JPH0253032A - Wiring pattern - Google Patents

Wiring pattern

Info

Publication number
JPH0253032A
JPH0253032A JP63205159A JP20515988A JPH0253032A JP H0253032 A JPH0253032 A JP H0253032A JP 63205159 A JP63205159 A JP 63205159A JP 20515988 A JP20515988 A JP 20515988A JP H0253032 A JPH0253032 A JP H0253032A
Authority
JP
Japan
Prior art keywords
layer
wiring
amorphous silicon
liquid crystal
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63205159A
Other languages
Japanese (ja)
Other versions
JP2543150B2 (en
Inventor
Kiyohiro Kawasaki
清弘 川崎
Hirokazu Kawabata
川端 宏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20515988A priority Critical patent/JP2543150B2/en
Publication of JPH0253032A publication Critical patent/JPH0253032A/en
Application granted granted Critical
Publication of JP2543150B2 publication Critical patent/JP2543150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a defect phenomenon such as a short circuit due to the breaking of a wiring path which is large in line width and the resticking of a peeled broken piece by providing a pattern defective part to the wiring path. CONSTITUTION:The floating and separation of a wiring layer are caused at the border between a 1st amorphous silicon layer 18' which contains no impurity and a 2nd amorphous silicon layer 20' which contains phosphorus as impurities. For the purpose, the wiring layer consisting of the amorphous silicon layers 18' and 20', a heat-resisting barrier layer 23, and conductive thin films 26 and 27 is provided and an in-pattern removed part 28 is interposed in the wide area of the wiring layer. Therefore, there is none of A as a wiring material, MoSi2 for the heatresisting barrier layer 23, and 1st and 2nd amorphous silicon layers 18' and 20' present at the pattern defective part 28 in a five-mask process and the flank of those thin films is exposed in the section of its opening part. Consequently, degassing and strain relieving are accelerated to prevent the wiring layer from being peeled.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は画像表示機能を有する液晶パネル、とシわけ画
素毎にスイッチング素子を内蔵したアクティブ型のマト
リクス基板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid crystal panel having an image display function, and an active matrix substrate having a built-in switching element for each pixel.

従来の技術 微細加工技術、液晶材料および実装技術等の進歩により
、小さな画面サイズではあるが2〜6インチ程度の液晶
パネルで実用上支障ないテレビジョン画像が商業ペース
で得られるようになってきた。
Conventional technology Advances in microfabrication technology, liquid crystal materials, packaging technology, etc. have made it possible to obtain television images at a commercial pace with a small screen size of about 2 to 6 inches on a liquid crystal panel that does not pose any problem in practical use. .

液晶パネルを構成する2枚のガラス板の一方にRGBの
着色層を形成しておくことによりカラー表示も容易に実
現され、また画素毎にスイッチング素子を内蔵させた言
わゆるアクティブ型の液晶パネルではクロストークも少
なくかつ高いコントラスト比を有する画像が確保されて
いる。
By forming an RGB colored layer on one of the two glass plates that make up the liquid crystal panel, color display can be easily realized, and in so-called active type liquid crystal panels in which each pixel has a built-in switching element, An image with low crosstalk and high contrast ratio is ensured.

このような液晶パネルは走査線としては120〜240
本、信号線としては240〜720本程度のマ)変電J
クス編成が標準的で、例えば第2図に示すように液晶パ
ネル1を構成する一方のガラス基板2上に形成された走
査線の端子群(図示せず)に駆動信号を供給する半導体
集積回路チップ3を直接、接続するCOG (チップ・
オン・ガラス)方式や、あるいは例えばポリイミド系樹
脂薄膜をベースとし、金メツキされた銅箔の端子群を有
する接続フィルム4を信号線の端子群5に圧接しながら
固定するなどの実装手段によって液晶パネル1中夫の画
像表示部に電気信号を供給する。なお、6.7は画像表
示部と信号線の端子群6および走査線の端子群との間を
接続する配線路で、必らずしも端子群と同じ導電材で構
成される必要はない。
Such a liquid crystal panel has 120 to 240 scanning lines.
There are approximately 240 to 720 main and signal lines.Ma) Substation J
For example, as shown in FIG. 2, a semiconductor integrated circuit supplies drive signals to a group of scanning line terminals (not shown) formed on one glass substrate 2 constituting a liquid crystal panel 1. COG (chip/
The liquid crystal display can be mounted using the on-glass method, or by mounting means such as fixing a connection film 4 based on a polyimide resin thin film and having a group of gold-plated copper foil terminals on the terminal group 5 of the signal line while press-fitting it. An electric signal is supplied to the image display section of the middle man on the panel 1. Note that 6.7 is a wiring path that connects the image display section and the signal line terminal group 6 and the scanning line terminal group, and does not necessarily need to be made of the same conductive material as the terminal group. .

8は全ての画素に共通の対向電極を対向する面上に有す
るもう一方のガラス板で、2枚のガラス板2,8は所定
の距離を隔てて対向され、その隙間はシール材と封口材
で封止された閉空間になっておシ、液晶が充填されてい
る。はとんどの場合、ガラス板8の閉空間側に着色層と
称する染料または顔料等の着色材を含んだ有機薄膜が被
着されて色表示機能が与えられるので、ガラス基板8は
一般的にカラーフィルタと呼ばれる。そして液晶材の性
質によってガラス板8上面またはガラス板2下面のいず
れかもしくは両面上に偏光板が貼付され電気光学素子と
して機能する。
8 is another glass plate that has a common counter electrode for all pixels on its opposing surface, and the two glass plates 2 and 8 face each other with a predetermined distance apart, and the gap is filled with a sealing material and a sealing material. It is a closed space sealed with liquid crystal and filled with liquid crystal. In most cases, an organic thin film containing a coloring material such as a dye or a pigment, called a colored layer, is applied to the closed space side of the glass plate 8 to provide a color display function. It's called a color filter. Then, depending on the properties of the liquid crystal material, a polarizing plate is pasted on either the upper surface of the glass plate 8 or the lower surface of the glass plate 2, or on both surfaces to function as an electro-optical element.

第3図はスイッチング素子として例えば絶縁ゲート型ト
ランジスタ9を画素毎に配置したアクティブ型液晶パネ
ルの等価回路図であシ、実線が一方の基板2に、点線が
もう一方の基板8に形成されている。第4図はアクティ
ブマトリクス基板2の単位絵素の平面配置図の一例であ
る。走査線1oと信号線11は、例えば非晶質シリコン
を半導体層とし、シリコン窒化膜をゲート絶縁膜とする
薄膜トランジスタ9のゲートとソースを兼ね、ドレイン
は透明導電性の絵素電極13に接続されている。液晶セ
ル12は絵素電極13と、カラーフィルタ8上に形成さ
れた同じく透明導電性の対向電極14と、2枚のガラス
板で構成された閉空間を満たす液晶とからなり、電気的
にはコンデンサと同じ扱いを受ける。
FIG. 3 is an equivalent circuit diagram of an active liquid crystal panel in which an insulated gate transistor 9 is arranged for each pixel as a switching element, and the solid line is formed on one substrate 2 and the dotted line is formed on the other substrate 8. There is. FIG. 4 is an example of a plan view of the unit picture elements of the active matrix substrate 2. As shown in FIG. The scanning line 1o and the signal line 11 serve as the gate and source of a thin film transistor 9 whose semiconductor layer is, for example, amorphous silicon and whose gate insulating film is a silicon nitride film, and whose drain is connected to a transparent conductive picture element electrode 13. ing. The liquid crystal cell 12 consists of a pixel electrode 13, a transparent conductive counter electrode 14 formed on the color filter 8, and a liquid crystal that fills a closed space made up of two glass plates. It is treated the same as a capacitor.

なお第3図において蓄積容量16はアクティブ型液晶パ
ネルとしては必らずしも必須の構成因子とは限らないが
、駆動用信号源の利用効率の向上や薄膜トランジスタの
off時のリーク抵抗および液晶材の抵抗分の増加に対
し特性を維持する機能を持たせる意味あいから適宜採用
される。
Note that in FIG. 3, the storage capacitor 16 is not necessarily an essential component of an active liquid crystal panel, but it is useful for improving the utilization efficiency of the driving signal source, leak resistance when the thin film transistor is turned off, and liquid crystal material. It is appropriately adopted because it has the function of maintaining characteristics against an increase in resistance.

発明が解決しようとする課題 非晶質シリコンを半導体層とし、シリコン窒化膜をゲー
ト絶縁膜とする絶縁ゲート型トランジスタはその新規性
もあいまってデバイス構造とその製造方法にはかなシの
自由度があり、また電極材料も制限は緩いため様々な導
電性材料が用いられ第4図のムーム′線上の工程断面図
を第6図で説明する。まず第5図(2L)に示したよう
に、ガラス基板2の一主面上にITOなどの透明導電性
薄膜で膜厚1000人程鹿の絵素電極13を選択的に被
着形成し、全面にCvD SiO2膜16全16o。
Problems to be Solved by the Invention Coupled with its novelty, an insulated gate transistor that uses amorphous silicon as a semiconductor layer and a silicon nitride film as a gate insulating film offers a flexible degree of freedom in device structure and manufacturing method. In addition, since there are loose restrictions on electrode materials, various conductive materials are used.A cross-sectional view of the process along the Moum' line in FIG. 4 will be explained with reference to FIG. First, as shown in FIG. 5 (2L), on one main surface of the glass substrate 2, a transparent conductive thin film such as ITO is selectively deposited to form a pixel electrode 13 with a film thickness of about 1000. CvD SiO2 film 16 on the entire surface.

人程度の膜厚で被着する。つぎに第5図(′b)に示し
たようにゲート電極と走査線を兼ねる配線パターン1Q
を1000人程鹿の膜厚のOrで選択的に被着形成する
。そして第5図(0)に示したようにゲート絶縁膜とな
るSiNx層17、半導体層となる不純物をほとんど含
まない第1の非晶質シリコン習18、エツチングストッ
パーとなるSiNx層19を例えば4000人−500
人−1OoO人程度の膜厚で被着した後、最上層のSi
Nx層のみを選択的に残して19′とする。その後第5
図(d)に示したように全面に隣を不純物として含む第
2の非晶質シリコン層2oを被着した後、トランジスタ
を形成する領域にのみ第1と第2の非晶質シリコン層を
島状に残して20.18’とする。引き続き第5図(+
5)に示したように、絵素電極13上のSiNx層17
とSiO2層16に開口部21および図示はしないが画
像表示部外の領で走査線10上のSiNx層17に開口
部を形成して絵素電極13と走査線10の一部を露出す
る。最終工程は第5図(0に示したように全面に耐熱バ
リア層としてMo512、ソース・ドレイン配線層とし
てムβをそれぞれ1000人、1μm程度の膜厚で被着
した後、まず人lを選択的に残してソース(信号線)1
1、ドレイン22とし、引き続きムlをマスクとして人
!配線11.21の下にのみMoSi223と第2の非
晶質シリコン2dを残して液晶パネルをm成するアクテ
ィブ型マトリクス基板が完成する。図示はしないが走査
線1o上の開口部にも人!配線路は形成されている。
Deposit with a film thickness comparable to that of a human body. Next, as shown in FIG. 5('b), a wiring pattern 1Q serving as a gate electrode and a scanning line is formed.
is selectively deposited with an orifice having a film thickness of about 1,000 people. Then, as shown in FIG. 5(0), a SiNx layer 17 that becomes a gate insulating film, a first amorphous silicon layer 18 that contains almost no impurities that becomes a semiconductor layer, and a SiNx layer 19 that becomes an etching stopper are etched with a film thickness of, for example, 4000. people-500
After depositing a film with a thickness of about 1000 people, the top layer of Si
Only the Nx layer is selectively left as 19'. then the fifth
As shown in Figure (d), after depositing the second amorphous silicon layer 2o containing impurities on the entire surface, the first and second amorphous silicon layers are deposited only in the region where the transistor is to be formed. Leave it as an island and make it 20.18'. Continue with Figure 5 (+
As shown in 5), the SiNx layer 17 on the picture element electrode 13
Then, an opening 21 is formed in the SiO2 layer 16 and an opening (not shown) is formed in the SiNx layer 17 on the scanning line 10 in an area outside the image display area to expose a part of the picture element electrode 13 and the scanning line 10. The final process is as shown in Figure 5 (0), after depositing Mo512 as a heat-resistant barrier layer and Moβ as a source/drain wiring layer to a film thickness of about 1 μm on the entire surface, 1,000 layers each and a film thickness of about 1 μm are applied. Leave source (signal line) 1
1. Drain 22 and continue using Ml as a mask! An active matrix substrate forming a liquid crystal panel is completed by leaving MoSi 223 and second amorphous silicon 2d only under the wiring 11.21. Although not shown, there are people in the opening above the scanning line 1o! A wiring path is formed.

上述したマトリクス基板はホトマスク工程6回によって
得られるが、これを合理化して5回とすることは生産性
向上の観点からは極めて重要である。この工程を以下説
明する。
The above-mentioned matrix substrate can be obtained by performing the photomask process six times, but it is extremely important to rationalize this process to five times from the viewpoint of improving productivity. This process will be explained below.

その変化点は第6図(Q)に示しだように全面に第2の
非晶質シリコン層2Qを被着した後、絵素電極13上へ
の開口部21の形成を、第1と第2の非晶質シリコン層
f 8 、20とSi 、 N4層17および5i02
層16とからなる多層膜に一括して行なうことにあるが
、ここではその詳細は省略する。
The point of change is that after the second amorphous silicon layer 2Q is deposited on the entire surface, as shown in FIG. 2 amorphous silicon layers f8, 20 and Si, N4 layers 17 and 5i02
Although the process is carried out all at once for the multilayer film consisting of layer 16, the details thereof will be omitted here.

その後は前例と全く同じ工程を経て第6図(勢に示した
マトリクス基板2が得られる。
Thereafter, the matrix substrate 2 shown in FIG. 6 is obtained by going through the same steps as in the previous example.

第6図(f)と第6図<b)との比較から分るように6
枚マスク工程ではMoSi21人!よりなるソース・ド
レイン配線11.22は全て第2と第1の非晶質シリコ
ン層201’、18’を介して5iNX層17上に存在
し、6枚マスク工程ではトランジスタの近傍にのみ第2
と第1の非晶質シリコン層20゜18′が介在し、大部
分は直接Si、N4層17上に存在する差異が生じる。
As can be seen from the comparison between Figure 6(f) and Figure 6<b), 6
21 MoSi workers were involved in the mask process! All of the source/drain wirings 11 and 22 are present on the 5iNX layer 17 via the second and first amorphous silicon layers 201' and 18', and in the six mask process, the second
The difference is that a first amorphous silicon layer 20.degree.

この差異は画像表示部では何らの障害ももたらさないが
第7図に示したように画像表示部外の領域に形成された
幅広のAl配線路24においては配線層の浮き25や、
はなはだしい場合には配線層の局所的剥離として著しい
障害を持たらすことが分った。
This difference does not cause any trouble in the image display area, but as shown in FIG.
It has been found that in severe cases, local peeling of the wiring layer can cause significant damage.

ところが幅広でない人e配線路26ではそのような現象
は非常に稀にしか生ぜず、また6枚マスク工程ではマト
リクス基板2全而にわたってAJ配線路の浮きは観測さ
れなかった。
However, such a phenomenon occurs very rarely in the human e wiring path 26, which is not wide, and no lifting of the AJ wiring path was observed throughout the entire matrix substrate 2 in the 6-mask process.

画像表示部では大電流や高速周波数成分を流す必要がな
い、人βの抵抗が低い、加えて線幅が広いと開口率の低
下を招くなどの理由によシンース(信号線)11の線幅
が20μmを越える必要はない。しかしながらCOG方
式の実装を採用した場合には、マトリクス基板2の周辺
には画像表示部に駆動用信号を供給するために多数の半
導体集積回路チップが配置され、これらの半導体チップ
間には高速のクロック信号の授受が必要となり、またV
Sgやvan等の電源ラインにもかなりの電流が流れる
ので、ある程度線幅の大きい配線路を用意しないとクロ
ックノイズ、が原因となって半導体集積回路が誤動作し
て表示画像が乱れる恐れがある。またソース・ドレイン
配線は必らずしも低抵抗のムEを用いる必然はなく、製
作工程の合理化のため透明導電性のrTo薄膜が用いら
れることも多いが、この場合には許される範囲で線幅を
広くしなければ抵抗値が高くなって不都合である。
In the image display section, the line width of the signal line 11 is changed because there is no need to flow large currents or high-speed frequency components, the resistance of the human β is low, and in addition, a wide line width causes a decrease in the aperture ratio. need not exceed 20 μm. However, when COG mounting is adopted, a large number of semiconductor integrated circuit chips are arranged around the matrix substrate 2 in order to supply driving signals to the image display section, and high-speed It is necessary to send and receive clock signals, and V
Since a considerable amount of current also flows through power lines such as Sg and van, unless wiring paths with a certain large line width are prepared, there is a risk that the semiconductor integrated circuit will malfunction due to clock noise and the displayed image will be distorted. In addition, it is not always necessary to use low-resistance MuE for the source/drain wiring, and transparent conductive rTo thin films are often used to streamline the manufacturing process, but in this case, within the allowable range. If the line width is not widened, the resistance value will increase, which is disadvantageous.

第7図(IL)に示した配線層の浮きや剥離26を解析
したところB −B’線上の断面図、第7図(b)に示
したように不純物を含まない第1の非晶質シリコン層1
8′と不純物として隣を含む第2の非晶質シリコン層2
0′との境界で発生していることが分った。先述したよ
うに第1と第2の非晶質シリコン層18 、20は工程
上、非連続な堆積で形成され、しかも両者とも大量の水
素を含んで膜質が維持されるので、製造工程中の加熱に
よって水素の脱ガスが生じ、それに伴なって生じる界面
の格子再配列が歪となって剥離を生じるものと思われる
。とくに耐熱バリア層23やソース・ドレイン配線11
゜22が第2の非晶質シリコン20’上に存在すると、
キャップ作用によって剥離が急速に促進されることも分
った。
Analysis of the lifting and peeling 26 of the wiring layer shown in FIG. 7 (IL) reveals that the cross-sectional view along the line B-B' shows that the first amorphous layer does not contain impurities as shown in FIG. 7 (b). silicon layer 1
8′ and a second amorphous silicon layer 2 containing the adjacent layer as an impurity.
It was found that this occurs at the boundary with 0'. As mentioned earlier, the first and second amorphous silicon layers 18 and 20 are formed by discontinuous deposition due to the manufacturing process, and both contain a large amount of hydrogen to maintain their film quality. It is thought that hydrogen degassing occurs due to heating, and the accompanying lattice rearrangement at the interface causes strain and causes peeling. In particular, the heat-resistant barrier layer 23 and the source/drain wiring 11
When ゜22 is present on the second amorphous silicon 20',
It was also found that the cap action rapidly promoted peeling.

課題を解決するための手段 上記した解析結果に基づいて本発明では格子再配列時の
歪緩和とキャップ効果による脱ガス抑制の緩和を達成す
るために線幅の広い配線路においてはパターン欠損部を
与えるものである。
Means for Solving the Problems Based on the above-mentioned analysis results, the present invention proposes a method to eliminate pattern defects in wiring paths with wide line widths in order to alleviate strain during lattice rearrangement and to alleviate degassing suppression due to the cap effect. It is something to give.

作用 パターン欠損部には6枚マスク工程では配線材であるム
t1耐熱バリア層のMoSi2および第1と第2の非晶
質シリコン層が存在せず、その開口部断面内にこれらの
薄膜の側面が露出する。この結果、脱ガスと歪緩和が促
進されて配線層の剥離が防止される。
In the 6-mask process, the wiring material Mut1 heat-resistant barrier layer MoSi2 and the first and second amorphous silicon layers are not present in the working pattern defective part, and the side surfaces of these thin films are not present in the cross section of the opening. is exposed. As a result, degassing and strain relaxation are promoted and peeling of the wiring layer is prevented.

実施例 第1図に示したように線幅80μmの配線層27に欠損
部として40μm角の開口部28を適当な間隔で配置し
たところ、耐熱バリア層23の被着以降の製造工程中に
おける2oO℃未満の加熱処置およびトランジスタ特性
を安定させるだめの完成品に対する260℃、1時間の
ベーキングを実施しても20μmの配線層26ともども
剥離や浮きは観測されなかった。
EXAMPLE As shown in FIG. 1, openings 28 of 40 μm square were arranged as defective portions at appropriate intervals in a wiring layer 27 with a line width of 80 μm, and 2oO Even when the finished product was subjected to heating treatment at temperatures below .degree. C. and baking at 260.degree. C. for 1 hour to stabilize the transistor characteristics, no peeling or lifting was observed in the 20 .mu.m wiring layer 26.

なお、本発明は不純物を含む非晶質シリコン層と不純物
を含まない非晶質シリコン層の界面に帰因する物理原則
の回避であって、前記実施例以外のデバイスやプロセス
に対しても効果の欠きさけ異なるが有効であることは言
うまでもない。
Note that the present invention avoids the physical principle caused by the interface between an amorphous silicon layer containing impurities and an amorphous silicon layer not containing impurities, and is also effective for devices and processes other than the above embodiments. Needless to say, although the differences are different, they are effective.

発明の効果 以上のように本発明の配線パターンを用いることにより
、配線路の断線、剥離した破片の再付着による短絡等の
不良現象は一掃され、また製造工程のクリーン度も維持
される。加えてマトリクス基板上に抵抗値が低く、かつ
幅広いパターンを配置することが可能となってシールド
効果や低いインピーダンスの確保などで著しい効果が得
られた。
Effects of the Invention As described above, by using the wiring pattern of the present invention, defective phenomena such as disconnection of wiring paths and short circuits due to reattachment of peeled fragments are eliminated, and the cleanliness of the manufacturing process is also maintained. In addition, it has become possible to arrange a wide pattern with a low resistance value on the matrix substrate, resulting in significant effects such as shielding effect and ensuring low impedance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による配線パターン図、第2図
は液晶パネルへの実装図、第3図はアクティブ型液晶パ
ネルの等価回路図、第4図はマトリクス基板上の単位絵
素の平面図、第5図および第6図は第4図の五−人′線
上の要部工程断面図、第7図は従来例による配線パター
ン図である。 1・・・・・・液晶ハネル、2・・・・・・マトリクス
基板、9・・・・・・絶縁ゲート型トランジスタ、1o
・・・・・・走査線、11・・・・・・信号線、12・
・・・・・液晶セル、13・・・・・・絵素電極、17
・・・・・・5i5N4層、18・川・・不純物を含ま
ない非晶質シリコン層、19・・・・・・Si、N4f
l、20・・・・・・不純物を含む非晶質シリコン層、
23・・・・・・耐熱バリア層、24 、27・・・・
・・線幅が太い配線層、26・・・・・・線幅が細い配
線層、28・・・・・・配線パターン内の欠除部。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名17
−−−刃、3N4屡 /−m−液晶バネ、ν 1図 第 図 δ−カラーフメルタ ! q−一艶球ゲート型トランゾヌク /Z−一濯晶ゼル 第 図 ? 力゛ラヌ】」及 /6−−−5i01 第 図 (α) ? (b) /Q −一一友査燻 //−−−5号練 第 図 /’7−−一、5i3NaJ (C) ? (ct) ど3 耐熱バッフJ 第 図 (aン (b)
Fig. 1 is a wiring pattern diagram according to an embodiment of the present invention, Fig. 2 is a mounting diagram on a liquid crystal panel, Fig. 3 is an equivalent circuit diagram of an active type liquid crystal panel, and Fig. 4 is a diagram of a unit pixel on a matrix substrate. The plan view, FIGS. 5 and 6 are cross-sectional views of the main parts along the line 5--6 in FIG. 4, and FIG. 7 is a wiring pattern diagram according to a conventional example. 1...Liquid crystal panel, 2...Matrix substrate, 9...Insulated gate transistor, 1o
...Scanning line, 11...Signal line, 12.
...Liquid crystal cell, 13...Picture element electrode, 17
・・・・・・5i5N4 layer, 18・Amorphous silicon layer containing no impurities, 19・・・Si, N4f
l, 20...Amorphous silicon layer containing impurities,
23...Heat-resistant barrier layer, 24, 27...
. . . Wiring layer with thick line width, 26 . . . Wiring layer with thin line width, 28 . . . Defected portion in wiring pattern. Name of agent: Patent attorney Shigetaka Awano and 1 other person17
---Blade, 3N4屡/-m-Liquid crystal spring, ν 1 figure δ-color fumerta! q-Ichitsu sphere gate type transsonuk/Z-Ichiro crystal gel diagram? Figure (α) ? (b) /Q -11 friend review//---5th training chart/'7--1, 5i3NaJ (C)? (ct) 3 Heat-resistant buff J Figure (a) (b)

Claims (1)

【特許請求の範囲】[Claims] シリコン窒化膜上に設けた不純物を含まない非晶質シリ
コン層と、不純物を含む非晶質シリコン層と、耐熱バリ
ア層と、導電性薄膜とよりなる配線層を有し、前記配線
層の幅広な領域において欠除部を存在させたことを特徴
とする配線パターン。
It has a wiring layer formed of an impurity-free amorphous silicon layer provided on a silicon nitride film, an impurity-containing amorphous silicon layer, a heat-resistant barrier layer, and a conductive thin film, and the wiring layer has a wide width. A wiring pattern characterized by having a deletion portion in a region.
JP20515988A 1988-08-18 1988-08-18 Wiring pattern Expired - Fee Related JP2543150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20515988A JP2543150B2 (en) 1988-08-18 1988-08-18 Wiring pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20515988A JP2543150B2 (en) 1988-08-18 1988-08-18 Wiring pattern

Publications (2)

Publication Number Publication Date
JPH0253032A true JPH0253032A (en) 1990-02-22
JP2543150B2 JP2543150B2 (en) 1996-10-16

Family

ID=16502401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20515988A Expired - Fee Related JP2543150B2 (en) 1988-08-18 1988-08-18 Wiring pattern

Country Status (1)

Country Link
JP (1) JP2543150B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280890A (en) * 1986-05-30 1987-12-05 松下電器産業株式会社 Active matrix array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280890A (en) * 1986-05-30 1987-12-05 松下電器産業株式会社 Active matrix array

Also Published As

Publication number Publication date
JP2543150B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JP3240858B2 (en) Color display
US6614500B2 (en) Liquid crystal display having a dummy source pad and method for manufacturing the same
JPH06160904A (en) Liquid crystal display device and its production
JPH08328033A (en) Thin-film transistor matrix device and its production
JPH08201853A (en) Electrode substrate and plane display apparatus
JPH04336530A (en) Liquid crystal display
JPH10268288A (en) Liquid crystal display device and its manufacture
JPH08220560A (en) Active matrix display device
JPH08136951A (en) Substrate for liquid crystal panel and its production
JPH0253032A (en) Wiring pattern
JPH02118593A (en) Semiconductor display device
JP3391304B2 (en) Liquid crystal image display device and method of manufacturing semiconductor device for image display device
JPS60198579A (en) Semiconductor display
JP2003208111A (en) Organic el display device and liquid crystal display device, and semiconductor device for display device
JPS6112271B2 (en)
JPH09179140A (en) Production of liquid crystal display device
JPH0945774A (en) Film semiconductor device
JPH0480723A (en) Active matrix type liquid crystal display device
JP2645499B2 (en) Method for manufacturing semiconductor display device
JPH01227128A (en) Liquid crystal display device
JPH0430475A (en) Thin film transistor array substrate
JPH0943640A (en) Liquid crystal display device
JPH04106938A (en) Thin film field-effect transistor
JP2678024B2 (en) Image display device Semiconductor device and manufacturing method thereof
JPS639977A (en) Thin-film transistor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees