。 Therefore, the present invention provides a thin film in which the occurrence of warpage is suppressed, the occurrence of unevenness in film thickness is not caused when the oxide superconducting layer is formed, the variation in Ic is suppressed, and the handling is not problematic. It is an object of the present invention to provide a metal substrate for a superconducting wire, a manufacturing method thereof, and a thin film superconducting wire having a high Ic.
 本発明者は、上記の課題の解決につき鋭意検討の結果、以下の各請求項に示す発明により、上記の課題が解決できることを見出し、本発明を完成するに至った。以下、請求項毎に説明する。 As a result of intensive studies on solving the above problems, the present inventor has found that the above problems can be solved by the inventions described in the following claims, and has completed the present invention. Hereinafter, each claim will be described.
 請求項1に記載の発明は、
 金属基板の両面に、中間層が形成されており、
 幅方向における最大変形高さDの、幅Lに対する比率D/Lが、0.02以下
であることを特徴とする薄膜超電導線材用金属基材である。
The invention described in claim 1
An intermediate layer is formed on both sides of the metal substrate,
A metal base material for a thin film superconducting wire, wherein a ratio D / L of a maximum deformation height D in the width direction to a width L is 0.02 or less.
 本請求項の発明においては、金属基板の両面に、中間層を形成しているため、室温まで冷却する際、各面に形成された中間層と金属基板との間で生じる熱収縮差がバランスよく相殺されて、金属基材の反りの発生を抑制することができる。 In the invention of this claim, since the intermediate layer is formed on both surfaces of the metal substrate, when cooling to room temperature, the difference in thermal shrinkage generated between the intermediate layer formed on each surface and the metal substrate is balanced. It is well offset and the occurrence of warpage of the metal substrate can be suppressed.
 そして、本発明者の検討によれば、幅方向における最大変形高さDの、幅Lに対する比率D/Lで定義される反りの程度(反り率)を0.02以下に制御した場合、このような反りの発生が抑制された金属基材の上には、膜厚ムラの発生が抑制された酸化物超電導層を成膜することができ、Icのバラツキの発生が抑制された薄膜超電導線材を提供することができることが分かった。そして、反りが抑制されているため、ハンドリングなどに問題が生じない。 According to the study of the present inventor, when the degree of warpage (warpage rate) defined by the ratio D / L of the maximum deformation height D in the width direction to the width L is controlled to 0.02 or less, An oxide superconducting layer in which the occurrence of film thickness unevenness is suppressed can be formed on the metal base material in which the occurrence of such warpage is suppressed, and the thin film superconducting wire in which the occurrence of Ic variation is suppressed. Found that can provide. And since curvature is suppressed, a problem does not arise in handling etc.
 請求項2に記載の発明は、
 請求項1に記載の薄膜超電導線材用金属基材の製造方法であって、
 金属基板の両面に、同時に中間層を形成して、薄膜超電導線材用金属基材を製造することを特徴とする薄膜超電導線材用金属基材の製造方法である。
The invention described in claim 2
It is a manufacturing method of the metal substrate for thin film superconducting wires according to claim 1,
An intermediate layer is simultaneously formed on both surfaces of a metal substrate to produce a metal substrate for a thin film superconducting wire, which is a method for producing a metal substrate for a thin film superconducting wire.
 中間層の形成は、片面ずつ行うこともできるが、中間層の形成を金属基板の両面で同時に行うことにより、片面ずつ中間層の形成を行った場合のような金属基材の熱履歴が残らないため、金属基材の反りの発生をより一層抑制することができる。 The formation of the intermediate layer can be performed one side at a time. However, by forming the intermediate layer on both sides of the metal substrate at the same time, the thermal history of the metal substrate remains as if the intermediate layer was formed one side at a time. Therefore, the occurrence of warpage of the metal substrate can be further suppressed.
 また、中間層を同時に形成する方法の場合、同一の材料を用いて、同一の装置、同一の雰囲気条件の下で一連の処理として行うことができるため、効率的な処理が可能となる。 Further, in the case of the method of forming the intermediate layer at the same time, since the same material can be used as a series of processes under the same apparatus and the same atmospheric conditions, an efficient process is possible.
 請求項3に記載の発明は、
 金属基板を、互いに平行に配置された2つのターゲットの間に、前記ターゲットと90度回転した位置に配置して、オフアクシススパッタ法を用いて、前記金属基板の両面に中間層を成膜することを特徴とする請求項2に記載の薄膜超電導線材用金属基材の製造方法である。
The invention according to claim 3
A metal substrate is disposed between two targets arranged in parallel to each other at a position rotated by 90 degrees with respect to the target, and an intermediate layer is formed on both surfaces of the metal substrate using an off-axis sputtering method. It is a manufacturing method of the metal base material for thin film superconducting wires of Claim 2 characterized by the above-mentioned.
 本請求項の発明は、金属基板における中間層の形成を両面で同時に行うために好ましい製造方法を規定している。 The invention of this claim stipulates a preferable manufacturing method for forming the intermediate layer on the metal substrate simultaneously on both sides.
 オフアクシススパッタ法は、成膜が行われる基板とターゲットを互いに90度回転させた位置に配置して、基板上に成膜を行うスパッタ法であり、成膜に際して、ターゲットから飛び出た高エネルギーイオンや電子、即ち、スパッタ粒子の成長面衝撃によるダメージを低減することができるため、膜質(結晶性など)の低下を効果的に抑制することができる。 The off-axis sputtering method is a sputtering method in which a substrate on which a film is formed and a target are arranged at positions rotated by 90 degrees with each other, and film formation is performed on the substrate. In addition, since damage caused by impact on the growth surface of sputtered particles can be reduced, deterioration of film quality (such as crystallinity) can be effectively suppressed.
 そして、本請求項の発明においては、金属基板を挟んで2つのターゲットを配置している。これにより、双方のターゲットからスパッタ粒子が金属基板に飛来するため、1つのターゲットの場合のように、ターゲットから遠ざかるにつれて膜厚が薄くなるようなことがなく、金属基板の表裏全面に亘って同じ膜厚の中間層を形成することができる。 In the invention of this claim, two targets are arranged with a metal substrate in between. As a result, since the sputtered particles fly from both targets to the metal substrate, the film thickness does not decrease as the distance from the target is reduced as in the case of one target, and the same over the entire front and back surfaces of the metal substrate. An intermediate layer having a thickness can be formed.
 請求項4に記載の発明は、
 前記オフアクシススパッタ法における金属基板への加熱手段が、ターゲットから飛来するスパッタ粒子の進行を妨げない位置に設けられていることを特徴とする請求項3に記載の薄膜超電導線材用金属基材の製造方法である。
The invention according to claim 4
4. The metal substrate for a thin film superconducting wire according to claim 3, wherein means for heating the metal substrate in the off-axis sputtering method is provided at a position that does not hinder the progress of sputtered particles flying from the target. It is a manufacturing method.
 ターゲットから金属基板へ飛来するスパッタ粒子の進行が妨げられると、成膜厚さにバラツキが生じる恐れがある。 If the progress of the sputtered particles flying from the target to the metal substrate is hindered, the film thickness may vary.
 このため、金属基板を加熱するに際しては、ランプヒータなどの加熱手段を金属基板に近づけて配置せず、ターゲットから飛来するスパッタ粒子の進行を妨げない位置に配置することが好ましい。 For this reason, when heating the metal substrate, it is preferable not to place a heating means such as a lamp heater close to the metal substrate, but to place it at a position that does not hinder the progress of sputtered particles flying from the target.
 請求項5に記載の発明は、
 前記金属基板が、両面対称構造の金属基板であることを特徴とする請求項2ないし請求項4のいずれか1項に記載の薄膜超電導線材用金属基材の製造方法である。
The invention described in claim 5
The method for producing a metal substrate for a thin film superconducting wire according to any one of claims 2 to 4, wherein the metal substrate is a metal substrate having a double-sided symmetrical structure.
 両面対称構造の金属基板の両面に中間層を形成することにより、より確実に金属基材の反りの発生を抑制することができる。 By forming the intermediate layer on both surfaces of the metal substrate having a double-sided symmetrical structure, it is possible to more reliably suppress the warpage of the metal base material.
 請求項6に記載の発明は、
 請求項1に記載の薄膜超電導線材用金属基材の片面または両面の中間層の上に、酸化物超電導層が形成されていることを特徴とする薄膜超電導線材である。
The invention described in claim 6
An oxide superconducting layer is formed on an intermediate layer on one or both sides of the metal substrate for a thin film superconducting wire according to claim 1.
 両面に中間層が形成された金属基材は、反りの発生が充分に抑制されているため、膜厚ムラの発生が抑制された酸化物超電導層が形成され、Icのバラツキの発生が抑制された薄膜超電導線材を提供することができる。特に、両面に酸化物超電導層が形成されている場合は、高いIcを有する薄膜超電導線材を提供することができる。 Since the metal substrate having the intermediate layer formed on both sides sufficiently suppresses the occurrence of warpage, an oxide superconducting layer in which the occurrence of film thickness unevenness is suppressed is formed, and the occurrence of variations in Ic is suppressed. A thin film superconducting wire can be provided. In particular, when an oxide superconducting layer is formed on both surfaces, a thin film superconducting wire having a high Ic can be provided.
 本発明により、金属基材の反りの発生が抑制されて、酸化物超電導層を成膜する際に、膜厚ムラの発生がなく、Icのバラツキが抑制され、また、ハンドリングなどに問題が生じない薄膜超電導線材用金属基材とその製造方法、および高いIcの薄膜超電導線材を提供することができる。 According to the present invention, the occurrence of warpage of the metal substrate is suppressed, and when the oxide superconducting layer is formed, there is no occurrence of film thickness unevenness, Ic variation is suppressed, and a problem occurs in handling and the like. It is possible to provide a thin metal substrate for a thin film superconducting wire, a manufacturing method thereof, and a high Ic thin film superconducting wire.
本発明の実施の形態の薄膜超電導線材を模式的に示す断面図である。It is sectional drawing which shows typically the thin film superconducting wire of embodiment of this invention. 本発明の実施の形態の薄膜超電導線材用の金属基板を模式的に示す断面図である。It is sectional drawing which shows typically the metal substrate for thin film superconducting wires of embodiment of this invention. 本発明の実施の形態のオフアクシススパッタ装置を用いて、中間層を成膜する方法を説明する図である。It is a figure explaining the method to form an intermediate | middle layer using the off-axis sputter apparatus of embodiment of this invention. 本発明の実施の形態の薄膜超電導線材の製造工程を示す図である。It is a figure which shows the manufacturing process of the thin film superconducting wire of embodiment of this invention. 薄膜超電導線材用金属基材が反った状態を示す図である。It is a figure which shows the state which the metal base material for thin film superconducting wires curved.
 以下、本発明を実施の形態に基づいて説明する。 Hereinafter, the present invention will be described based on embodiments.
1.薄膜超電導線材の構造
 図1は、本発明の実施の形態の薄膜超電導線材を模式的に示す断面図である。図1に示すように、本発明の実施の形態における薄膜超電導線材2は、金属基板10の表裏両面のそれぞれに、配向性のセラミックス層からなる中間層20を積層して形成される薄膜超電導線材用金属基材1を備え、各中間層20には酸化物超電導層30が積層され、さらに各酸化物超電導層30には安定化層40が積層されている。
1. FIG. 1 is a cross-sectional view schematically showing a thin film superconducting wire according to an embodiment of the present invention. As shown in FIG. 1, a thin film superconducting wire 2 according to an embodiment of the present invention is formed by laminating an intermediate layer 20 made of an oriented ceramic layer on both the front and back surfaces of a metal substrate 10. The intermediate substrate 20 is laminated with an oxide superconducting layer 30, and each oxide superconducting layer 30 is laminated with a stabilizing layer 40.
(1)薄膜超電導線材用金属基材
 (a)金属基板
 図2は、本発明の実施の形態の薄膜超電導線材用の金属基板を模式的に示す断面図である。金属基板10としては、厚さが20~200μmであって、幅が3cm以上、例えば幅5cmのテープ状の金属基板が好ましく用いられる。具体的には、例えば、図2に示すように、金属基板のコア材となるSUS板11(熱膨張係数:16.0~20×10-6)と、SUS板11の表裏両面にそれぞれ積層されるCu層12と、各Cu層12に積層されるNi層13とを備えており、各Cu層12は同じ厚さで同じ熱膨張係数になるように設定され、各Ni層13についても同じ厚さで同じ熱膨張係数になるように設定されている。
(1) Metal substrate for thin film superconducting wire (a) Metal substrate FIG. 2 is a cross-sectional view schematically showing a metal substrate for a thin film superconducting wire according to an embodiment of the present invention. As the metal substrate 10, a tape-shaped metal substrate having a thickness of 20 to 200 μm and a width of 3 cm or more, for example, a width of 5 cm is preferably used. Specifically, for example, as shown in FIG. 2, the SUS plate 11 (thermal expansion coefficient: 16.0 to 20 × 10 −6 ) serving as the core material of the metal substrate is laminated on both the front and back surfaces of the SUS plate 11. Cu layers 12 and Ni layers 13 stacked on each Cu layer 12. Each Cu layer 12 is set to have the same thickness and the same thermal expansion coefficient. It is set to have the same thermal expansion coefficient at the same thickness.
 (b)中間層
 中間層20としては、図1に示すように厚さが0.1~2μmであって、第1のCeO層21(熱膨張係数:10.5~14×10-6)、YSZ層22(熱膨張係数:10.3×10-6)および第2のCeO層23の3層構造になっている。なお、中間層20は、かかる構造には限定はされず、例えば、2軸配向させたCeO単層からなる中間層であっても良い。
(B) Intermediate Layer As shown in FIG. 1, the intermediate layer 20 has a thickness of 0.1 to 2 μm and a first CeO 2 layer 21 (thermal expansion coefficient: 10.5 to 14 × 10 −6 ), YSZ layer 22 (coefficient of thermal expansion: 10.3 × 10 −6 ) and second CeO 2 layer 23. The intermediate layer 20 is not limited to such a structure, and may be, for example, an intermediate layer made of a biaxially oriented CeO 2 single layer.
(2)酸化物超電導層
 酸化物超電導層30は、厚さが0.1~5μmであって、REBaCu(RE:希土類元素、x:6~7.5)からなる層であり、例えばYBCO(YBaCu)(面内方向の熱膨張係数:a7.4×10-6、b9.6×10-6)等が挙げられる。
(2) Oxide Superconducting Layer The oxide superconducting layer 30 is a layer having a thickness of 0.1 to 5 μm and made of REBa 2 Cu 3 O X (RE: rare earth element, x: 6 to 7.5). For example, YBCO (YBa 2 Cu 3 O X ) (thermal expansion coefficient in the in-plane direction: a7.4 × 10 −6 , b9.6 × 10 −6 ) and the like can be mentioned.
(3)安定化層
 安定化層40は、厚さが0.1~100μmであって、AgまたはCuからなる層が好ましく用いられる。
(3) Stabilization layer As the stabilization layer 40, a layer having a thickness of 0.1 to 100 μm and made of Ag or Cu is preferably used.
2.成膜装置
 本実施の形態に用いられる成膜装置は、オフアクシススパッタ装置であって、金属基板の両面に成膜を行う装置である。図3は、オフアクシススパッタ装置を用いて、中間層を成膜する方法を説明する図である。図3に示すように、成膜装置5は、上部ターゲット6および下部ターゲット7を備えており、金属基板10を、ターゲット6、7間の中央に配置し、かつ、ターゲット6、7と90度回転した位置に配置し、金属基板10を中心とした左右対称位置には、加熱手段8および集熱ミラー9がそれぞれ配置されている。なお、金属基板10は、図3の紙面の表から裏側に進行する。
2. Film Forming Apparatus The film forming apparatus used in this embodiment is an off-axis sputtering apparatus that forms a film on both surfaces of a metal substrate. FIG. 3 is a diagram for explaining a method of forming an intermediate layer using an off-axis sputtering apparatus. As shown in FIG. 3, the film forming apparatus 5 includes an upper target 6 and a lower target 7, a metal substrate 10 is arranged at the center between the targets 6, 7, and 90 degrees with the targets 6, 7. The heating means 8 and the heat collecting mirror 9 are respectively arranged in the left and right symmetrical positions around the metal substrate 10. Note that the metal substrate 10 proceeds from the front side to the back side in FIG.
 加熱手段8は、ターゲット6、7から飛来するスパッタ粒子の進行を妨げない位置に設けられている。加熱手段8としては、例えば、ランプヒータ方式や誘導加熱方式が用いられる。 The heating means 8 is provided at a position that does not hinder the progress of sputtered particles flying from the targets 6 and 7. As the heating means 8, for example, a lamp heater method or an induction heating method is used.
3.薄膜超電導線材の製造方法
 図4は、本発明の実施の形態の薄膜超電導線材の製造工程を示す図である。次に、図1および図2を参照しながら、薄膜超電導線材の製造方法を説明する。
3. Manufacturing Method of Thin Film Superconducting Wire FIG. 4 is a diagram showing a manufacturing process of the thin film superconducting wire according to the embodiment of the present invention. Next, a method for manufacturing a thin film superconducting wire will be described with reference to FIGS.
(1)金属基板準備工程
 まず、金属基板準備工程において、長尺のテープ状のSUS板11の上にCu層12を形成し、その上にNi層13を形成した金属基板10を準備する。このとき、金属基板10に反りがないことを確認する。
(1) Metal substrate preparatory process First, in the metal substrate preparatory process, the Cu layer 12 is formed on the elongate tape-shaped SUS board 11, and the metal substrate 10 which formed the Ni layer 13 on it is prepared. At this time, it is confirmed that the metal substrate 10 is not warped.
(2)中間層形成工程
 次に、中間層形成工程において、成膜装置5によるオフアクシススパッタ法により金属基板10の両面に、同じ膜厚で同じ熱膨張係数を有する中間層20を形成する。これにより、反りのない薄膜超電導線材用金属基材1が形成される。
(2) Intermediate Layer Forming Step Next, in the intermediate layer forming step, the intermediate layer 20 having the same film thickness and the same thermal expansion coefficient is formed on both surfaces of the metal substrate 10 by an off-axis sputtering method using the film forming apparatus 5. Thereby, the metal base material 1 for a thin film superconducting wire without warping is formed.
(3)酸化物超電導層形成工程
 次に、酸化物超電導層形成工程において、MOD法やPLD法などの公知の方法を用いて、中間層20の上に酸化物超電導層30を形成する。このとき、金属基材1の両面に酸化物超電導層30を形成することが好ましい。
(3) Oxide superconducting layer forming step Next, in the oxide superconducting layer forming step, the oxide superconducting layer 30 is formed on the intermediate layer 20 using a known method such as the MOD method or the PLD method. At this time, it is preferable to form the oxide superconducting layers 30 on both surfaces of the metal substrate 1.
(4)安定化層形成工程
 次に、PLD法等の公知の方法を用いて、酸化物超電導層30の上にAgやCu等からなる安定化層40を形成する。
(4) Stabilization layer formation process Next, the stabilization layer 40 which consists of Ag, Cu, etc. is formed on the oxide superconducting layer 30 using well-known methods, such as PLD method.
 安定化層形成後、所定の幅にスリット加工を施すことにより、薄膜超電導線材2を形成する。 After forming the stabilization layer, the thin film superconducting wire 2 is formed by slitting to a predetermined width.
 以下、実施例により、本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
(1)薄膜超電導線材用金属基材の作製
(実施例1~3)
 イ.金属基板の準備および中間層(配向性のセラミックス層)の形成
 幅3cm×厚さ100μmで長さが1mの長尺のテープ状のSUS316L(ステンレス鋼)11の両面に、厚さ20μmのCu層を積層し、Cu層に上にめっき法により厚さ2μmのNi層を積層することにより、作製した。
(1) Preparation of metal substrate for thin film superconducting wire (Examples 1 to 3)
I. Preparation of metal substrate and formation of intermediate layer (oriented ceramic layer) On both sides of a long tape-shaped SUS316L (stainless steel) 11 having a width of 3 cm × thickness of 100 μm and a length of 1 m, a Cu layer having a thickness of 20 μm And a Ni layer having a thickness of 2 μm was formed on the Cu layer by plating.
 次に、前記した成膜装置5によるオフアクシススパッタにより、金属基板10を700℃に加熱し、金属基板10の表裏両面のそれぞれに、同時に、第1層として第1のCeO層21、第2層としてYSZ層22、第3層として第2のCeO層23を、表1に示す各厚さで、順次形成して、3層構造の中間層20を形成し、実施例1~3の薄膜超電導線材用金属基材1を作製した。 Next, the metal substrate 10 is heated to 700 ° C. by off-axis sputtering by the film forming apparatus 5 described above, and the first CeO 2 layer 21 as the first layer and the first layer are simultaneously formed on both the front and back surfaces of the metal substrate 10. A YSZ layer 22 as a second layer and a second CeO 2 layer 23 as a third layer are sequentially formed at each thickness shown in Table 1 to form an intermediate layer 20 having a three-layer structure. A metal substrate 1 for a thin film superconducting wire was prepared.
(比較例1~3)
 金属基板10の片面のみに中間層20を形成したこと以外は、実施例1~3と同様にして中間層20が形成された比較例1~3の薄膜超電導線材用金属基材1を作製した。
(Comparative Examples 1 to 3)
Except that the intermediate layer 20 was formed only on one side of the metal substrate 10, the metal substrate 1 for the thin film superconducting wire of Comparative Examples 1 to 3 in which the intermediate layer 20 was formed was produced in the same manner as in Examples 1 to 3. .
(比較例4)
 中間層として、表1に示す材質および厚さの第1層~第3層を、片面ずつ、順次形成したこと以外は、実施例1~3と同様にして、金属基板10の両面に3層構造の中間層20が形成された比較例4の薄膜超電導線材用金属基材1を作製した。
(Comparative Example 4)
As the intermediate layer, three layers are formed on both surfaces of the metal substrate 10 in the same manner as in Examples 1 to 3, except that the first to third layers having the materials and thicknesses shown in Table 1 were sequentially formed on each side. A metal substrate 1 for a thin film superconducting wire of Comparative Example 4 in which an intermediate layer 20 having a structure was formed was produced.
(2)反りの測定評価
 上記の実施例と比較例の薄膜超電導線材用金属基材の反りの測定評価を行った。
(2) Measurement and evaluation of warpage Measurement and evaluation of the warpage of the metal substrates for thin film superconducting wires of the above-described Examples and Comparative Examples were performed.
 イ.測定方法
 薄膜超電導線材用金属基材1の反りの測定方法は、金属基板10の表面の最大高低差を最大変形高さDとして、基材の幅Lに対する比率D/Lを反り率として定義し、反り率を求めた。
I. Measuring method The measuring method of the warp of the metal substrate 1 for thin film superconducting wire is defined as a ratio D / L with respect to the width L of the substrate as a warp rate, with the maximum height difference of the surface of the metal substrate 10 as the maximum deformation height D. The warpage rate was calculated.
 ロ.測定結果
 測定結果を表1に示す。
B. Measurement results Table 1 shows the measurement results.
 表1に示すように、表裏両面で同時に中間層を形成した実施例1~3の場合、反り率はいずれも0.02以下であった。これに対して、片面に中間層を形成した比較例1~3、および表裏両面の片面ずつ中間層を形成した比較例4の場合、反り率はいずれも0.02を超えていた。 As shown in Table 1, in Examples 1 to 3 in which the intermediate layer was formed on both the front and back surfaces at the same time, the warpage rate was 0.02 or less. On the other hand, in Comparative Examples 1 to 3 in which the intermediate layer was formed on one side and Comparative Example 4 in which the intermediate layer was formed on each side of the front and back surfaces, the warpage rate exceeded 0.02.
(3)超電導特性の測定
 次に、実施例および比較例の中間層20が形成された金属基板10の中間層20上に、PLD法により厚さが2μmのYBCOからなる酸化物超電導層30を形成し、さらに、酸化物超電導層30の上に厚さ8μmのAg製の安定化層を形成し、幅3cm、長さ1mの薄膜超電導線材2を作製して超電導線材の臨界電流値Icを測定した。
(3) Measurement of superconducting characteristics Next, an oxide superconducting layer 30 made of YBCO having a thickness of 2 μm is formed on the intermediate layer 20 of the metal substrate 10 on which the intermediate layer 20 of the example and the comparative example is formed by the PLD method. Further, an Ag stabilizing layer having a thickness of 8 μm is formed on the oxide superconducting layer 30 to produce a thin film superconducting wire 2 having a width of 3 cm and a length of 1 m to obtain a critical current value Ic of the superconducting wire. It was measured.
 イ.測定方法
 77K、自己磁場下において実施例および比較例の超電導線材の臨界電流値Icを測定した。
I. Measuring Method The critical current value Ic of the superconducting wires of Examples and Comparative Examples was measured under a self magnetic field of 77K.
 ロ.測定結果
 測定結果を表1に示す。
B. Measurement results Table 1 shows the measurement results.
 表1に示すように、各実施例におけるIcは、各比較例におけるIcと比べ、はるかに大きなIcとなっており、中間層を両面に形成し、反りを充分に小さくした(0.02以下)ことによるIcへの影響が確認できた。 As shown in Table 1, Ic in each example is much larger than Ic in each comparative example, and an intermediate layer is formed on both sides to sufficiently reduce the warp (0.02 or less). ) Could be confirmed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。 As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.
1    薄膜超電導線材用金属基材
2    薄膜超電導線材
5    成膜装置
6    上部ターゲット
7    下部ターゲット
8    加熱手段
9    集熱ミラー
10   金属基板
11   SUS板
12   Cu層
13   Ni層
20   中間層
21   第1のCeO
22   YSZ層
23   第2のCeO
30   酸化物超電導層
40   安定化層
DESCRIPTION OF SYMBOLS 1 Metal base material for thin film superconducting wire 2 Thin film superconducting wire 5 Film-forming apparatus 6 Upper target 7 Lower target 8 Heating means 9 Heat collecting mirror 10 Metal substrate 11 SUS board 12 Cu layer 13 Ni layer 20 Intermediate layer 21 1st CeO 2 Layer 22 YSZ layer 23 second CeO 2 layer 30 oxide superconducting layer 40 stabilization layer

Claims (6)

  1.  金属基板の両面に、中間層が形成されており、
     幅方向における最大変形高さDの、幅Lに対する比率D/Lが、0.02以下
    であることを特徴とする薄膜超電導線材用金属基材。
    An intermediate layer is formed on both sides of the metal substrate,
    A metal substrate for a thin film superconducting wire, wherein the ratio D / L of the maximum deformation height D in the width direction to the width L is 0.02 or less.
  2.  請求項1に記載の薄膜超電導線材用金属基材の製造方法であって、
     金属基板の両面に、同時に中間層を形成して、薄膜超電導線材用金属基材を製造することを特徴とする薄膜超電導線材用金属基材の製造方法。
    It is a manufacturing method of the metal substrate for thin film superconducting wires according to claim 1,
    A method for producing a metal substrate for a thin film superconducting wire, comprising simultaneously forming an intermediate layer on both surfaces of a metal substrate to produce a metal substrate for a thin film superconducting wire.
  3.  金属基板を、互いに平行に配置された2つのターゲットの間に、前記ターゲットと90度回転した位置に配置して、オフアクシススパッタ法を用いて、前記金属基板の両面に中間層を成膜することを特徴とする請求項2に記載の薄膜超電導線材用金属基材の製造方法。 A metal substrate is disposed between two targets arranged in parallel to each other at a position rotated by 90 degrees with respect to the target, and an intermediate layer is formed on both surfaces of the metal substrate using an off-axis sputtering method. The manufacturing method of the metal base material for thin film superconducting wires of Claim 2 characterized by the above-mentioned.
  4.  前記オフアクシススパッタ法における金属基板への加熱手段が、ターゲットから飛来するスパッタ粒子の進行を妨げない位置に設けられていることを特徴とする請求項3に記載の薄膜超電導線材用金属基材の製造方法。 4. The metal substrate for a thin film superconducting wire according to claim 3, wherein means for heating the metal substrate in the off-axis sputtering method is provided at a position that does not hinder the progress of sputtered particles flying from the target. Production method.
  5.  前記金属基板が、両面対称構造の金属基板であることを特徴とする請求項2ないし請求項4のいずれか1項に記載の薄膜超電導線材用金属基材の製造方法。 The method for producing a metal substrate for a thin film superconducting wire according to any one of claims 2 to 4, wherein the metal substrate is a metal substrate having a double-sided symmetrical structure.
  6.  請求項1に記載の薄膜超電導線材用金属基材の片面または両面の中間層の上に、酸化物超電導層が形成されていることを特徴とする薄膜超電導線材。 A thin film superconducting wire, wherein an oxide superconducting layer is formed on one or both intermediate layers of the metal substrate for a thin film superconducting wire according to claim 1.
PCT/JP2012/060310 2012-04-17 2012-04-17 Metal base material for thin-film superconducting wire, production method therefor, and thin-film superconducting wire WO2013157076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060310 WO2013157076A1 (en) 2012-04-17 2012-04-17 Metal base material for thin-film superconducting wire, production method therefor, and thin-film superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060310 WO2013157076A1 (en) 2012-04-17 2012-04-17 Metal base material for thin-film superconducting wire, production method therefor, and thin-film superconducting wire

Publications (1)

Publication Number Publication Date
WO2013157076A1 true WO2013157076A1 (en) 2013-10-24

Family

ID=49383065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060310 WO2013157076A1 (en) 2012-04-17 2012-04-17 Metal base material for thin-film superconducting wire, production method therefor, and thin-film superconducting wire

Country Status (1)

Country Link
WO (1) WO2013157076A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898433A (en) * 2017-04-18 2017-06-27 中国地质大学(武汉) Superconduction graphene composite film wire/belt material and cable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120719A (en) * 1995-08-18 1997-05-06 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide type superconductor
JP2001073137A (en) * 1999-09-02 2001-03-21 Toshiba Corp Deposition of thin film and its system
JP2005056591A (en) * 2003-08-04 2005-03-03 Sumitomo Electric Ind Ltd Thin film superconductive wire rod and its manufacturing method
JP2011113662A (en) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd Metal base material for thin film superconducting wire, method of manufacturing the same, and method of manufacturing thin film superconducting wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120719A (en) * 1995-08-18 1997-05-06 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide type superconductor
JP2001073137A (en) * 1999-09-02 2001-03-21 Toshiba Corp Deposition of thin film and its system
JP2005056591A (en) * 2003-08-04 2005-03-03 Sumitomo Electric Ind Ltd Thin film superconductive wire rod and its manufacturing method
JP2011113662A (en) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd Metal base material for thin film superconducting wire, method of manufacturing the same, and method of manufacturing thin film superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898433A (en) * 2017-04-18 2017-06-27 中国地质大学(武汉) Superconduction graphene composite film wire/belt material and cable
CN106898433B (en) * 2017-04-18 2018-12-04 中国地质大学(武汉) Superconduction graphene composite film wire/belt material and cable

Similar Documents

Publication Publication Date Title
Lee et al. Development and production of second generation high Tc superconducting tapes at SuperOx and first tests of model cables
US6784139B1 (en) Conductive and robust nitride buffer layers on biaxially textured substrates
JPWO2013018870A1 (en) Superconducting conductor manufacturing method, superconducting conductor and superconducting conductor substrate
JP2013535083A (en) Multifilament superconductor with reduced AC loss and its formation method
US8431515B2 (en) Tape-shaped oxide superconductor
JP2008210600A (en) Rare earth system tape-shape oxide superconductor and composite substrate used for it
US10748678B2 (en) Substrate for superconducting wire, production method therefor, and superconducting wire
WO2007135831A1 (en) Superconducting thin film material and method for producing superconducting thin film material
WO2011099301A1 (en) Oxide superconductor cabling and method of manufacturing oxide superconductor cabling
JP2011113662A (en) Metal base material for thin film superconducting wire, method of manufacturing the same, and method of manufacturing thin film superconducting wire
WO2007094146A1 (en) Process for producing superconducting thin-film material, superconducting equipment and superconducting thin-film material
US8283293B2 (en) Method for producing a HTS coated conductor and HTS coated conductor with reduced losses
US10158061B2 (en) Integrated superconductor device and method of fabrication
WO2013157076A1 (en) Metal base material for thin-film superconducting wire, production method therefor, and thin-film superconducting wire
Aytug et al. Single buffer layers of LaMnO3 or La0. 7Sr0. 3MnO3 for the development of Yba2Cu3O7− δ-coated conductors: A comparative study
JP5503714B2 (en) Metal substrate for thin film superconducting wire, method for producing the same, and method for producing thin film superconducting wire
JP2012119125A (en) Metal base for thin-film superconductive wire material, method of manufacturing the same, and thin-film superconductive wire material
JP2008130255A (en) Superconducting wire and manufacturing method therefor
JP5497412B2 (en) Manufacturing method of superconducting thin film wire
JP5432863B2 (en) Alignment substrate for film formation and superconducting wire
Kaul et al. Development of non-magnetic biaxially textured tape and MOCVD processes for coated conductor fabrication
US20090203529A1 (en) Superconducting material
Yuan et al. Epitaxial buffer layers on Ni and Cu-Ni substrates for Y-Ba-Cu-O film
JP2015005354A (en) Substrate for superconducting wire rod and superconducting wire rod
JP2011090934A (en) Base material for superconductive thin film wiring material, manufacturing method thereof, and superconductive thin film wiring material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12874531

Country of ref document: EP

Kind code of ref document: A1