JP5620747B2 - Vacuum deposition equipment - Google Patents

Vacuum deposition equipment Download PDF

Info

Publication number
JP5620747B2
JP5620747B2 JP2010184381A JP2010184381A JP5620747B2 JP 5620747 B2 JP5620747 B2 JP 5620747B2 JP 2010184381 A JP2010184381 A JP 2010184381A JP 2010184381 A JP2010184381 A JP 2010184381A JP 5620747 B2 JP5620747 B2 JP 5620747B2
Authority
JP
Japan
Prior art keywords
vapor deposition
metal
opening
crucible
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010184381A
Other languages
Japanese (ja)
Other versions
JP2012041604A (en
Inventor
光右 木津
光右 木津
哲哉 古内
哲哉 古内
和彦 関本
和彦 関本
信一 小澤
信一 小澤
雄介 渡部
雄介 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2010184381A priority Critical patent/JP5620747B2/en
Priority to CN2011102275236A priority patent/CN102373421A/en
Publication of JP2012041604A publication Critical patent/JP2012041604A/en
Application granted granted Critical
Publication of JP5620747B2 publication Critical patent/JP5620747B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

本発明は真空蒸着装置に関し、特に詳しくは、均質で欠陥のない金属蒸着膜を被蒸着体上に形成することができる真空蒸着装置に関する。   The present invention relates to a vacuum deposition apparatus, and more particularly to a vacuum deposition apparatus capable of forming a uniform and defect-free metal deposition film on an object to be deposited.

真空蒸着装置では、真空チャンバー内に蒸着源と被蒸着体とを配置し、真空チャンバー内部を減圧した状態で、蒸着源を加熱して、蒸着源を溶融させて蒸発させるか、もしくは、蒸着源を昇華させるかして気化させる。気化された物質は蒸着源から法線方向に直進的に放出され(放出空間は真空に保たれているため気化物質は直進する)、蒸着源と対向して配置される被蒸着体の表面に付着して蒸着される。
この場合、蒸着源からの気化物質は法線方向に直進的に放出されるので、被蒸着体へ向かって進行せずに被蒸着体の表面に付着しない気化物質も多く、蒸着源の歩留まりが低くなり、被蒸着体の表面への蒸着速度が遅くなる共に、ピンホール、ボイド等の欠陥が少なく均質な蒸着膜を効率的に得ることは困難であった。
In a vacuum deposition apparatus, a deposition source and a deposition target are arranged in a vacuum chamber, and the deposition source is heated and the deposition source is melted and evaporated in a state where the inside of the vacuum chamber is decompressed, or the deposition source Vaporize by sublimating. The vaporized substance is emitted straight from the vapor deposition source in the normal direction (the vaporized substance goes straight because the emission space is kept in a vacuum), and the vaporized substance is placed on the surface of the vapor deposition target disposed opposite to the vapor deposition source. Adhered and deposited.
In this case, since the vaporized material from the vapor deposition source is released straightly in the normal direction, there are many vaporized materials that do not travel toward the vapor deposition target and do not adhere to the surface of the vapor deposition target, and the yield of the vapor deposition source increases. It has been difficult to efficiently obtain a uniform vapor deposition film with low defects, a low vapor deposition rate on the surface of the vapor deposition target, and few defects such as pinholes and voids.

これを解決する技術として、特許文献1では、真空チャンバー内に配置した蒸着源と被蒸着体が対向する空間を筒状体で囲むと共に筒状体を蒸着源の物質が気化される温度で加熱し、蒸着源から気化した物質を筒状体内に通して被蒸着体の表面に蒸着させるようにした真空蒸着装置を提案している。特許文献1の図2はその一例を示すものであり、真空チャンバー1(特許文献1の符号をそのまま用いる。次の特許文献2についても同様)内に上下に開口する筒状体(筒体)5が配設してあり、筒状体5にはヒーター21が巻いてあって筒状体5を加熱できるようにしてある。この筒状体5の下部内に蒸着源2が配置してあり、発熱体24で加熱して蒸着源2(特許文献1の図1参照)を気化させることができるようにしてある。被蒸着体(基板)3は筒状体5の上端の開口の上方に配置してある。20は真空チャンバー1内を排気して真空雰囲気にする真空ポンプである。   As a technique for solving this, in Patent Document 1, a space where a vapor deposition source and a deposition target disposed in a vacuum chamber face each other is surrounded by a cylindrical body, and the cylindrical body is heated at a temperature at which a substance of the vapor deposition source is vaporized. Then, a vacuum deposition apparatus is proposed in which a substance vaporized from a deposition source is passed through a cylindrical body and deposited on the surface of the deposition target. FIG. 2 of Patent Document 1 shows an example, and a cylindrical body (cylinder body) that opens up and down in the vacuum chamber 1 (the reference numeral of Patent Document 1 is used as it is. The same applies to the next Patent Document 2). 5 is disposed, and a heater 21 is wound around the cylindrical body 5 so that the cylindrical body 5 can be heated. The vapor deposition source 2 is disposed in the lower part of the cylindrical body 5 and is heated by the heating element 24 so that the vapor deposition source 2 (see FIG. 1 of Patent Document 1) can be vaporized. The deposition target (substrate) 3 is disposed above the opening at the upper end of the cylindrical body 5. Reference numeral 20 denotes a vacuum pump that evacuates the vacuum chamber 1 to create a vacuum atmosphere.

また、特許文献2では、蒸着源(蒸発源)から被蒸着体への気化物質の移動量を正確に制御することができ、筒状体からの輻射熱に左右されることなく、蒸着速度の制御を容易に行なうことができる真空蒸着装置を開示している。真空チャンバー1内に蒸発源2と被蒸着体3とを配置すると共に蒸発源2と被蒸着体3の間の空間を蒸発源2の物質が気化される温度で加熱された筒状体4で囲み、蒸発源2から気化した物質9を筒状体4内に通して被蒸着体3の表面に到達させて蒸着させるようにした真空蒸着装置となっている。蒸発源2から気化した物質9を蒸発源収容室24の開口部5を通過させた後に筒状体4内を通して被蒸着体の表面に到達させるようにし、開口部5の開口度を調整可能な開閉手段6と、蒸発源2から気化した物質9を蒸着させてその蒸着厚みを計測する蒸着厚み計測手段7と、蒸着厚み計測手段7で計測される蒸着厚みに応じて開閉手段6の開口度を調整する開閉制御手段8とを備えている。   Moreover, in patent document 2, the movement amount of the vaporization substance from a vapor deposition source (evaporation source) to a to-be-deposited body can be controlled correctly, and control of a vapor deposition rate is not influenced by the radiant heat from a cylindrical body. Discloses a vacuum deposition apparatus that can easily perform the above. A cylindrical body 4 in which the evaporation source 2 and the deposition target 3 are arranged in the vacuum chamber 1 and the space between the evaporation source 2 and the deposition target 3 is heated at a temperature at which the substance of the evaporation source 2 is vaporized. The vacuum evaporation apparatus is configured such that the substance 9 which is enclosed and vaporized from the evaporation source 2 is passed through the cylindrical body 4 to reach the surface of the evaporation target body 3 to be evaporated. The substance 9 vaporized from the evaporation source 2 passes through the opening 5 of the evaporation source storage chamber 24 and then reaches the surface of the deposition target through the cylindrical body 4 so that the opening degree of the opening 5 can be adjusted. The opening / closing means 6, the deposition thickness measuring means 7 for depositing the substance 9 vaporized from the evaporation source 2 and measuring the deposition thickness, and the opening degree of the opening / closing means 6 according to the deposition thickness measured by the deposition thickness measuring means 7 And an opening / closing control means 8 for adjusting.

特開2002−80961号公報JP 2002-80961 A 特開2008−156726号公報JP 2008-156726 A

特許文献1の装置では、蒸着源から被蒸着体への気化物質の移動量を正確に制御することができず、筒状体からの輻射熱に左右され、蒸着速度の制御を容易に行なうことができないという欠点を有している。
特許文献2の装置は、特許文献1の欠点を改良し、蒸着源から気化した物質は開口部を通過した後に筒状体内を通して被蒸着体に到達するものであり、蒸着厚み計測手段で計測された蒸着厚みに応じて、開口部の開口度を調整する開閉手段を開閉制御手段で制御することによって、気化物質が開口部を通過する量を制御することができ、筒状体からの輻射熱に左右されることなく、蒸着源から被蒸着体への気化物質の移動量を蒸着厚みに応じて制御して、蒸着速度の制御を容易に行なうことができるものである。しかし、筒状体内を使用するために、筒状体内通過後の気化物質の拡散が制限され、蒸着源と被蒸着体との間の距離の調整が難しく、更に、完全に気化せずに蒸着源から飛散する少量の溶融金属に起因して被蒸着体に発生するピンホールやボイド等の欠陥についても解決策が不充分である。
In the apparatus of Patent Document 1, the amount of vaporized substance moving from the vapor deposition source to the vapor deposition target cannot be accurately controlled, and the vapor deposition rate can be easily controlled depending on the radiant heat from the cylindrical body. It has the disadvantage that it cannot.
The apparatus of Patent Document 2 improves the disadvantage of Patent Document 1, and the substance evaporated from the deposition source reaches the deposition target through the cylindrical body after passing through the opening, and is measured by the deposition thickness measuring means. The amount of the vaporized substance passing through the opening can be controlled by controlling the opening / closing means for adjusting the opening degree of the opening according to the deposited thickness, and the amount of vaporized material passing through the opening can be controlled. Regardless of the influence, it is possible to easily control the deposition rate by controlling the amount of the vaporized material transferred from the deposition source to the deposition target in accordance with the deposition thickness. However, since the cylindrical body is used, the diffusion of the vaporized material after passing through the cylindrical body is limited, and it is difficult to adjust the distance between the vapor deposition source and the vapor deposition target, and vapor deposition is not performed completely. There are insufficient solutions for defects such as pinholes and voids generated in the deposition target due to a small amount of molten metal scattered from the source.

本発明は、上述の問題点を改良し、均質で欠陥のない金属蒸着膜を被蒸着体上に形成することができる真空蒸着装置を提供することを目的とする。   An object of the present invention is to provide a vacuum vapor deposition apparatus that improves the above-mentioned problems and can form a homogeneous and defect-free metal vapor deposition film on a vapor deposition target.

上述の事情に鑑み、本発明者ら鋭意検討の結果、真空蒸着装置内の蒸着源である坩堝の開口部より気化した物質を、坩堝の開口部の直上に小径部を下にして同軸上に設置された、気化した物質が気化状態を保つ温度に加熱された最適な形状を有する金属円錐筒状体内を通した後に、金属円錐筒状体と被蒸着体の間の空間に放出し、被蒸着体の表面に到達させることにより、均質で欠陥のない金属蒸着膜が被蒸着体上に得られることを見出した。   In view of the above circumstances, as a result of intensive studies by the present inventors, the substance vaporized from the opening of the crucible, which is the vapor deposition source in the vacuum evaporation apparatus, is coaxially with the small diameter portion directly below the crucible opening. After passing through the metal conical cylinder having an optimal shape heated to a temperature at which the vaporized substance that is installed is kept in a vaporized state, it is discharged into the space between the metal conical cylinder and the deposition target, It has been found that by reaching the surface of the vapor deposition body, a uniform and defect-free metal vapor deposition film can be obtained on the vapor deposition body.

更に、被蒸着体の表面に、特に均質でピンホールのない高反射率の蒸着膜を得るには、被蒸着体の表面と蒸着源の坩堝開口部との距離と、坩堝開口部の直上に小径部を下にして設置された前記金属円錐筒状体の斜面の長さと、円錐筒状体の円錐角度とが重要な要素であることを見出した。
これらの要素を最適な関係に保つことにより、坩堝開口部より気化した物質が、前記金属円錐筒状体を通過して気化状態を保ちながら被蒸着体の表面に到達し、ピンホールがなく、被蒸着体の幅方向に広範にわたり均質な蒸着膜を形成することができる。
Furthermore, in order to obtain a highly uniform vapor deposition film that is particularly homogeneous and free of pinholes on the surface of the vapor deposition target, the distance between the surface of the vapor deposition target and the crucible opening of the vapor deposition source, and immediately above the crucible opening. It has been found that the length of the slope of the metal conical cylindrical body placed with the small diameter portion down and the cone angle of the conical cylindrical body are important factors.
By maintaining these elements in an optimal relationship, the material vaporized from the crucible opening reaches the surface of the vapor deposition body while maintaining the vaporized state through the metal conical cylindrical body, there is no pinhole, A uniform vapor deposition film can be formed over a wide range in the width direction of the deposition target.

坩堝内の蒸着源の金属は、その全てが坩堝開口部を出た時点で気化するのではなく、坩堝内の温度や装置内の真空度の変動によって、その一部は溶融金属の小粒となって坩堝開口部より飛散し、それが被蒸着体の表面に到達すると、蒸着膜及び被蒸着体にピンホール、ボイド等の欠陥を形成する主因となる。
これを避ける為には、気化した金属が気化状態を保つ温度に加熱されている坩堝の開口部の直上に小径部を下にして設置された前記金属円錐筒状体にて、飛散された溶融金属の小粒を完全に捕捉し、再加熱して気化された状態として金属円錐筒状体と被蒸着体の間の空間に放出してやることが必要であり、飛散された溶融金属の小粒を金属円錐筒状体にて完全に捕捉する為には、その溶融金属の小粒と濡れ性の良い材質にて金属円錐筒状体を作製することが必要となる。
The metal of the vapor deposition source in the crucible is not vaporized when all of the metal leaves the crucible opening, but part of it becomes small particles of molten metal due to fluctuations in the temperature in the crucible and the degree of vacuum in the apparatus. When the air scatters from the crucible opening and reaches the surface of the deposition target, it becomes a main cause of forming defects such as pinholes and voids in the deposition film and the deposition target.
In order to avoid this, the molten metal spattered by the metal conical cylindrical body placed with the small diameter portion down directly above the opening of the crucible where the vaporized metal is heated to a temperature that maintains the vaporized state. It is necessary to completely capture the metal particles and re-heat them to vaporize them and release them into the space between the metal conical cylinder and the vapor-deposited body. In order to be completely captured by the cylindrical body, it is necessary to produce a metal conical cylindrical body with the molten metal particles and a material with good wettability.

また、蒸着源が銀、アルミニウム、錫、銅からなるグループから選択された一種であり、金属円錐筒状体の材質がクロム、モリブデン、タングステンなるグループから選択された一種の金属であると、特に効率的に上述の効果を発揮し、均質で欠陥のない金属蒸着膜を被蒸着体上に形成できることも見出した。   The deposition source is a kind selected from the group consisting of silver, aluminum, tin and copper, and the material of the metal conical cylindrical body is a kind of metal selected from the group consisting of chromium, molybdenum and tungsten. It has also been found that a metal vapor deposition film that exhibits the above-mentioned effects efficiently and can be formed on the deposition target body without any defects.

これらの知見に基づき、本発明の真空蒸着装置は、真空チャンバー内に蒸着源と被蒸着体とを配置し、蒸着源から気化した物質を被蒸着体の表面に到達させて蒸着させるようにした真空蒸着装置において、当該蒸着源が入れられた円形坩堝の開口部より気化した物質を、当該円形坩堝の開口部の直上に小径部を下にして当該円形坩堝と軸心を合わせて設置された当該気化した物質が気化状態を保つ温度に加熱された金属円錐筒状体内を通した後に、当該金属円錐筒状体と被蒸着体の間の空間に放出し、当該被蒸着体の表面に到達させて蒸着させ、当該円形坩堝の開口部と当該被蒸着体との距離をDとしたとき、当該金属円錐筒状体の斜面の長さLが0.05D〜0.5Dであり、当該金属円錐筒状体の円錐角度θが45°〜75°であり、当該金属円錐筒状体の小径底部は当該円形坩堝の開口部と接しており、その内径は、当該円形坩堝の開口部の内径と同一であることを特徴とする。
Based on these findings, the vacuum vapor deposition apparatus of the present invention has a vapor deposition source and a vapor-deposited body arranged in a vacuum chamber, and a substance evaporated from the vapor deposition source reaches the surface of the vapor-deposited body and is vapor deposited. In the vacuum vapor deposition apparatus, the substance vaporized from the opening of the circular crucible in which the vapor deposition source was placed was placed directly above the opening of the circular crucible with the small diameter portion down and the axis centered with the circular crucible. After passing through the metal conical cylinder heated to a temperature at which the vaporized substance maintains a vaporized state, the material is discharged into the space between the metal conical cylinder and the deposition target and reaches the surface of the deposition target. When the distance between the opening of the circular crucible and the deposition target is D, the slope length L of the metal conical cylindrical body is 0.05D to 0.5D, and the metal cone angle θ is 45 ° to 75 ° der conical tubular body is, the Genus diameter bottom of the conical tubular member is in contact with the opening of the circular crucible, an inner diameter, and wherein the inside diameter identical der Rukoto openings of the circular crucible.

坩堝の開口部より気化した物質が、気化状態を保つ温度に加熱された金属円錐筒状体内を通過した後に、その大径部から被蒸着体の間の空間に放出されることにより、被蒸着体の幅方向の表面に広範にわたって均質な蒸着膜を形成することが可能となり、金属円錐筒状体が坩堝の開口部より飛散された溶融金属の小粒を完全に捕捉し、再加熱して気化された状態として、その大径部から被蒸着体の間の空間に放出してやるので、蒸着膜及び被蒸着体中の発生するピンホールやボイド等の欠陥の形成を防ぐことが出来る。金属円錐筒状体の効果を最大限に発揮するためにも、坩堝は円形坩堝であることが好ましい。   The substance evaporated from the opening of the crucible passes through the metal conical cylindrical body heated to a temperature that maintains the vaporized state, and is then discharged from the large diameter portion into the space between the deposition target, thereby vapor deposition. It is possible to form a wide range of uniform deposited film on the surface in the width direction of the body, and the metal cone cylindrical body completely captures the molten metal particles scattered from the crucible opening, reheats and vaporizes In this state, since the large-diameter portion is discharged into the space between the vapor-deposited bodies, defects such as pinholes and voids generated in the vapor-deposited film and the vapor-deposited bodies can be prevented. In order to maximize the effect of the metal conical cylinder, the crucible is preferably a circular crucible.

Dは真空チャンバー、坩堝内径、坩堝加熱装置、蒸着源から気化する物質の種類等の条件に応じて適切に選定されるが、Dが小さ過ぎると、坩堝の開口部より飛散された溶融金属の小粒を完全に捕捉することが難しくなり、Dが大き過ぎると、気化した物質が完全に被蒸着体の表面に到達されない危険性が生じる。
Lが0.05D未満であると、金属円錐筒状体の上端と被蒸着体の間の空間の距離が長くなり、気化した物質が気化状態を保てなくなって蒸着膜厚の均質性が低下し、飛散された溶融金属の小粒を金属円錐筒状体にて捕捉する機能も低下する。
Lが0.5Dを超えると、効果が飽和するばかりでなく、金属円錐筒状体が大きくなり、設備的なコストが増す。
円錐角度θが45°未満でも、円錐角度θが75°を超えても、飛散された溶融金属の小粒を完全に捕捉し気化する機能が低下する。ここで、円錐角度θとは、金属円錐筒状体の上端の半径方向に対する内周斜面の傾き角度をいう。
また、金属円錐筒状体の効果を最大限に発揮するためにも、坩堝は円形坩堝であることが好ましく、金属円錐筒状体の小径底部内径は坩堝開口部と接しており、その内径は、溶融金属の小粒を完全に捕捉し気化する為にも、坩堝の開口部の内径と同一とする事が好ましい。
D is appropriately selected according to conditions such as the vacuum chamber, crucible inner diameter, crucible heating device, type of material vaporized from the evaporation source, etc., but if D is too small, the molten metal scattered from the crucible opening It becomes difficult to completely capture the small particles, and if D is too large, there is a risk that the vaporized material will not reach the surface of the deposition target.
When L is less than 0.05D, the distance between the upper end of the metal conical cylindrical body and the deposition target is increased, and the vaporized substance cannot maintain the vaporized state, resulting in reduced uniformity of the deposited film thickness. In addition, the function of capturing the scattered molten metal particles with the metal conical cylinder is also reduced.
When L exceeds 0.5D, not only the effect is saturated, but also the metal conical cylinder becomes large, and the cost of equipment increases.
Even if the cone angle θ is less than 45 ° or the cone angle θ exceeds 75 °, the function of completely capturing and vaporizing the scattered molten metal particles is deteriorated. Here, the cone angle θ refers to the inclination angle of the inner peripheral slope with respect to the radial direction of the upper end of the metal conical cylindrical body.
In order to maximize the effect of the metal conical cylinder, the crucible is preferably a circular crucible, and the inner diameter of the small diameter bottom portion of the metal conical cylinder is in contact with the crucible opening, and the inner diameter is In order to completely capture and vaporize the molten metal particles, the inner diameter of the crucible opening is preferably the same.

更に、本発明の真空蒸着装置は、当該蒸着源が銀、アルミニウム、錫、銅からなるグループから選択された一種であり、当該金属円錐筒状体の材質がクロム、モリブデン、タングステンなるグループから選択された一種の金属であることを特徴とする。
蒸着源の金属が、銀、アルミニウム、錫、銅からなるグループから選択された一種であり、金属円錐筒状体の材質が、クロム、モリブデン、タングステンなるグループから選択された一種の金属であると、金属円錐筒状体と蒸着源の金属との濡れ性が最大限に発揮され、短時間で効率良く均質で欠陥のない金属蒸着膜を被蒸着体上に形成できる。
Furthermore, the vacuum deposition apparatus of the present invention is a kind in which the deposition source is selected from the group consisting of silver, aluminum, tin and copper, and the material of the metal conical cylinder is selected from the group consisting of chromium, molybdenum and tungsten. It is characterized by being a kind of metal.
The metal of the vapor deposition source is a kind selected from the group consisting of silver, aluminum, tin and copper, and the material of the metal conical cylinder is a kind of metal selected from the group consisting of chromium, molybdenum and tungsten The wettability between the metal conical cylinder and the metal of the vapor deposition source is maximized, and a uniform and defect-free metal vapor deposition film can be formed on the vapor deposition target in a short time.

本発明の真空蒸着装置により、均質で欠陥のない金属蒸着膜を被蒸着体上に形成することができる。   With the vacuum vapor deposition apparatus of the present invention, a metal vapor deposition film that is homogeneous and has no defects can be formed on the deposition target.

本発明の真空蒸着装置の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the vacuum evaporation system of this invention.

本発明の一実施形態である真空蒸着装置について、添付の図面を参照に詳細を説明する。
図1は本発明の真空蒸着装置1の一実施形態を示す概略図であり、真空チャンバー2は真空ポンプ22で排気することによって真空状態に減圧することができるようにしてある。この真空チャンバー2内の下部には、高周波誘導加熱装置3のコイル4にて加熱される蒸着源5が入れられた坩堝6と、その直上に小径部を下にして円形の坩堝6と同心軸上に加熱装置7のコイル8にて加熱される金属円錐筒状体9とが設置されている。蒸着が施される基板などの被蒸着体10は、空間15を介して金属円錐筒状体9の上方に配置される。
蒸着源5は特に限定されないが、銀、アルミニウム、錫或いは銅であることが特に好ましい。金属円錐筒状体9の材質は特に限定されないが、蒸着源5が銀、アルミニウム、錫或いは銅である場合は、これらの金属との濡れ性の観点から、クロム、モリブデン或いはタングステンであることが好ましく、特にモリブデンであることが好ましい。被蒸着体10は特に限定されないが、適当な材質と厚みを有するプラスチックフィルムを使用することが好ましい。
坩堝6の開口部11と被蒸着体10との距離をDとしたとき、金属円錐筒状体9の斜面18の長さLが0.05D〜0.5Dであり、金属円錐筒状体9の円錐角度θは45°〜75°に設定される。
Dは真空チャンバー2、坩堝6の内径、高周波誘導加熱装置3、蒸着源5から気化する物質の種類等の条件に応じて適切に選定されるが、Dが小さ過ぎると、坩堝6の開口部11より飛散された溶融金属の小粒17を完全に捕捉することが難しくなり、Dが大き過ぎると、気化した物質が完全に被蒸着体10の表面に到達されない危険性が生じる。
Lが0.05D未満であると、金属円錐筒状体9の上端19と被蒸着体10の間の空間14の距離が長くなり、気化した物質が気化状態を保てなくなって蒸着膜15の膜厚の均質性が低下し、飛散された溶融金属の小粒17を金属円錐筒状体9にて捕捉する機能も低下する。
Lが0.5Dを超えると、効果が飽和するばかりでなく、金属円錐筒状体9が大きくなり、設備的なコストが増す。
円錐角度θが45°未満でも、円錐角度θが75°を超えても、飛散された溶融金属の小粒17を完全に捕捉し気化する機能が低下する。円錐角度θとは、金属円錐筒状体9の上端19の半径方向に対する内周の斜面18の傾き角度をいう。
また、金属円錐筒状体9の小径底部12は坩堝6の上端部13と接しており、その内径は、溶融金属の小粒17を完全に捕捉し気化する為にも、坩堝の開口部11の内径と同一とする事が好ましい。
A vacuum deposition apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic view showing an embodiment of a vacuum vapor deposition apparatus 1 according to the present invention. A vacuum chamber 2 is evacuated by a vacuum pump 22 so that the pressure can be reduced to a vacuum state. In the lower part of the vacuum chamber 2, a crucible 6 in which a vapor deposition source 5 heated by a coil 4 of a high-frequency induction heating device 3 is placed, and a circular crucible 6 with a small-diameter portion down immediately above and a concentric shaft. A metal conical cylindrical body 9 heated by the coil 8 of the heating device 7 is installed on the top. A deposition target 10 such as a substrate on which vapor deposition is performed is arranged above the metal conical cylindrical body 9 with a space 15 interposed therebetween.
Although the vapor deposition source 5 is not specifically limited, It is especially preferable that they are silver, aluminum, tin, or copper. The material of the metal conical cylindrical body 9 is not particularly limited, but when the vapor deposition source 5 is silver, aluminum, tin, or copper, it may be chromium, molybdenum, or tungsten from the viewpoint of wettability with these metals. Molybdenum is particularly preferred. The body to be deposited 10 is not particularly limited, but it is preferable to use a plastic film having an appropriate material and thickness.
When the distance between the opening 11 of the crucible 6 and the deposition target 10 is D, the length L of the inclined surface 18 of the metal conical cylinder 9 is 0.05D to 0.5D, and the metal conical cylinder 9 Is set to 45 ° to 75 °.
D is appropriately selected according to conditions such as the vacuum chamber 2, the inner diameter of the crucible 6, the high-frequency induction heating device 3, and the type of substance vaporized from the vapor deposition source 5, but if D is too small, the opening of the crucible 6 It becomes difficult to completely capture the molten metal particles 17 scattered from 11, and if D is too large, there is a risk that the vaporized substance will not reach the surface of the deposition target 10 completely.
When L is less than 0.05D, the distance between the upper end 19 of the metal conical cylindrical body 9 and the space 14 between the vapor-deposited bodies 10 becomes long, and the vaporized substance can no longer maintain the vaporized state. The uniformity of the film thickness is reduced, and the function of capturing the scattered molten metal particles 17 by the metal conical cylinder 9 is also reduced.
When L exceeds 0.5D, not only the effect is saturated, but also the metal conical cylindrical body 9 becomes large, and the cost of equipment increases.
Even if the cone angle θ is less than 45 ° or the cone angle θ exceeds 75 °, the function of completely capturing and vaporizing the scattered molten metal particles 17 is deteriorated. The cone angle θ refers to an inclination angle of the inner inclined surface 18 with respect to the radial direction of the upper end 19 of the metal conical cylindrical body 9.
Further, the small diameter bottom portion 12 of the metal conical cylindrical body 9 is in contact with the upper end portion 13 of the crucible 6, and the inner diameter of the metal conical cylindrical body 9 is sufficient to capture and vaporize the molten metal particles 17. The inner diameter is preferably the same.

この様な真空蒸着装置1で蒸着を行なうにあたっては、まず、蒸着源5を坩堝6に充填してセットすると共に、被蒸着体9を坩堝6の開口部11からDの距離をとって、坩堝6の開口部11と水平にセットする。
次に、真空ポンプ22を作動させて真空チャンバー2内を真空状態に減圧し、コイル4を発熱させて坩堝6内の蒸着源5を加熱すると共に、加熱装置7によりコイル8を加熱して金属円錐筒状体9を加熱する。金属円錐筒状体9の加熱温度は、蒸着源5から気化した物質が金属円錐筒状体9に付着しても再度蒸発等して気化し、且つ分解されない温度に設定される。
そして、上記のように真空チャンバー2内を減圧して蒸着源5を加熱すると、蒸着源5は溶融・蒸発、あるいは昇華して気化する。蒸着源5から発生するこの気化物質は、坩堝6の開口部11から金属円錐筒状体9に導入され、金属円錐筒状体9内を進み、被蒸着体10の間の空間14に円錐状の広がりを持って均質に放出され、被蒸着体10の幅方向に広がりながら表面に到達して蒸着膜15となり、銀蒸着プラスチックフィルム16が形成される。
坩堝6の開口部11より蒸着源5から飛散する少量の溶融金属小粒17は、金属円錐筒状体9に捕捉され、再加熱されて気化状態として被蒸着体の間の空間14に放出される。
溶融金属小粒17を金属円錐筒状体9にて完全に捕捉には、その溶融金属小粒14と濡れ性の良い金属にて円錐筒状体9を作製することが必要である。
When performing vapor deposition with such a vacuum vapor deposition apparatus 1, first, the vapor deposition source 5 is filled and set in the crucible 6, and the vapor deposition target 9 is placed at a distance D from the opening 11 of the crucible 6. 6 and set horizontally with the opening 11.
Next, the vacuum pump 22 is operated to reduce the pressure in the vacuum chamber 2 to a vacuum state, the coil 4 is heated to heat the vapor deposition source 5 in the crucible 6, and the coil 8 is heated by the heating device 7 to form a metal. The conical cylinder 9 is heated. The heating temperature of the metal conical cylindrical body 9 is set to a temperature at which the vaporized material from the vapor deposition source 5 evaporates and vaporizes again even if it adheres to the metal conical cylindrical body 9 and is not decomposed.
When the vacuum chamber 2 is depressurized and the vapor deposition source 5 is heated as described above, the vapor deposition source 5 is vaporized by melting, evaporation, or sublimation. This vaporized material generated from the vapor deposition source 5 is introduced into the metal conical cylindrical body 9 through the opening 11 of the crucible 6, travels through the metal conical cylindrical body 9, and is conical in the space 14 between the vapor deposition bodies 10. Are spread uniformly in the width direction of the deposition target 10 and reach the surface to form a deposited film 15 to form a silver deposited plastic film 16.
A small amount of molten metal particles 17 scattered from the vapor deposition source 5 through the opening 11 of the crucible 6 are captured by the metal conical cylindrical body 9 and reheated to be released into the space 14 between the vapor deposition bodies as a vaporized state. .
In order to completely capture the molten metal particle 17 with the metal conical cylindrical body 9, it is necessary to produce the conical cylindrical body 9 with the molten metal particle 14 and a metal having good wettability.

本発明の真空蒸着装置にて、被蒸着体として、長さ100mm×幅100mm×厚み4μmのポリエステルフィルムを使用し、内径100mm×高さ123mmの黒鉛円形坩堝内に蒸着源として銀を使用し、モリブデン製の円錐筒状体を使用して、D、L、円錐角度θを表1の様に変え、銀が80nmの厚みで蒸着された銀蒸着ポリエステルフィルムを作製し、銀蒸着膜厚、ピンホールの有無を測定した。比較例としてD、L、θが本発明の範囲から外れるものも作製した。
蒸着膜厚は、4点計測法による膜抵抗測定器により表面抵抗値を測定し、その値を膜厚換算して求めた。
蒸着膜厚の測定箇所は、蒸着膜(長さ100mm×幅100mm)の中心点とその上下90mmの地点の3箇所である。
ピンホールの有無は、試料フィルムの裏側から紫外光をあて、10倍の拡大鏡にて目視観察し、紫外光が透過している見える部分をピンホールとした。ピンホールが皆無であったものを○、ピンホールが10個以内のものを△、ピンホールが10個以上のものを×とした。
In the vacuum deposition apparatus of the present invention, using a polyester film having a length of 100 mm × width of 100 mm × thickness of 4 μm as a deposition target, using silver as a deposition source in a graphite circular crucible having an inner diameter of 100 mm × height of 123 mm, Using a molybdenum conical cylinder, D, L, and cone angle θ are changed as shown in Table 1 to produce a silver-deposited polyester film in which silver is deposited with a thickness of 80 nm. The presence or absence of holes was measured. A comparative example in which D, L, and θ are out of the scope of the present invention was also produced.
The deposited film thickness was obtained by measuring the surface resistance value with a film resistance measuring device by a four-point measurement method and converting the value into a film thickness.
There are three places where the deposited film thickness is measured: the center point of the deposited film (length 100 mm × width 100 mm) and the upper and lower 90 mm points.
Presence / absence of pinholes was determined by applying ultraviolet light from the back side of the sample film and visually observing with a 10 × magnifier. The case where there were no pinholes was rated as ◯, the case where there were no more than 10 pinholes, and the case where there were 10 or more pinholes as x.

Figure 0005620747
Figure 0005620747

表1の結果より、本発明の真空蒸着装置にて製造された被蒸着体の表面に形成された金属蒸着膜は、ピンホールがなく膜厚のばらつきが少なく均質な金属蒸着膜であることがわかる。
比較例5は円錐角度が90°、即ち、円筒体を使用したものである。
From the results of Table 1, the metal vapor deposition film formed on the surface of the deposition target manufactured by the vacuum vapor deposition apparatus of the present invention is a homogeneous metal vapor deposition film with no pinholes and little variation in film thickness. Recognize.
In Comparative Example 5, the cone angle is 90 °, that is, a cylindrical body is used.

以上、本発明の実施形態について説明したが、本発明はこの記載に限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。   Although the embodiment of the present invention has been described above, the present invention is not limited to this description and can be appropriately changed without departing from the technical idea of the present invention.

1 真空蒸着装置
2 真空チャンバー
3 高周波誘導加熱装置
4 コイル
5 蒸着源
6 円形坩堝
7 加熱装置
8 コイル
9 金属円錐筒状体
10 被蒸着体
11 開口部
12 小径底部
13 上端部
14 空間
15 蒸着膜
16 銀蒸着プラスチックフィルム
17 溶融金属小粒
18 金属円錐筒状体斜面
19 上端
22 真空ポンプ
DESCRIPTION OF SYMBOLS 1 Vacuum evaporation apparatus 2 Vacuum chamber 3 High frequency induction heating apparatus 4 Coil 5 Deposition source 6 Circular crucible 7 Heating apparatus 8 Coil 9 Metal conical cylindrical body 10 Deposited body 11 Opening part 12 Small diameter bottom part 13 Upper end part 14 Space 15 Deposition film 16 Silver-deposited plastic film 17 Molten metal particles 18 Metal conical cylindrical slope 19 Upper end 22 Vacuum pump

Claims (2)

真空チャンバー内に蒸着源と被蒸着体とを配置し、蒸着源から気化した物質を被蒸着体の表面に到達させて蒸着させるようにした真空蒸着装置において、当該蒸着源が入れられた円形坩堝の開口部より気化した物質を、当該円形坩堝の開口部の直上に小径部を下にして当該円形坩堝と軸心を合わせて設置された当該気化した物質が気化状態を保つ温度に加熱された金属円錐筒状体内を通した後に、当該金属円錐筒状体と被蒸着体の間の空間に放出し、当該被蒸着体の表面に到達させて蒸着させ、当該円形坩堝の開口部と当該被蒸着体との距離をDとしたとき、当該金属円錐筒状体の斜面の長さLが0.05D〜0.5Dであり、当該金属円錐筒状体の円錐角度θが45°〜75°であり、当該金属円錐筒状体の小径底部は当該円形坩堝の開口部と接しており、その内径は、当該円形坩堝の開口部の内径と同一であることを特徴とする真空蒸着装置。 In a vacuum vapor deposition apparatus in which a vapor deposition source and a vapor deposition body are arranged in a vacuum chamber, and a material vaporized from the vapor deposition source reaches the surface of the vapor deposition body and vapor deposition is performed, a circular crucible in which the vapor deposition source is placed the vaporized material from the opening of the vaporized material of the small diameter portion and the bottom is installed to fit the circular crucible and the axis immediately above the opening of the circular crucible is heated to a temperature to maintain the state of vaporization after passing through the metal conical tubular body, and discharged into the space between the metal conical tubular body and the deposition object, evaporated allowed to reach the surface of the deposition object, the opening and the object of the circular crucible When the distance from the vapor deposition body is D, the slope length L of the metal conical cylindrical body is 0.05D to 0.5D, and the cone angle θ of the metal conical cylindrical body is 45 ° to 75 °. der is, the small-diameter bottom portion of the metal cone tubular body opening of the circular crucible In contact, an inner diameter, a vacuum deposition apparatus, wherein the inside diameter identical der Rukoto openings of the circular crucible. 当該蒸着源が銀、アルミニウム、錫、銅からなるグループから選択された一種であり、当該金属円錐筒状体の材質がクロム、モリブデン、タングステンなるグループから選択された一種の金属であることを特徴とする請求項1に記載の真空蒸着装置。
The deposition source is a kind selected from the group consisting of silver, aluminum, tin, and copper, and the material of the metal conical cylinder is a kind of metal selected from the group consisting of chromium, molybdenum, and tungsten. The vacuum deposition apparatus according to claim 1.
JP2010184381A 2010-08-19 2010-08-19 Vacuum deposition equipment Expired - Fee Related JP5620747B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010184381A JP5620747B2 (en) 2010-08-19 2010-08-19 Vacuum deposition equipment
CN2011102275236A CN102373421A (en) 2010-08-19 2011-08-09 Vacuum evaporation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184381A JP5620747B2 (en) 2010-08-19 2010-08-19 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JP2012041604A JP2012041604A (en) 2012-03-01
JP5620747B2 true JP5620747B2 (en) 2014-11-05

Family

ID=45792636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184381A Expired - Fee Related JP5620747B2 (en) 2010-08-19 2010-08-19 Vacuum deposition equipment

Country Status (2)

Country Link
JP (1) JP5620747B2 (en)
CN (1) CN102373421A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150004646A (en) * 2013-07-03 2015-01-13 삼성디스플레이 주식회사 Deposition source
CN206396318U (en) * 2017-01-24 2017-08-11 京东方科技集团股份有限公司 A kind of crucible
CN107267921A (en) * 2017-07-24 2017-10-20 武汉华星光电半导体显示技术有限公司 Crucible and evaporation coating device is deposited
CN107299321B (en) * 2017-07-28 2019-07-26 武汉华星光电半导体显示技术有限公司 Evaporation source and evaporator
GB2586634B (en) * 2019-08-30 2022-04-20 Dyson Technology Ltd Multizone crucible apparatus
CN111628138B (en) * 2020-06-29 2023-08-18 天津市捷威动力工业有限公司 Preparation method and application of electrode
JP2023084564A (en) * 2021-12-07 2023-06-19 長州産業株式会社 Vapor deposition source and vapor deposition apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134555A (en) * 1981-02-10 1982-08-19 Fuji Photo Film Co Ltd Method and device for forming thin film
JPS61207571A (en) * 1985-03-11 1986-09-13 Mitsubishi Electric Corp Vacuum deposition device
JPH0673543A (en) * 1992-08-28 1994-03-15 Ishikawajima Harima Heavy Ind Co Ltd Continuous vacuum vapor deposition device
JPH10154325A (en) * 1996-11-22 1998-06-09 Fuji Photo Film Co Ltd Apparatus for production of magnetic recording medium
DE60143926D1 (en) * 2000-06-22 2011-03-10 Junji Kido Apparatus and method for vacuum evaporation
JP2008231479A (en) * 2007-03-19 2008-10-02 Kyocera Corp Crucible for vapor deposition, vapor deposition apparatus, vapor deposition method, and method for manufacturing organic el apparatus
DE102007035166B4 (en) * 2007-07-27 2010-07-29 Createc Fischer & Co. Gmbh High-temperature evaporator cell with heating zones connected in parallel, process for their operation and their use in coating plants

Also Published As

Publication number Publication date
JP2012041604A (en) 2012-03-01
CN102373421A (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5620747B2 (en) Vacuum deposition equipment
TWI452156B (en) Evaporator for organic materials and method for evaporating organic materials
Vick et al. Production of porous carbon thin films by pulsed laser deposition
EP2270251A1 (en) Vacuum vapor deposition apparatus
JP2003160855A (en) Thin-film forming apparatus
US10066287B2 (en) Direct liquid deposition
US20180148836A1 (en) Apparatus and method for generating a vapor for a cvd or pvd device
JP2012046814A (en) Vapor deposition apparatus
JP5542610B2 (en) Vacuum deposition equipment
JP2012149290A (en) Lidded hearth liner and vapor deposition method using the same
GB2574400A (en) A device
KR20230104958A (en) Evaporation source for vacuum deposition equipment
JP5180469B2 (en) Vacuum deposition equipment
JP4830847B2 (en) Vacuum deposition equipment
JP7078462B2 (en) Thin-film deposition source for vacuum-film deposition equipment
JP2021066954A (en) Vapor deposition cell for vacuum vapor deposition chamber, and related vapor deposition method
JP2011157602A (en) Evaporation source
JP3735287B2 (en) Vacuum deposition apparatus and vacuum deposition method
KR20200052244A (en) Evaporation device for a vacuum evaporation system, apparatus and method for depositing a film of material
JP2015209559A (en) Vapor deposition apparatus
CN100516284C (en) Equipment of coating by vaporization
CN110724914B (en) Coating apparatus and method
RU2815055C2 (en) Evaporation device for vacuum deposition system, method and device for material film deposition
RU2355625C1 (en) Method of carbon nanostructures preparation
US20210230737A1 (en) Vapour deposition evaporator device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140919

R150 Certificate of patent or registration of utility model

Ref document number: 5620747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees