JPH02501253A - Induced metallization treatment with dissociated aluminum nitride ceramic - Google Patents

Induced metallization treatment with dissociated aluminum nitride ceramic

Info

Publication number
JPH02501253A
JPH02501253A JP63507973A JP50797388A JPH02501253A JP H02501253 A JPH02501253 A JP H02501253A JP 63507973 A JP63507973 A JP 63507973A JP 50797388 A JP50797388 A JP 50797388A JP H02501253 A JPH02501253 A JP H02501253A
Authority
JP
Japan
Prior art keywords
substrate
conductive
laser energy
metal
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63507973A
Other languages
Japanese (ja)
Inventor
ルート,ランドルフ・イー
ブウ,サン・テイ
Original Assignee
ヒューズ・エアクラフト・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒューズ・エアクラフト・カンパニー filed Critical ヒューズ・エアクラフト・カンパニー
Publication of JPH02501253A publication Critical patent/JPH02501253A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1136Conversion of insulating material into conductive material, e.g. by pyrolysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0029Etching of the substrate by chemical or physical means by laser ablation of inorganic insulating material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laser Beam Processing (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 解離された窒化アルミニウムセラミックによる誘起金属化処理 [発明の背景] この発明は、非導電性基体上の導電性回路の形成に関するものであり、特に導電 性回路をその上に形成するために窒化アルミニウムセラミック基体または絶縁層 の局部的部分を選択的に解離するための技術に関するものである。[Detailed description of the invention] Induced metallization treatment with dissociated aluminum nitride ceramic [Background of the invention] This invention relates to the formation of electrically conductive circuits on non-conductive substrates, and in particular to the formation of electrically conductive circuits on non-conductive substrates. an aluminum nitride ceramic substrate or insulating layer to form a circuit on it The present invention relates to a technique for selectively dissociating local portions of.

ハイブリッドマイクロ回路としても知られているハイブリッド回路構造は個々の 分離した回路装置の相互接続およびパッケージを備え、回路素子を支持するため に1以上の非導電性セラミック基体または層を備え、それはマイクロ回路の両側 に設けられることができる。回路素子の接続のために走る導体は基体またはその 次の層の表面に形成され、金属化された貫通通路がセラミック基体の両側上の回 路の相互接続または居間を接続するために設けられてもよい。Hybrid circuit structures, also known as hybrid microcircuits, are For providing interconnection and packaging of separate circuit devices and supporting circuit elements has one or more non-conductive ceramic substrates or layers on both sides of the microcircuit. can be provided. Conductors that run to connect circuit elements are connected to the substrate or its Formed in the surface of the next layer, metallized through passages are formed on both sides of the ceramic substrate. It may be provided for the interconnection of roads or living rooms.

接続のために走る導体は、例えば厚膜スクリーン印刷または薄膜金属化技術によ って形成されることができ、貫通通路金属化は厚膜スクリーン印刷によって形成 されることができる。しかしながら、よく知られているようにこのような技術は 時間がかかり、多くの工程を必要とする。例えば厚膜スクリーン印刷法はシリク スクリーンの処理および使用ならびに導電性ペーストの適用が必要であり、一方 薄膜金属化技術は蒸気付着、マスクおよびエツチングが必要である。The conductors that run for the connection may be made by thick film screen printing or thin film metallization techniques, for example. The through-pass metallization can be formed by thick film screen printing. can be done. However, as is well known, such technology It is time consuming and requires many steps. For example, the thick film screen printing method is Treatment and use of screens and application of conductive paste are required, while Thin film metallization techniques require vapor deposition, masks and etching.

さらに、よく知られている技術により形成された導電路について考えなければな らないことは、抵抗値を減少させるための抵抗体のトリミングができないことで ある。一般的に現在の技術による抵抗体のトリミングは抵抗値を増加させること しかできない。Additionally, one must consider conductive paths formed by well-known techniques. The reason for this is that the resistor cannot be trimmed to reduce the resistance value. be. Trimming the resistor with current technology generally increases the resistance value. I can only do it.

[発明の概要] それ放卵導電性セラミックまたは絶縁層上に導電性回路を形成する簡単な方法を 提供することは有効である。[Summary of the invention] It is an easy way to form conductive circuits on conductive ceramic or insulating layers. It is effective to provide

厚膜および薄膜金属化処理を避けて非導電性セラミック基体または絶縁層上に導 電性回路を形成する方法を提供することは別の利益を与える。Conductive on non-conductive ceramic substrates or insulating layers avoiding thick and thin film metallization processes Providing a method for forming electrical circuits provides other benefits.

導電材料をそれに適用することを避けて非導電性セラミック基体または絶縁層上 に導電性回路を形成する方法を提供することも有効である。on a non-conductive ceramic substrate or insulating layer avoiding applying conductive materials to it It would also be advantageous to provide a method for forming a conductive circuit.

抵抗値を減少させる抵抗体のトリミングを可能にして非導電性セラミック基体ま たは絶縁層上に導電性回路を形成する方法を提供することはさらに別の利点を与 える。Non-conductive ceramic substrates allow trimming of the resistor to reduce resistance. Providing a method for forming conductive circuits on or insulating layers provides yet another advantage. I can do it.

絶縁層または金属非導電性基体を通る貫通通路を金属化する方法を提供すること はさらに別の利点を与える。Provided is a method for metallizing a through passageway through an insulating layer or a metallic non-conductive substrate. gives yet another advantage.

以上およびその他の効果および特徴は、金属成分を有し、レーザエネルギの供給 によってセラミック基体に接着される解離された金属を与える構成成分に解離さ れることのできる非導電性セラミック基体を与える工程を含む金属非導電性基体 または絶縁層上に導電性回路を形成する方法によって与えられる。非導電性セラ ミック基体の表面の予め定められた区域に与えられたレーザエネルギはその予定 された区域に解離した導体を与える。These and other effects and features have a metallic component and the delivery of laser energy. Dissociated into constituents giving dissociated metal adhered to ceramic substrate by A metal non-conductive substrate comprising a process to provide a non-conductive ceramic substrate capable of being Or by a method of forming a conductive circuit on an insulating layer. non-conductive ceramic Laser energy applied to a predetermined area on the surface of a microsubstrate Apply a dissociated conductor to the area where the

この発明の別の観点によれば、非導電性セラミック基体にレーザエネルギを与え ることによって金属化したスルーホールが形成され、解離した金属がスルーホー ルの内面上に形成される。According to another aspect of the invention, laser energy is applied to a non-conductive ceramic substrate. A metalized through hole is formed by this process, and the dissociated metal formed on the inner surface of the tube.

この発明のさらに別の別の観点によれば、2個の金属化した区域の間に導電的に 結合された厚膜または薄膜抵抗をトリミングして抵抗値を低下させることが可能 になる。レーザエネルギは厚膜または薄膜抵抗の一部分および予め定められたパ ターンで金属非導電性セラミック基体の一部分に供給されて連続的に解離された 金属導体を提供し、この金属導体は厚膜または薄膜抵抗を通過し、2個の導電性 金属化区域の一つに導電的に接続される。According to yet another aspect of the invention, a conductive conductor between the two metallized areas is provided. Bonded thick-film or thin-film resistors can be trimmed to reduce resistance become. Laser energy is applied to a portion of a thick or thin film resistor and a predetermined pattern. The metal was supplied to a portion of the non-conductive ceramic substrate by turning and was continuously dissociated. Provide a metal conductor that passes through a thick or thin film resistor and connects two conductive conductively connected to one of the metallized areas.

[図面の簡単な説明] 開示された発明の利点および特徴は添附図面を参考にした以下の詳細な説明から 当業者には容易に認識されるであろう。[Brief explanation of the drawing] Advantages and features of the disclosed invention will emerge from the following detailed description with reference to the accompanying drawings. It will be readily recognized by those skilled in the art.

第1図は、この発明の方法を適用する導電性構造の概略図である。FIG. 1 is a schematic illustration of a conductive structure to which the method of the invention is applied.

第2図は、抵抗値を減少させるように抵抗をトリミングするこの発明の方法を適 用する導電性構造の概略図である。FIG. 2 shows the application of the method of the present invention for trimming a resistor to reduce its resistance value. 1 is a schematic diagram of a conductive structure used.

第3図は、この発明の方法を適用する金属被覆スルーホールの概略図である。FIG. 3 is a schematic diagram of a metallized through hole to which the method of the invention is applied.

[詳細な説明] 以下の詳細な説明および各図面において同様の素子には同じ参照記号が付されて いる。[Detailed explanation] Like elements in the following detailed description and in the drawings are provided with the same reference symbols. There is.

第1図を参照すると、ハイブリッド回路の、例えば窒化アルミニウムセラミック 基体のような非導電性セラミック基体または絶縁層11の平面図が示されている 。基体11上には回路装置13が取付けられ、さらにその周縁に分布して接続パ ッド15、17.19.21を備えている。接続パッド15.17.19.21 は導体配線23と同様に既知の厚膜または薄膜金属化技術によって金属化されて いる。周知の技術によってワイヤボンド25が回路装置13の端子と接続パッド 15.17.19.21および導体配線23との間の接続に使用されている。Referring to FIG. 1, a hybrid circuit, such as an aluminum nitride ceramic A plan view of a non-conductive ceramic substrate such as a substrate or an insulating layer 11 is shown. . A circuit device 13 is mounted on the base body 11, and connection pads are further distributed around the periphery of the circuit device 13. It is equipped with heads 15, 17, 19, and 21. Connection pad 15.17.19.21 are metallized by known thick film or thin film metallization techniques like the conductor wiring 23. There is. Wire bonds 25 are connected to terminals and connection pads of circuit device 13 by well-known techniques. 15, 17, 19, 21 and the conductor wiring 23.

第1図の窒化アルミニウムセラミック基体11はさらに接続パッド27.29お よび導体配線31.33を有している。これらの接続パッドおよび導体配線27 .29.31.33は窒化アルミニウムセラミック基体11に接着された解離さ れたアルミニウムで構成される。このような解離されたアルミニウムの接続パッ ドおよび導体配線はセラミック基体11の領域にレーザエネルギを供給すること によって形成され、そこにそのような接続パッドおよび導体配線27.29.3 1.33が形成される。例として、レーザエネルギはイツトリウム・アルミニウ ム・ガーネット(YAG)レーザまたは2酸化炭素(CO2)レーザによって供 給されることができる。レーザビームは制御されて基体からアルミニウムが解離 されるべき区域を走査し、それによって金属化された接続パッドおよび導体配線 27.29.31゜33が形成される。幅0.001インチ程度の非常に微細な 配線が得られる。これは通常の処理技術によって形成されるマイクロ回路よりも 大きな回路密度を有するマイクロ回路の形成を可能にする。The aluminum nitride ceramic substrate 11 of FIG. and conductor wiring 31 and 33. These connection pads and conductor traces 27 .. 29.31.33 is a dissociated material bonded to an aluminum nitride ceramic substrate 11. Constructed from polished aluminum. Such dissociated aluminum connection pads The conductive wires and conductive traces are capable of supplying laser energy to areas of the ceramic substrate 11. 27.29.3 formed by and therein such connection pads and conductor traces 27.29.3 1.33 is formed. As an example, laser energy can be Provided by a YAG laser or a CO2 laser. can be paid. The laser beam is controlled to dissociate aluminum from the substrate scan the area to be processed, thereby metallizing connection pads and conductor traces 27.29.31°33 is formed. Very fine particles with a width of about 0.001 inch Wiring is obtained. This is more than microcircuits formed by normal processing techniques. Allows the formation of microcircuits with large circuit densities.

特定の例について説明すると、YAGレーザは次のパラメータで接続パッドおよ び導体配線27.29.31.33を形成するために使用することができる。To discuss a specific example, a YAG laser has the following parameters for connecting pads and It can be used to form conductor lines 27, 29, 31, 33.

装置 ESI44型YAGレーザ 電力設定 14.5アンペア パルス率 2000パルス/秒 速度 4mm/秒 開示された解離処理の特にすぐれている点は、他の金属化部分が例えば厚膜また は薄膜技術によってすでに形成された後に特定の位置を金属化することができる ことである。したがって、ここに示された解離処理はすでに製造された回路また は原型回路に接続パッドおよび導体配線を追加するのに使用することができる利 点がある。Equipment: ESI44 type YAG laser Power setting: 14.5 amps Pulse rate: 2000 pulses/second Speed 4mm/sec A particular advantage of the disclosed dissociation process is that other metallizations, such as thick films or can be metallized at specific locations after they have already been formed by thin film technology That's true. Therefore, the dissociation process shown here can be applied to already fabricated circuits or is an advantage that can be used to add connection pads and conductor traces to the prototype circuit. There is a point.

特定の位置を金属化することができることを利用した応用の例が第2図に示され ている。第2図には薄膜抵抗113がその上に形成された例えば窒化アルミニウ ムセラミック基体111が示されている。薄膜抵抗113は2個の導体パッド1 15゜117間に結合された状態で示されている。U形の解離アルミニウム導体 119が導体パッド115から伸び出て導体パッド115から離れた位置で薄膜 抵抗113を横断している。この解離アルミニウム導体119によって、薄膜抵 抗113の抵抗値はもとの抵抗値に比較して減少される。何故ならば解離アルミ ニウム導体119と導体パッド115との間の抵抗材料は実効的に短絡されるか らである。したがって解離処理は抵抗値を減少させるための抵抗のトリミングに 使用されることができる。An example of an application that takes advantage of the ability to metallize specific locations is shown in Figure 2. ing. In FIG. A ceramic substrate 111 is shown. The thin film resistor 113 has two conductor pads 1 It is shown coupled between 15° and 117°. U-shaped dissociated aluminum conductor 119 extends from the conductor pad 115 and forms a thin film at a position away from the conductor pad 115. It crosses resistance 113. This dissociated aluminum conductor 119 provides a thin film resistor. The resistance value of resistor 113 is reduced compared to the original resistance value. Because dissociated aluminum Is the resistive material between conductor 119 and conductor pad 115 effectively shorted? It is et al. Therefore, the dissociation process is used to trim the resistance to reduce the resistance value. can be used.

従来ハイブリッドマイクロ回路中に形成された厚膜または薄膜抵抗の抵抗値を減 少させる処理は通常の抵抗トリミング技術によっては不可能であった。Reduce the resistance of thick-film or thin-film resistors traditionally formed in hybrid microcircuits. This reduction was not possible using conventional resistor trimming techniques.

抵抗はまたレーザを使用してそれらの値を増加するようなトリミングもできるこ とを理解すべきである。これは一般にU形(Uの脚は抵抗の縁にある)に抵抗の 一部をレーザを使用して切断することによって行われる。このような切断は抵抗 材料の量を実効的に減少させる。Resistors can also be trimmed using a laser to increase their value. should be understood. This is generally a U-shape (the legs of the U are on the edge of the resistor) of the resistor. This is done by cutting a portion using a laser. Such cutting is resisted Effectively reduces the amount of material.

第3図を参照すると、この発明の金属解離処理のさらに別の利用が示されている 。スルーホール213が例えばレーザによって窒化アルミニウムセラミック基体 211中に形成される。Referring to FIG. 3, yet another use of the metal dissociation process of the present invention is shown. . Through-holes 213 are cut into an aluminum nitride ceramic substrate by, for example, a laser. Formed during 211.

レーザエネルギにより解離されたアルミニウムがスルーホール213の内面およ びその開口の周囲に形成される。したがって導電性のスルーホールが従来知られ ている方法のようにセラミック基体211中に最初に孔を形成してからその孔を 金属化することなく形成される。この方法により形成されたスルーホールは窒化 アルミニウムセラミック基体または絶縁層の両側の回路を接続するのに使用され ることができる。Aluminum dissociated by the laser energy forms on the inner surface of the through hole 213 and and around its opening. Therefore, conductive through holes were conventionally known. As in the method described above, holes are first formed in the ceramic substrate 211 and then Formed without metallization. Through holes formed by this method are nitrided. Used to connect circuits on both sides of aluminum ceramic substrate or insulation layer can be done.

以上、従来の厚膜または薄膜金属化技術を使用せずに、迅速に、容易に解離され た金属導体を形成することができることを含めて多くの利点および特徴を有する 金属解離処理法が説明された。さらに、示された金属解離処理法は抵抗値を減少 させるような抵抗のトリミング法を与える。また解離処理法はレーザによって孔 を形成することによって簡単に金属化したスルーホールを生成するのに利用され ることができる。are quickly and easily dissociated without using traditional thick or thin film metallization techniques. has many advantages and characteristics, including the ability to form metallic conductors The metal dissociation treatment method was explained. Furthermore, the presented metal dissociation treatment method reduces the resistance value. A method for trimming the resistor is given. In addition, the dissociation treatment method uses a laser to create holes. It is used to easily produce metallized through holes by forming can be done.

この方法は、金属化層を相互接続する表面層を処理し、直接導体ラインを描き、 金属化された貫通通路を形成するためにレーザのプログラムによりスルーホール を介して金属化することを可能にする。この方法は他の金属化技術が接続パッド または抵抗その他を形成するのに使用される前、または後に行われることができ る。この発明の処理方法を使用することによって、著しい処理速度の増加が得ら れ、面倒でコストのかかるスクリーン印刷および付着、エツチングおよびマスク 処理が必要なくなる。またこの発明を使用して抵抗値を減少させる抵抗トリミン グを行うことが可能である。This method treats the surface layer interconnecting metallization layers, directly drawing conductor lines, Through-holes by laser programming to form metalized through-paths allows for metallization through. This method is similar to other metallization techniques when connecting pads. or can be done before or after being used to form resistors etc. Ru. By using the processing method of this invention, a significant increase in processing speed can be obtained. cumbersome and costly screen printing and deposition, etching and masking Processing is no longer necessary. This invention can also be used to trim resistance to reduce resistance. It is possible to perform

以上この発明の特定の実施例について説明し、図示したが、当業者には以下の請 求の範囲に記載されたこの発明の技術的範囲を逸脱することなくそれに対する各 種の変形変更が可能であることは明白であろう。特にこの発明の実施例として窒 化アルミニウムが示されているが、この発明は窒化アルミニウムの基体または絶 縁層に限定されるものではなく、ここで説明したように解離するその他の非導電 性材料も含まれるものである。Having described and illustrated specific embodiments of the invention, those skilled in the art will appreciate the following: The scope of the present invention described in the scope of the request shall be It will be clear that variations in species are possible. In particular, as an embodiment of this invention, Although aluminum nitride is shown, the present invention does not require an aluminum nitride substrate or an aluminum nitride substrate. Other non-conducting materials that are not limited to the marginal layer and dissociate as described here This also includes synthetic materials.

国際調査報告 m*S、I呻−^−IllIImIIII−PCT/υS羽102E−i+SA  24407international search report m*S, I groan-^-IllIImIII-PCT/υS feather 102E-i+SA 24407

Claims (13)

【特許請求の範囲】[Claims] 1.金属成分を有し、レーザエネルギの供給によってセラミック基体に結合され た解離された金属を与えるようにその構成成分に解離することのできる非導電性 セラミック基体を準備し、 この非導電性セラミック基体の表面の予め定められた区域にレーザエネルギを供 給してこの予め定められた区域に解離された金属導体を形成する工程を具備する ことを特徴とするセラミック基体上に導電性要素を形成する方法。1. It has a metallic component and is bonded to a ceramic substrate by the application of laser energy. a non-conducting metal that can be dissociated into its constituent components to give a dissociated metal Prepare the ceramic substrate, Laser energy is applied to a predetermined area on the surface of this non-conductive ceramic substrate. and forming a dissociated metal conductor in the predetermined area. A method of forming an electrically conductive element on a ceramic substrate, characterized in that: 2.非導電性セラミック基体を準備する工程において、窒化アルミニウムセラミ ック基体が準備される請求の範囲1記載の方法。2. In the process of preparing a non-conductive ceramic substrate, aluminum nitride ceramic 2. The method of claim 1, wherein a stock substrate is provided. 3.レーザエネルギを供給する工程はYAGレーザによつて与えられるレーザエ ネルギを供給する工程を含んでいる請求の範囲1記載の方法。3. The step of supplying laser energy is the laser energy provided by a YAG laser. 2. The method of claim 1, further comprising the step of providing energy. 4.レーザエネルギを供給する工程は2酸化炭素レーザによつて与えられるレー ザエネルギを供給する工程を含んでいる請求の範囲1記載の方法。4. The process of providing laser energy includes laser energy provided by a carbon dioxide laser. 2. The method of claim 1, further comprising the step of providing energy. 5.レーザエネルギを供給する工程はセラミック基体中にスルーホールを形成す るために前記基体にレーザエネルギを供給する工程を含み、それによつて解離さ れた金属がスルーホールの内側に形成される請求の範囲1記載の方法。5. The process of supplying laser energy forms a through hole in the ceramic substrate. the step of supplying laser energy to the substrate to cause dissociation. 2. The method of claim 1, wherein the metal is formed inside the through hole. 6.金属成分を有し、レーザエネルギの供給によつてセラミック基体に結合され た解離された金属を与えるようにその構成成分に解離することのできる非導電性 セラミック基体を準備し、 この非導電性セラミック基体の表面に2個以上の導電性金属化区域を形成し、 2個の前記導電性金属化区域間の前記非導電性基体の表面に厚膜または薄膜抵抗 を形成し、 厚膜または薄膜抵抗の一部および金属化された非導電性セラミック基体の一部に 予め定められたパターンでレーザエネルギを供給して前記厚膜または薄膜抵抗を 通過して2個の前記導電性金属化区域の一つに導電的に接続される連続した解離 された金属導体を形成する工程とを具備することを特徴とするセラミック基体上 に導電性要素を形成する方法。6. It has a metallic component and is bonded to a ceramic substrate by the supply of laser energy. a non-conducting metal that can be dissociated into its constituent components to give a dissociated metal Prepare the ceramic substrate, forming two or more conductive metallized areas on the surface of the non-conductive ceramic substrate; A thick or thin film resistor on the surface of the non-conductive substrate between two of the conductive metallized areas. form, Part of thick film or thin film resistors and part of metallized non-conductive ceramic substrates Deliver laser energy in a predetermined pattern to form the thick or thin film resistor. successive dissections passing through and electrically connected to one of the two said electrically conductive metallized areas; forming a metal conductor on a ceramic substrate. method of forming electrically conductive elements. 7.非導電性セラミック基体を準備する工程において、窒化アルミニウムセラミ ック基体が準備される請求の範囲6記載の方法。7. In the process of preparing a non-conductive ceramic substrate, aluminum nitride ceramic 7. The method of claim 6, wherein a stock substrate is provided. 8.レーザエネルギを供給する工程はYAGレーザによつて与えられるレーザエ ネルギを供給する工程を含んでいる請求の範囲6記載の方法。8. The step of supplying laser energy is the laser energy provided by a YAG laser. 7. The method of claim 6, further comprising the step of supplying energy. 9.レーザエネルギを供給する工程は2酸化炭素レーザによつて与えられるレー ザエネルギを供給する工程を含んでいる請求の範囲6記載の方法。9. The process of providing laser energy includes laser energy provided by a carbon dioxide laser. 7. The method according to claim 6, further comprising the step of supplying energy. 10.前記予め定められたパターンは直線的な部分を含み、それは厚膜または薄 膜抵抗を通過して延在し、さらに前記2個の導電性金属化区域の一つに端部が接 続された直線的な部分を含んでいる請求の範囲6記載の方法。10. The predetermined pattern includes linear sections, which may be thick or thin. extending through the membrane resistor and having an end contacting one of said two conductive metallized areas. 7. The method of claim 6, including continuous linear sections. 11.レーザエネルギの供給によって非導電性基体または絶縁層に再結合される 金属成分に解離することのできる金属成分を有する非導電性基体または絶縁層を 準備し、前記基体または絶縁層の表面の予め定められた区域にレーザエネルギを 供給して前記基体または絶縁層から前記金属成分を解離し、 前記予め定められた区域から前記レーザエネルギを除去して前記基体または絶縁 層の表面に前記金属成分を再結合させ、前記再結合される金属成分は前記表面上 に導電性金属化区域を形成する工程を具備することを特徴とするハイブリッドマ イクロ回路の非導電性基体または絶縁層上またはそれを貫通する導電性金属を形 成する方法。11. Recombined with a non-conductive substrate or insulating layer by the application of laser energy A non-conductive substrate or insulating layer having a metal component that can be dissociated into metal components. prepare and apply laser energy to a predetermined area on the surface of the substrate or insulating layer. supplying to dissociate the metal component from the substrate or insulating layer; The laser energy is removed from the predetermined area to remove the laser energy from the substrate or insulation. recombining the metal components on the surface of the layer, the recombined metal components being on the surface; A hybrid polymer comprising a step of forming an electrically conductive metallized area on the Form a conductive metal on or through a non-conductive substrate or insulating layer of a microcircuit. How to do it. 12.前記導電性金属の予め定められた区域間に厚膜または薄膜抵抗を形成し、 抵抗値を減少させるためその一部を短絡させるように前記抵抗の下の前記基体ま たは絶縁層の表面にレーザエネルギを供給し、および除去する工程を含む請求の 範囲11記載の方法。12. forming a thick film or thin film resistor between predetermined areas of the conductive metal; the substrate or the substrate under the resistor so as to short-circuit a part of it to reduce the resistance value; or the surface of the insulating layer, and the process of removing the insulating layer. The method according to range 11. 13.レーザエネルギの供給によつてその構成成分に解離する金属成分を有する 非導電性基体または絶縁層を準備し、前記金属成分は前記レーザエネルギの除去 されたとき前記基体または絶縁層に再結合され、 前記基体または絶縁層の表面の予め定められた部分を解離して前記基体または絶 縁層上またはそれを貫通する解離された金属導体を含む導電性金属を形成する工 程を具備することを特徴とするハイブリッドマイクロ回路の非導電性基体または 絶縁層上またはそれを貫通する導電性金属を形成する方法。13. Contains a metallic component that dissociates into its constituent components upon supply of laser energy A non-conductive substrate or insulating layer is prepared, and the metal component is removed by the laser energy. recombined to the substrate or insulating layer when A predetermined portion of the surface of the substrate or insulating layer is dissociated to form the substrate or insulating layer. A process for forming conductive metals containing dissociated metal conductors on or through edge layers. A non-conductive substrate of a hybrid microcircuit characterized by comprising A method of forming conductive metal on or through an insulating layer.
JP63507973A 1987-09-14 1988-07-29 Induced metallization treatment with dissociated aluminum nitride ceramic Pending JPH02501253A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9608387A 1987-09-14 1987-09-14
US096,083 1987-09-14

Publications (1)

Publication Number Publication Date
JPH02501253A true JPH02501253A (en) 1990-04-26

Family

ID=22255201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63507973A Pending JPH02501253A (en) 1987-09-14 1988-07-29 Induced metallization treatment with dissociated aluminum nitride ceramic

Country Status (4)

Country Link
JP (1) JPH02501253A (en)
KR (1) KR890702417A (en)
IL (1) IL87417A0 (en)
WO (1) WO1989002697A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9148956B2 (en) 2012-04-27 2015-09-29 Seiko Epson Corporation Base substrate, electronic device, and method of manufacturing base substrate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3942472A1 (en) * 1989-12-22 1991-06-27 Asea Brown Boveri COATING PROCESS
DE4342258A1 (en) * 1993-12-10 1995-06-14 Resma Gmbh Conductive region prodn. on or in ceramic
DE4401612A1 (en) * 1994-01-20 1995-07-27 Resma Gmbh Conductive region prodn. in or on ceramic workpiece
US8003513B2 (en) 2002-09-27 2011-08-23 Medtronic Minimed, Inc. Multilayer circuit devices and manufacturing methods using electroplated sacrificial structures
US20040061232A1 (en) 2002-09-27 2004-04-01 Medtronic Minimed, Inc. Multilayer substrate
US7138330B2 (en) 2002-09-27 2006-11-21 Medtronic Minimed, Inc. High reliability multilayer circuit substrates and methods for their formation
DE102006017630A1 (en) * 2006-04-12 2007-10-18 Lpkf Laser & Electronics Ag Method for producing a printed conductor structure and a printed conductor structure produced in this way
EP1845170A3 (en) * 2006-04-12 2007-11-21 LPKF Laser & Electronics AG Method for manufacturing a conductor path structure and such a conductor path structure
DE102016200062B4 (en) * 2016-01-06 2023-08-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the formation of electrically conductive vias in ceramic circuit carriers
CN112420300A (en) * 2020-11-11 2021-02-26 昆山丰景拓电子有限公司 Novel resistor and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256109A (en) * 1962-12-20 1966-06-14 Berger Carl Metal formation within a substrate
GB1251451A (en) * 1969-03-19 1971-10-27
DE3103986A1 (en) * 1981-02-05 1982-09-09 Reiner Dipl.-Phys. 8011 Vaterstetten Szepan Method for producing drilled holes for through-plated contact making in electronic printed-circuit boards
JPS62136897A (en) * 1985-12-11 1987-06-19 株式会社東芝 Manufacture of ceramic circuit substrate
US4691091A (en) * 1985-12-31 1987-09-01 At&T Technologies Direct writing of conductive patterns

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9148956B2 (en) 2012-04-27 2015-09-29 Seiko Epson Corporation Base substrate, electronic device, and method of manufacturing base substrate

Also Published As

Publication number Publication date
WO1989002697A1 (en) 1989-03-23
KR890702417A (en) 1989-12-23
IL87417A0 (en) 1989-01-31

Similar Documents

Publication Publication Date Title
US5369881A (en) Method of forming circuit wiring pattern
US5104480A (en) Direct patterning of metals over a thermally inefficient surface using a laser
US3786172A (en) Printed circuit board method and apparatus
EP0227371B1 (en) Ceramic substrates and methods of manufacturing same
JPH02501253A (en) Induced metallization treatment with dissociated aluminum nitride ceramic
JPS6367329B2 (en)
DE3377454D1 (en) Method and apparatus for the selective and self-adjusting deposition of metal layers and application of this method
JP2717200B2 (en) Method of forming overlay plating on electronic component mounting substrate
US4898805A (en) Method for fabricating hybrid integrated circuit
JPH10163002A (en) Chip electronic component and its manufacture
JP2743524B2 (en) Hybrid integrated circuit device
JPS62263685A (en) Printed wiring board
JPH02125497A (en) Printed circuit board
JPH02125493A (en) Selectively plating method for printed circuit board
JPH0327588A (en) Manufacture of circuit board
JP2002329950A (en) Method for applying electroplating to printed circuit board
JPH03110886A (en) Manufacture of conductor line for hybrid circuit, especially hybrid power source circuit
JPH0685467A (en) Modification of circuit of multilayer interconnection board
JPH08264953A (en) Wiring forming method of multilayer printed wiring board
JPS62296595A (en) Method of selective plating of printed wiring circuit board
JPS6457695A (en) Hybrid integrated circuit
JPS59951A (en) 2-layer wiring structure for chip carrier mounting substrate
JPS59153891A (en) Process for forming partially plated part on conductive body of printed circuit board
JPH05335710A (en) Hybrid integrated circuit
JPH06342983A (en) Multilayer circuit board