JPS6329585B2 - - Google Patents

Info

Publication number
JPS6329585B2
JPS6329585B2 JP4014180A JP4014180A JPS6329585B2 JP S6329585 B2 JPS6329585 B2 JP S6329585B2 JP 4014180 A JP4014180 A JP 4014180A JP 4014180 A JP4014180 A JP 4014180A JP S6329585 B2 JPS6329585 B2 JP S6329585B2
Authority
JP
Japan
Prior art keywords
ultrafine powder
laser beam
container
generation chamber
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4014180A
Other languages
Japanese (ja)
Other versions
JPS56136664A (en
Inventor
Ryoji Ueda
Nobuhiko Wada
Mineo Kumazawa
Manabu Kato
Tosha Ichihashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP4014180A priority Critical patent/JPS56136664A/en
Publication of JPS56136664A publication Critical patent/JPS56136664A/en
Publication of JPS6329585B2 publication Critical patent/JPS6329585B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Disintegrating Or Milling (AREA)
  • Glanulating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は、金属酸化物、炭化物、半導体等高融
点、超硬物質を不活性ガス中で加熱蒸発させて、
1000Å以下の超微粒粉を製造する装置に関し、特
にその加熱手段としてCO2ガスレーザーの光線を
用いた製造装置に係わるものである。 ガス蒸発法による金属及び合金の超微粉の製造
法は、本発明者の一部等による特許発明(特公昭
47−27718号公報等参照)が存在し、それによつ
て種々の金属の超微粒粉が製造され、磁性材料、
超電導体材料、化学触媒、粉末治金材料、ロケツ
ト燃料材等の固体物性材料としての用途に利用さ
れている。 本発明では、対象とする物質を金属酸化物及び
炭化物並びに半導体を主たるものとし、これを不
活性ガス雰囲気中において、その加熱蒸発にCO2
ガスレーザー光線を用いることを特徴とする。 例えばAl2O3、Si3N4、BN、SiC、W、C.等の
1000Å以下の超微粒粉は、焼結体材料として、
種々の優れた性質を示すことが明らかであり、ま
た予想されているが、その実現には、純粋で表面
が清浄な超微粒粉を大量に製造することが必要で
ある。 その方法は、個々の物質ごとに色々な方法が報
告されているが、化学的過程を用いるものが多
く、そのために純粋で清浄なものを得ることがき
わめて困難である。 この点ガス蒸発法によれば、対象とする物質を
希ガス中で加熱蒸発するのであるから、不純物の
混入や、表面のよごれは、その製造過程で生ずる
可能性はなく、広範な物質に適用できることは、
金属及び合金の製造においても実証されている。
この方法は金属酸化物、及び炭化物並びに半導体
のような金属よりもはるかに高融点、超高物質
で、且つ、電気絶縁体、いわゆる耐火物材料に適
用するためには、その加熱法を考慮せねばならな
い。 従来、金属及び合金のガス蒸発法に用いられて
いる加熱源としては、 抵抗加熱、 プラズマジエツト加熱、 インダクシヨン加熱、 があるが、本発明の対象とする高融点化合物に対
しては、上記は、加熱抵抗自体の融点は、分解
点以上の加熱温度を必要とするため、不適当であ
り、上記のは、化合物は、金属に比べて融解し
た場合に、粘性が小さく、且つ、密度が低いの
で、プラズマジエツトの高速気流に吹きとばされ
て飛沫になりやすいため不適当であり、は化合
物は、多くが電気絶縁体であるため、インダクシ
ヨン電流が流れないために不適当である。 本発明者等は、上記の欠点を除去し改善するた
め、種々研究の結果、本発明を完成したものであ
る。 本発明では、その加熱手段として、CO2レーザ
ー光線を利用し、その波長は10.6μを中心とする
エネルギー密度の高い赤外線を加熱源として利用
する。 CO2レーザーの発生する赤外線は、本発明の対
象とする高融点化合物には一般によく吸収され、
そのエネルギー物質の中で熱に変換される。 レーザー光線の理論温度は、約20000℃に達す
るから蒸発物質を充分な高温に加熱することがで
きる。また、光による非接触加熱であるから、蒸
発物質に対する不純物の混入や、飛散もなく、そ
の表面が清浄な超微粒粉が生産される。 次に本発明の実施例を図面を参照して詳述す
る。 本発明の装置は、第1図にみるように、大気
と隔絶密閉されるようにし、この中を不活性ガス
雰囲気とし、ここで被処理物をガス蒸発せしめる
容器であつて、その下部を微細粒粉発生室2とす
る外形台形円筒3とし、ここに、複数個の突出部
3′,3′,3′……を設け、その突出面にCO2
ーザー光線を導入する窓4a,4b,4c……が
取付けられている。 この密閉容器の底部中心には、水冷銅製のル
ツボ7が下方から挿入自在に取付けられ、その上
方に、被処理物質Mを載置するようになつてい
る。9,9はその水冷装置であり適宜の処から冷
水を供給し且つ、排出せしめるようにしてある。 密閉容器の上方には、下部の微細粒粉発生室
2において被処理物Mが加熱蒸発せしめられ、発
生した超微細粒粉が上昇する煙突状室1になつて
おり、ここには、上方より超微細粒粉の採集器と
して、液体窒素冷却捕集器15が垂下挿入、取出
自在に蓋14に取付けられている。 また、上述の下部台形円筒部3に設けた突出部
3′には、複数個のCO2レーザー光線導入窓4a,
4b,4c……が設けられ、これは、ゲルマニウ
ム、又はNaCl結晶からなつている。そして、こ
れらの窓には、シヤツターを設けるか、又はCO2
ガスレーザー光線照射器に点滅器を取付けるか、
又は両者にCO2ガスレーザー光線調整装置を取付
けて、被処理物のために必要に応じて増減自在と
するものである。 図面中5は上方排気バルブ、10は下方排気バ
ルブであり、6a,6b,6c……は台形円筒3
に取付けた突出部3′内に向つて不活性ガス(例
えばアルゴンガス)噴出管であり、8は送気バル
ブであり通常は6a,6b、と同様の不活性ガス
を送気せしめるようになつている。11は、容器
1内の圧力計であり、12はCO2ガスレーザー光
線源である。13は反射鏡であつて、CO2ガスレ
ーザー光線を窓4a,4b,4cから的確に微細
粒粉発生室2内の被処理物質Mに照射せしめるた
めのものである。16は下方の蓋体兼水冷銅ルツ
ボ7の取付部である。 次に本発明装置の動作手順を述べると、密閉容
内下方の水冷銅ルツボ7上に被処理物質Mを
載置し、容器の底部蓋体16によつて固定す
る。次いで、本密閉容器の5,6a,6b,8
の各バルブをすべて閉じ、次いで下方排気バルブ
10より容器内部を10-5torr程度に排気する。 排気が終れば、排気バルブ10を閉じて、アル
ゴンガス等の不活性ガスを8,6a,6b,6c
等より導入する。この際5の上方排気バルブを開
いて排気しながら、8の送気バルブから上記活性
ガスを送気し、容器内の圧力を圧力計11をみな
がら10〜500Torrの間に一定の値になるように調
整する。 次いで水平においたCO2レーザー光源12,1
2のCO2レーザー光源を作動せしめ、鏡13,1
3を調整して矢印のように、レーザー光線を被処
理物質M上に集中照射すると、被処理物質は、加
熱されて、煙状に超微粒粉が発生し、気流に乗つ
て上部の煙突状室1中を上昇する。その間に該室
中に垂下設置された液体窒素冷却採集器の表面に
超微粒粉が熱沈着する。 この附着した超微粒粉は、適時本発明の作動を
止め、上記液体窒素冷却捕集器を、上方の蓋体1
4のフランジをぬき取つて、その表面に附着した
目的の超微粒粉をかき落して捕集するものであ
る。 次に本発明の具体的実施例として、CO2レーザ
ー12に100W光源を用い試料としてSiCを用い
た場合につき説明する。 照射する試料上の面積は、レンズを用いて、1
mm2にしぼり、照射強度は10KW/cm2にした。 SiCは約10μの市販の粉末をそのまま冷却ルツ
ボ7上にのせ、上記の手順に従つて加熱蒸発を行
つた。 本件の雰囲気不活性ガスは、Arを用い、圧力
10〜500Torrで粒度はArガス圧により第3図
(グラフ)の如く100Å〜500Åと変化する。収集
量は、5mg/1分である。 これによつてできた超微粒粉は、β、SiCと、
少量のSiの粉状の混合物であつた。 他の被処理物の実施例としては、B4C、NbC、
TiC、TaC、WC、BN、La6B、Si3N4、HfCが
あり、いずれも超微粒粉の生成が確認された。 これらのものは、いずれも耐火物または、超硬
物質であつて、その加工は極めて困難で、粉体の
焼結により行う以外はその手数がないし、また、
それも高温焼結という困難がある。 そこで、本発明装置により製造した微粒子を原
料とすることによつて焼結を容易にすることがで
きる。 一般に加熱手段に、光学的方法を用いること
は、しばしば行なわれることである。即ち、アー
クイメージ炉、太陽炉等がそれであるが、本発明
においてCO2レーザーを用いた理由は、その光の
試料室への導入方法に関りがあり、真空中あるい
は、ガス中で物質を加熱する場合は、かならず、
光の導入径路に加熱によつて発生した物質の蒸気
又は微粒子が介在することになり、光の導入のた
めに設けられた窓を汚ごすため、光の導入が不可
能になつたり、その効率の低下を来すことはまぬ
がれない。 アークイメージ、その他の光学的加熱はその光
源の光をできるだけ広い角度で試料室に集光する
必要がある。従つて導入用の窓は常に大きくとら
ねばならず、これを発生する物質蒸気または、微
粒子より保護することは甚だ困難である。 この点本発明で採用したCO2レーザー光線は、
連続、且つ、高出力のエネルギー密度の高く、し
かも細い光線であるから、採光面積の小さな窓4
a,4b,4c……から試料までの導入が可能で
ある。 また本件特許請求の範囲第2番目の発明のよう
に台形円筒部3とした微細粒粉発生室2には、そ
の周辺に複数個のCO2レーザー光線照射窓4a,
4b,4c……を取付けた比較的細長の突部3
a,3b,3c……が設けられ、しかもその適所
(図面では不側方)より不活性ガス噴射管6a,
6b,6cが開口し、前記CO2レーザー光線照射
窓4a,4b,4c……のまわりから不活性ガス
を噴射せしめることによつて、本装置の作動中に
発生する微細粒粉が照射窓4a,4b,4c……
に附着するのをより効果的に防止して生産性を高
め得るものである。 以上本発明装置の開発によつて、CO2レーザー
光線を用いた良質の超微粒粉を効率よく生産する
ことができる有効なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves heating and evaporating high melting point, super hard substances such as metal oxides, carbides, and semiconductors in an inert gas.
This invention relates to an apparatus for producing ultrafine powder with a particle size of 1000 Å or less, and in particular to an apparatus that uses a CO 2 gas laser beam as a heating means. The method for producing ultrafine powder of metals and alloys by gas evaporation method is a patented invention by some of the present inventors (Tokuko Showa).
47-27718, etc.), by which ultrafine powders of various metals are manufactured, and magnetic materials,
It is used as a solid physical material such as superconductor materials, chemical catalysts, powder metallurgy materials, and rocket fuel materials. In the present invention, the target substances are mainly metal oxides, carbides, and semiconductors, and they are heated and evaporated in an inert gas atmosphere using CO 2
It is characterized by using a gas laser beam. For example, Al 2 O 3 , Si 3 N 4 , BN, SiC, W, C.
Ultrafine powder of 1000Å or less can be used as a sintered body material.
Although it is clear and expected to exhibit various excellent properties, in order to realize these properties, it is necessary to produce a large amount of pure, surface-clean ultrafine powder. Various methods have been reported for each substance, but most of them involve chemical processes, which makes it extremely difficult to obtain pure and clean substances. In this respect, according to the gas evaporation method, the target substance is heated and evaporated in a rare gas, so there is no possibility of contamination with impurities or surface stains occurring during the manufacturing process, and it can be applied to a wide range of substances. What you can do is
It has also been demonstrated in the production of metals and alloys.
In order to apply this method to materials with much higher melting points than metals such as metal oxides, carbides, and semiconductors, and electrical insulators, so-called refractory materials, the heating method must be considered. Must be. Heat sources conventionally used in gas evaporation methods for metals and alloys include resistance heating, plasma jet heating, and induction heating. is inappropriate because the melting point of the heating resistor itself requires a heating temperature higher than the decomposition point, and the above compound has a lower viscosity and a lower density than metals when melted. Because of its low temperature, it is unsuitable because it is easily blown away by the high-speed airflow of the plasma jet and becomes droplets, and because many of the compounds are electrical insulators, induction current does not flow through them, so they are unsuitable. . The present inventors have completed the present invention as a result of various studies in order to eliminate and improve the above-mentioned drawbacks. In the present invention, a CO 2 laser beam is used as the heating means, and infrared rays having a wavelength of 10.6μ and having high energy density are used as the heating source. The infrared rays generated by the CO 2 laser are generally well absorbed by the high melting point compounds targeted by the present invention.
Inside that energy substance is converted into heat. The theoretical temperature of the laser beam is approximately 20,000°C, which is sufficient to heat the evaporated material to a sufficiently high temperature. Furthermore, since non-contact heating is performed using light, there is no contamination or scattering of impurities into the evaporated substance, and ultrafine powder with a clean surface is produced. Next, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the apparatus 1 of the present invention is a container that is sealed and isolated from the atmosphere, and in which an inert gas atmosphere is created and the object to be processed is evaporated. A trapezoidal cylinder 3 is used as the fine powder generation chamber 2, and a plurality of protrusions 3', 3', 3', . 4c... is installed. A crucible 7 made of water-cooled copper is attached to the center of the bottom of the closed container 1 so as to be freely inserted from below, and a substance M to be treated is placed above the crucible 7. Reference numerals 9 and 9 denote water cooling devices, which supply and discharge cold water from appropriate locations. Above the closed container 1 , there is a chimney-shaped chamber 1 in which the material to be treated M is heated and evaporated in a fine powder generation chamber 2 at the bottom, and the generated ultrafine powder rises. As a collector for ultra-fine powder, a liquid nitrogen cooling collector 15 is attached to the lid 14 so as to be freely inserted and removed. Further, the protrusion 3' provided on the lower trapezoidal cylinder 3 has a plurality of CO 2 laser beam introduction windows 4a,
4b, 4c, . . . are provided and are made of germanium or NaCl crystals. These windows should be equipped with shutters or CO 2
Attach a blinker to the gas laser beam irradiator, or
Alternatively, a CO 2 gas laser beam adjustment device is attached to both of them, so that the beam can be increased or decreased as necessary for the object to be treated. In the drawing, 5 is an upper exhaust valve, 10 is a lower exhaust valve, and 6a, 6b, 6c... are trapezoidal cylinders 3.
It is an inert gas (for example, argon gas) jetting pipe toward the inside of the protrusion 3' attached to the holder, and 8 is an air supply valve, which normally supplies the same inert gas as 6a and 6b. ing. 11 is a pressure gauge inside the container 1, and 12 is a CO 2 gas laser beam source. Reference numeral 13 is a reflecting mirror for accurately irradiating the material M to be treated in the fine powder generation chamber 2 with the CO 2 gas laser beam through the windows 4a, 4b, and 4c. Reference numeral 16 denotes a mounting portion for the lower lid and water-cooled copper crucible 7. Next, the operating procedure of the apparatus of the present invention will be described. The substance M to be treated is placed on the water-cooled copper crucible 7 in the lower part of the sealed container 1 , and is fixed with the bottom lid 16 of the container 1 . Next, 5, 6a, 6b, 8 of this airtight container 1
All the valves are closed, and then the inside of the container is evacuated to about 10 -5 torr using the lower exhaust valve 10. When the exhaust is finished, close the exhaust valve 10 and pump inert gas such as argon gas 8, 6a, 6b, 6c.
etc. will be introduced. At this time, while opening the upper exhaust valve 5 to exhaust the air, the active gas is supplied from the air supply valve 8, and the pressure inside the container is maintained at a constant value between 10 and 500 Torr while checking the pressure gauge 11. Adjust as follows. Next, a CO 2 laser light source 12,1 placed horizontally
2 CO 2 laser light source is activated, mirror 13, 1
3 and concentrate the laser beam on the material M to be treated as shown by the arrow, the material to be treated will be heated and ultra-fine powder will be generated in the form of smoke, which will be carried by the airflow into the chimney-shaped chamber at the top. 1 rise. During this time, ultrafine powder is thermally deposited on the surface of a liquid nitrogen-cooled collector suspended in the chamber. This adhering ultrafine powder is removed by stopping the operation of the present invention at an appropriate time and moving the liquid nitrogen cooling collector to the upper lid.
The flange of No. 4 is removed and the target ultrafine powder adhering to its surface is scraped off and collected. Next, as a specific example of the present invention, a case will be described in which a 100W light source is used as the CO 2 laser 12 and SiC is used as the sample. The area on the sample to be irradiated is 1
mm 2 and the irradiation intensity was 10KW/cm 2 . A commercially available SiC powder of about 10 μm was placed as it was on the cooling crucible 7, and heated and evaporated according to the above procedure. The inert gas atmosphere in this case is Ar, and the pressure
At 10 to 500 Torr, the particle size changes from 100 to 500 Å as shown in Figure 3 (graph) depending on the Ar gas pressure. The amount collected is 5 mg/min. The resulting ultrafine powder contains β, SiC,
It was a powdered mixture of a small amount of Si. Examples of other processed materials include B 4 C, NbC,
There were TiC, TaC, WC, BN, La 6 B, Si 3 N 4 and H f C, and it was confirmed that ultrafine powder was produced in all of them. All of these materials are refractories or super hard materials, which are extremely difficult to process and require no effort other than sintering the powder.
It also has the difficulty of high-temperature sintering. Therefore, by using the fine particles produced by the apparatus of the present invention as a raw material, sintering can be facilitated. Generally, optical methods are often used as heating means. That is, arc image furnaces, solar furnaces, etc. are used, but the reason why a CO 2 laser is used in the present invention is related to the method of introducing the light into the sample chamber. When heating, be sure to
Vapors or fine particles of substances generated by heating will be present in the light introduction path, and the windows provided for the introduction of light will become dirty, making it impossible to introduce light or preventing the introduction of light. A decrease in efficiency is inevitable. Arc imaging and other types of optical heating require that the light from the light source be focused onto the sample chamber at as wide an angle as possible. The introduction window must therefore always be large, and it is extremely difficult to protect it from the generated material vapors or particulates. In this regard, the CO 2 laser beam adopted in the present invention is
Because it is a continuous, high-output, high-energy-density, and thin beam of light, it can be used as a window with a small lighting area.
It is possible to introduce samples from a, 4b, 4c... Further, as in the second invention of the present patent claim, the fine powder generation chamber 2 having a trapezoidal cylindrical portion 3 has a plurality of CO 2 laser beam irradiation windows 4a,
4b, 4c... are attached to the relatively elongated protrusion 3
a, 3b, 3c... are provided, and inert gas injection pipes 6a,
6b, 6c are opened and inert gas is injected from around the CO 2 laser beam irradiation windows 4a, 4b, 4c..., thereby removing fine particles generated during the operation of the device into the irradiation windows 4a, 4c. 4b, 4c...
It is possible to more effectively prevent adhesion to the surface and improve productivity. As described above, the development of the apparatus of the present invention is effective in efficiently producing high-quality ultrafine powder using a CO 2 laser beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例の縦断面図であ
り、第2図は上方からみた平面図、第3図(グラ
フ)は、不活性ガス圧力と発生する微細粒粉の粒
度の関係を示すもので、即ちガス圧が大きいほど
大きな粒子が得られることを示すものである。 …密閉容器、1…煙突状室、2…微細粒粉発
生室、3…台形円筒部、4a,4b,4c…窓、
5…上方排気バルブ、6a,6b,6c…不活性
ガス噴出管、7…水冷銅ルツボ、8…排気バル
ブ、9…水冷管、10…排気管、11…メータ
ー、12…CO2ガスレーザー光線源、13…反射
鏡、14…蓋体、15…液体窒素冷却採集器。
Figure 1 is a longitudinal sectional view of one embodiment of the device of the present invention, Figure 2 is a plan view seen from above, and Figure 3 (graph) is the relationship between inert gas pressure and particle size of fine powder generated. This shows that the larger the gas pressure, the larger particles can be obtained. 1 ...Airtight container, 1...Chimney-shaped chamber, 2...Fine powder generation chamber, 3...Trapezoidal cylindrical part, 4a, 4b, 4c...window,
5... Upper exhaust valve, 6a, 6b, 6c... Inert gas ejection pipe, 7... Water-cooled copper crucible, 8... Exhaust valve, 9... Water-cooled pipe, 10... Exhaust pipe, 11... Meter, 12... CO 2 gas laser beam source , 13... Reflector, 14... Lid, 15... Liquid nitrogen cooling collector.

Claims (1)

【特許請求の範囲】 1 ガス圧調整可能な密閉器中に被処理物質をお
き、これに複数個のCO2レーザー光線を照射せし
めて、これを微粒粉化するとともに、該容器上方
または側方等の該発生微粒粉の通過する径路に容
器中で出来た超微粒粉の冷却捕集器を設け、これ
を適時採取し得るようにしたことを特徴とするレ
ーザー光線を用いた超微粒粉の製造装置。 2 ガス圧調整可能な密閉容器の下方に台形円
筒部3として超細微粒粉発生室2を設け、その周
辺に複数個のCO2レーザー光線照射窓4a,4
b,4cを取付けた突出部3a,3b,3c,…
…を設け、該突出部適所に不活性ガス噴出管6
a,6b,6cを開口せしめ、台形円筒部の蒸気
発生室3のほぼ中央下底より水冷銅製ルツボ7を
装着するようにし、蒸気発生室の上方は、煙突状
室とし、その上方より本装置でできた超微粒粉の
冷却捕集器を垂下装着したことを特徴とするレー
ザー光線を用いた超微粒粉の製造装置。
[Claims] 1. A substance to be treated is placed in a closed container whose gas pressure can be adjusted, and a plurality of CO 2 laser beams are irradiated onto the material to pulverize it, and the material is placed above or on the side of the container, etc. An apparatus for producing ultrafine powder using a laser beam, characterized in that a cooling collector for the ultrafine powder produced in the container is installed in the path through which the generated fine powder passes, so that the collected ultrafine powder can be collected at a timely manner. . 2. An ultra-fine powder generation chamber 2 is provided as a trapezoidal cylindrical portion 3 below the airtight container 1 in which the gas pressure can be adjusted, and a plurality of CO 2 laser beam irradiation windows 4a, 4 are provided around it.
Projections 3a, 3b, 3c,... with b, 4c attached
... is provided, and an inert gas ejection pipe 6 is provided at the appropriate position of the protrusion.
a, 6b, and 6c are opened, and a water-cooled copper crucible 7 is mounted from the lower bottom of the almost center of the trapezoidal cylindrical steam generation chamber 3. The upper part of the steam generation chamber is a chimney-shaped chamber, and the device is accessed from above. An apparatus for producing ultrafine powder using a laser beam, characterized by a cooling collector for ultrafine powder made of
JP4014180A 1980-03-29 1980-03-29 Manufacturing device for super-particle using laser ray Granted JPS56136664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4014180A JPS56136664A (en) 1980-03-29 1980-03-29 Manufacturing device for super-particle using laser ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4014180A JPS56136664A (en) 1980-03-29 1980-03-29 Manufacturing device for super-particle using laser ray

Publications (2)

Publication Number Publication Date
JPS56136664A JPS56136664A (en) 1981-10-26
JPS6329585B2 true JPS6329585B2 (en) 1988-06-14

Family

ID=12572492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4014180A Granted JPS56136664A (en) 1980-03-29 1980-03-29 Manufacturing device for super-particle using laser ray

Country Status (1)

Country Link
JP (1) JPS56136664A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717376B2 (en) * 2004-05-27 2011-07-06 浜松ホトニクス株式会社 Fine particle production method and production apparatus

Also Published As

Publication number Publication date
JPS56136664A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
US4200669A (en) Laser spraying
EP1689519B1 (en) Process for the synthesis, separation and purification of powder materials
US5254832A (en) Method of manufacturing ultrafine particles and their application
US6331690B1 (en) Process for producing single-wall carbon nanotubes uniform in diameter and laser ablation apparatus used therein
US4505948A (en) Method of coating ceramics and quartz crucibles with material electrically transformed into a vapor phase
Karpov et al. Method for producing nanomaterials in the plasma of a low-pressure pulsed arc discharge
Kochuev et al. Formation of microspheres under the action of femtosecond laser radiation on titanium samples in hydrocarbons
US20050150759A1 (en) Powder and coating formation method and apparatus
US4289952A (en) Process for controlling powder size with optical energy
JPS6320573B2 (en)
JPH0524988B2 (en)
Subramanian et al. A novel technique for synthesis of silver nanoparticles by laser-liquid interaction
JPS6329585B2 (en)
Chen et al. Low–power plasma torch method for the production of crystalline spherical ceramic particles
JPH04214860A (en) Manufacture of multicomponent solid material
JPS6155588B2 (en)
Riehemann Synthesis of nanoscaled powders by laser-evaporation of materials
JP3099539B2 (en) Manufacturing method of artificial diamond powder
Dwivedi et al. Laser-ablated carbon plasmas: emission spectroscopy and thin film growth
RU2643287C2 (en) Method for obtaining nanopowder of compounds and mixture compositions and device for its implementation
JP2505375B2 (en) Method and apparatus for forming compound film
JPS6397226A (en) Producing apparatus for hyperfine particle
JPH0257476B2 (en)
JP3566825B2 (en) Heat-treated particles by thermal plasma and heat-treatment method
JP2505376B2 (en) Film forming method and apparatus