DE3942472A1 - COATING PROCESS - Google Patents

COATING PROCESS

Info

Publication number
DE3942472A1
DE3942472A1 DE19893942472 DE3942472A DE3942472A1 DE 3942472 A1 DE3942472 A1 DE 3942472A1 DE 19893942472 DE19893942472 DE 19893942472 DE 3942472 A DE3942472 A DE 3942472A DE 3942472 A1 DE3942472 A1 DE 3942472A1
Authority
DE
Germany
Prior art keywords
substrate
irradiated
layer
areas
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19893942472
Other languages
German (de)
Inventor
Hilmar Dipl Phys Dr Esrom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
ABB AB
Original Assignee
Asea Brown Boveri AG Germany
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Brown Boveri AG Germany, Asea Brown Boveri AB filed Critical Asea Brown Boveri AG Germany
Priority to DE19893942472 priority Critical patent/DE3942472A1/en
Priority to JP50206591A priority patent/JPH04505481A/en
Priority to PCT/EP1990/002270 priority patent/WO1991009984A1/en
Priority to CA 2048669 priority patent/CA2048669A1/en
Publication of DE3942472A1 publication Critical patent/DE3942472A1/en
Priority to US07/944,036 priority patent/US5225251A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0036Laser treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/455Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction
    • C04B41/4556Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction coating or impregnating with a product reacting with the substrate, e.g. generating a metal coating by surface reduction of a ceramic substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5093Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
    • C04B41/5096Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0548Masks
    • H05K2203/056Using an artwork, i.e. a photomask for exposing photosensitive layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The invention concerns a process for coating the surface (1A) of a substrate (1). To this end, the surface (1A) of the substrate (1) is irradiated with UV radiation of a given wavelength. The substrate used consists of a chemical compound with at least one readily oxidizable or easily sublimable component. Irradiation of part or all of the substrate surface (1A) releases the readily oxidizable or easily sublimable component of the chemical compound so that the irradiated areas (1B) of the surface (1A) are formed by the remaining components of the chemical compound. These areas can then be strengthened, using conventional coating methods, with a reinforcing layer (4).

Description

Die Erfindung bezieht sich auf ein Verfahren zur Be­ schichtung von Substraten gemäß dem Oberbegriff des Pa­ tentanspruches 1.The invention relates to a method for loading layering of substrates according to the preamble of Pa claim 1.

Solche Verfahren finden dort Anwendung, wo die Oberflä­ che eines Substrates teilweise oder vollständig metalli­ siert bzw. mit einer Legierung oder einer dielektrischen Schicht versehen werden soll.Such methods are used where the surface surface of a substrate partially or completely metallic or with an alloy or a dielectric Layer should be provided.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren aufzuzeigen, mit dem das Metallisieren und/oder das Auf­ tragen einer Schicht auf ein Substrat auf einfache Weise durchgeführt werden kann.The invention has for its object a method to demonstrate with which the metallization and / or the Auf apply a layer to a substrate in a simple manner can be carried out.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst.This object is achieved by the features of claim 1 solved.

Mit dem erfindungsgemäßen Verfahren ist es möglich, die Oberfläche eines Substrates, das beispielsweise aus Alu­ miniumnitrid gefertigt ist, auf einfache Weise parti­ ell oder vollständig zu metallisieren. Durch die Be­ strahlung der Substratoberfläche mit UV-Strahlung defi­ nierter Wellenlänge und Pulsrate kann der Stickstoff in dem bestrahlten Bereich der Substratoberfläche freige­ setzt werden. Die Oberfläche des Substrats wird in den bestrahlten Bereichen nach Beendigung der Bestrahlung durch reines Aluminium gebildet. In stromlosen, naßche­ mischen Metallisierungsbädern kann auf diese Bereiche dann eine Legierung, ein Dielektrikum oder ein Metall in Form Cu, Ni, Au etc. aufgebracht werden. Ferner können alle Oberflächenbereiche, die nach der Bestrahlung durch reines Aluminium gebildet werden, mit anderen Verfahren, beispielsweise mit einem konventionellen thermischen CVD bzw. durch elektrolytische Metallisierung verstärkt wer­ den. Es besteht auch die Möglichkeit, durch die Bestrah­ lung eines Substrats aus Siliziumnitrid in den bestrahl­ ten Bereichen den Stickstoff freizusetzen, so daß die bestrahlten Oberflächenbereiche des Substrats durch rei­ nes Silizium gebildet werden. Ferner besteht auch die Möglichkeit, keramische Substrate zu bestrahlen, die aus chemischen Verbindungen hergestellt sind, die wenigstens eine leicht sublimierende Komponente aufweisen. Durch die Bestrahlung wird die leicht sublimierende Komponente freigesetzt, und die bestrahlten Oberflächenbereiche des Substrats werden dann durch die zurückbleibenden Kompo­ nenten der chemischen Verbindung gebildet.With the method according to the invention it is possible to Surface of a substrate made of aluminum, for example minium nitride is made, parti in a simple manner ell or completely metallize. By the Be radiation of the substrate surface with UV radiation defi nated wavelength and pulse rate, the nitrogen in clear the irradiated area of the substrate surface be set. The surface of the substrate is in the  irradiated areas after the end of radiation formed by pure aluminum. In electroless, wet can mix metallization baths on these areas then an alloy, dielectric or metal in Form Cu, Ni, Au etc. can be applied. Can also all surface areas that after irradiation pure aluminum can be formed using other processes, for example with a conventional thermal CVD or reinforced by electrolytic metallization the. There is also the possibility through the irradiation a silicon nitride substrate in the irradiation areas release the nitrogen so that the irradiated surface areas of the substrate by rei Silicon are formed. There is also the Possibility to irradiate ceramic substrates from chemical compounds are made, at least have a slightly subliming component. By radiation becomes the subliming component released, and the irradiated surface areas of the Substrate are then left by the remaining compo elements of the chemical compound.

Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert. Es zeigen:The invention is illustrated below using examples explained in more detail. Show it:

Fig. 1 die Behandlung einer Substratoberfläche gemäß dem erfindungsgemäßen Verfahren, Fig. 1, the treatment of a substrate surface according to the inventive method,

Fig. 2 ein bestrahltes Substrat, Fig. 2 an irradiated substrate,

Fig. 3 ein beschichtetes Substrat, Fig. 3 shows a coated substrate,

Fig. 4 ein mit einer Kontaktierung versehenes Sub­ strat. Fig. 4 is a strat provided with a contact.

Fig. 1 zeigt ein flächiges Substrat 1, das bei dem hier dargestellten Ausführungsbeispiel aus Aluminiumnitrid (AlN) gefertigt ist. Um auf der Oberfläche 1A des Sub­ strats 1 Bereiche auszubilden, die durch ein reines Me­ tall gebildet werden, wird das Substrat 1 mit UV-Strah­ lung bestrahlt. In definiertem Abstand über der Substra­ toberfläche 1A ist deshalb ein UV-Hochleistungsstrahler 2 in Form eines Excimerlasers oder eines Excimerstrah­ lers angeordnet. Die detaillierte Beschreibung eines solchen Hochleistungsstrahlers 2 kann der EP-OS 02 54 110 entnommen werden. Der Hochleistungsstrahler 2, der nachfolgend kurz als Excimerstrahler bezeichnet wird, besteht aus einem durch einseitig gekühlte Metallelek­ troden (hier nicht dargestellt) und einem Dielektrikum (hier ebenfalls nicht dargestellt) begrenzten und mit einem Edelgas oder Gasgemisch gefüllten Entladungsraum (hier nicht dargestellt). Das Dielektrikum und die auf der dem Entladungsraum abgewandten Oberfläche des Di­ elektrikums liegende zweite Elektrode sind für die durch stille elektrische Entladung erzeugte Strahlung transpa­ rent. Durch diese Konstruktion und durch eine geeignete Wahl der Gasfüllung wird ein großflächiger UV-Hochlei­ stungsstrahler mit hohem Wirkungsgrad geschaffen. Der Hochleistungsstrahler 2 arbeitet mit quasi gepulstem Betrieb. Bei dem hier dargestellten Ausführungsbeispiel ist er mit Kryptonfluorid gefüllt und kann deshalb eine UV-Strahlung im Bereich von 240 bis 270 nm erzeugen. Um UV-Strahlung mit einer Wellenlänge zwischen 60 und 165 nm zu erzeugen, wird eine Edelgasfüllung aus Helium bzw. Argon verwendet. Mit einer Gasfüllung aus Xenon kann eine Wellenlänge zwischen 160 und 190 nm erzeugt werden. Bei einer Gasfüllung bestehend aus Argonfluorid beträgt die Wellenlänge 180 bis 200 nm, während mit ei­ nem Gasgemisch aus Xenon und Chlor eine UV-Wellenlänge von 300 bis 320 nm erreicht werden kann. Der Excimerla­ ser hat eine Pulsrate von 100 bis 200 Hz und die Pulse­ nergie beträgt 100 bis 208 mJ. Mit den Gasgemischen Ar/- F, Kr/F, XeCl und Xe/F können die entsprechenden Wellen­ längen 193 nm, 248 nm, 308 nm und 351 nm erzeugt werden. Wenn nicht die gesamte Oberfläche des Substrats 1 be­ strahlt werden soll, wird zwischen der Oberfläche 1A und dem Excimerlaser 2 eine Maske 3 angeordnet. Diese weist Durchlässe 3D auf. Die Durchlässe 3D sind genau dort angeordnet, wo eine Bestrahlung der Substratoberfläche 1 gewünscht wird. Durch das Bestrahlen der Substratober­ fläche 1 wird der Stickstoff der AlN-Verbindung freige­ setzt. Hierdurch wird erreicht, daß die bestrahlten Be­ reiche 1B nach Beendigung der Bestrahlung durch reines Aluminium gebildet werden. Die nicht bestrahlten Berei­ che 1N der Substratoberfläche 1A werden weiterhin durch Aluminiumnitrid gebildet. Soll die gesamte Oberfläche des Substrats eine Aluminiumschicht aufweisen, so wird die Bestrahlung ohne die Maske 3 durchgeführt. Die jetzt durch Aluminium gebildeten Oberflächenbereiche 1B, die in Fig. 2 dargestellt sind, können bei der Weiterbehand­ lung des Substrats 1 beispielsweise in stromlosen Metal­ lisierungsbädern als Katalysatoren genutzt werden, so daß auf diese Bereiche 1B, z. B. eine Schicht aus Kupfer, Nickel, Gold oder Zink mit einer Dicke bis zu 30 µm auf­ getragen werden kann. Ein Substrat 1, das mit solchen Schichten 4 versehen ist, ist in Fig. 3 dargestellt. Wie anhand dieser Fig. zu sehen ist, bleiben die Bereiche 1N, welche aus Aluminiumnitrid bestehen, von jeder Be­ schichtung frei. Erfindungsgemäß besteht die Möglich­ keit, die Bereiche 1B auch mit anderen Verfahren zu ver­ stärken bzw. zu beschichten. Beispielsweise kann auch eine elektrolytische Metallisierung zur Beschichtung bzw. Verstärkung angewendet werden. Des weiteren kann auch ein Strom kontinuierlich oder gepulst durch die Bereiche 1B geleitet werden. In einem CVD-Reaktor kann auf diese Weise lokal auch ein thermisches CVD-Verfahren durchgeführt werden. Die aus Aluminium bestehenden Be­ reiche 1B können lokal auch oxidiert oder nitriert wer­ den. Durch entsprechende Anordnung einer Maske 3 zwi­ schen der Substratoberfläche 1A und dem Excimerlaser 2 können durch die gezielte Bestrahlung der Oberfläche 1A die Bereiche 1B als Leiterbahnen für eine Schaltung aus­ gebildet werden. Durch das lokale Oxidieren oder Nitrie­ ren von bestimmten Bereichen dieser Leiterbahnen können diese an gewünschten Stellen mit Unterbrechungen für die elektrische Signalführung versehen werden. Mit Hilfe des Excimerlasers 2 kann das aus Aluminiumnitrid bestehende Substrat 1 auch durchbohrt werden. Mit Hilfe von Fokus­ sieroptiken in Form von Linsen und einer XY-Verschiebe­ einrichtung können auch Al-Bahnen geschrieben werden, wobei das ALN-Substrat relativ zum fokussierten UV- Lichtstrahl bewegt wird. Mit Hilfe einer Fokussieroptik (hier nicht dargestellt) kann der von dem Excimerlaser kommende Strahl so gebündelt werden, daß die in Fig. 4 dargestellte Bohrung 5 mit dem jeweils gewünschten Durchmesser ausgebildet wird. Wie bereits erwähnt, ist das Substrat 1 vollständig aus Aluminiumnitrid gefer­ tigt. Während der Ausbildung der Bohrung 5 wird der in der Begrenzungswand der Bohrung 5 vorhandene Stickstoff freigesetzt, so daß die Begrenzungswand nach Fertigstel­ lung der Bohrung 5 ausschließlich durch Aluminium ge­ bildet wird. Steht die Bohrung 5 in unmittelbar elek­ trisch leitendem Kontakt mit einem Bereich 1B auf der Oberfläche 1A des Substrates 1, so wird dieser Bereich 1B über die Wand der Bohrung 5 elektrisch leitend mit der Schicht 10 verbunden, die unmittelbar an die Unter­ seite des Substrates 1 angrenzt. Fig. 1 shows a flat substrate 1 , which is made of aluminum nitride (AlN) in the embodiment shown here. In order to form areas on the surface 1 A of the substrate 1 , which are formed by a pure metal, the substrate 1 is irradiated with UV radiation. At a defined distance above the Substra sliding surface 1 A is therefore a UV high power radiator 2 arranged in the form of an excimer laser or a Excimerstrah toddlers. The detailed description of such a high-power radiator 2 can be found in EP-OS 02 54 110. The high-power radiator 2 , hereinafter referred to briefly as excimer radiator, consists of a one-sided cooled metal electrodes (not shown here) and a dielectric (also not shown here) limited and filled with a noble gas or gas mixture (not shown here). The dielectric and the second electrode lying on the surface of the dielectric facing away from the discharge space are transparent for the radiation generated by silent electrical discharge. This construction and a suitable choice of gas filling create a large-area UV high-performance lamp with high efficiency. The high-power radiator 2 works with quasi-pulsed operation. In the exemplary embodiment shown here, it is filled with krypton fluoride and can therefore generate UV radiation in the range from 240 to 270 nm. To generate UV radiation with a wavelength between 60 and 165 nm, an inert gas filling made of helium or argon is used. With a xenon gas filling, a wavelength between 160 and 190 nm can be generated. With a gas filling consisting of argon fluoride, the wavelength is 180 to 200 nm, while with a gas mixture of xenon and chlorine a UV wavelength of 300 to 320 nm can be achieved. The excimer laser has a pulse rate of 100 to 200 Hz and the pulse energy is 100 to 208 mJ. With the gas mixtures Ar / - F, Kr / F, XeCl and Xe / F, the corresponding wavelengths 193 nm, 248 nm, 308 nm and 351 nm can be generated. Be if not the entire surface of the substrate 1 be irradiated, is 1 A and the excimer laser 2 is arranged a mask 3 between the surface. This has 3 D passages. The passages 3 D are arranged exactly where irradiation of the substrate surface 1 is desired. By irradiating the substrate surface 1 , the nitrogen of the AlN compound is released. This ensures that the irradiated areas 1 B Be formed by pure aluminum after the end of the irradiation. The non-irradiated areas 1 N of the substrate surface 1 A are still formed by aluminum nitride. If the entire surface of the substrate is to have an aluminum layer, the irradiation is carried out without the mask 3 . The now formed by aluminum surface areas 1 B, which are shown in Fig. 2, can be used in the further treatment of the substrate 1, for example in electroless metalization baths as catalysts, so that 1 B, z. B. a layer of copper, nickel, gold or zinc with a thickness of up to 30 microns can be applied. A substrate 1 , which is provided with such layers 4 , is shown in FIG. 3. As can be seen from this figure , the areas 1 N, which consist of aluminum nitride, remain free of any coating. According to the invention the possi bility, the areas B 1 by other methods to strengthen ver or to coat. For example, electrolytic metallization can also be used for coating or reinforcement. Furthermore, a current can also be passed continuously or pulsed through the areas B 1. In this way, a thermal CVD process can also be carried out locally in a CVD reactor. The areas 1 B made of aluminum can also be locally oxidized or nitrided. Zvi by appropriate arrangement of a mask 3 of the substrate surface rule 1, and the excimer laser 2 may be prepared by the selective irradiation of the surface 1 A, the areas B 1 are formed as conductor paths of a circuit from. Due to the local oxidation or nitriding of certain areas of these conductor tracks, these can be provided with interruptions for the electrical signal routing at desired locations. With the aid of the excimer laser 2 , the substrate 1 consisting of aluminum nitride can also be pierced. With the aid of focusing optics in the form of lenses and an XY shifting device, Al webs can also be written, the ALN substrate being moved relative to the focused UV light beam. With the aid of focusing optics (not shown here), the beam coming from the excimer laser can be bundled in such a way that the bore 5 shown in FIG. 4 is formed with the desired diameter. As already mentioned, the substrate 1 is made entirely of aluminum nitride. During the formation of the bore 5 , the nitrogen present in the boundary wall of the bore 5 is released, so that the boundary wall after completion of the bore 5 is formed exclusively by aluminum. If the hole 5 in direct elec trically conductive contact with a region 1 B on the surface 1 A of the substrate 1, so this range is 1 B via the wall of the bore 5 is electrically conductively connected to the layer 10, the page directly to the sub- of the substrate 1 adjoins.

Das erfindungsgemäße Verfahren ist nicht nur auf Sub­ strate aus Aluminiumnitrid anwendbar. Vielmehr besteht die Möglichkeit, auch Substrate aus Siliziumnitrid (Si3N4) mit dem Excimerlaser zu bestrahlen. Hierdurch wird auch bei diesem Substrat der Stickstoff in den bestrahl­ ten Oberflächenbereichen (hier nicht dargestellt) frei­ gesetzt. Ferner besteht die Möglichkeit, auch keramische Substrate zu bestrahlen, die durch eine chemische Ver­ bindung gebildet werden, die eine leicht sublimierende Komponente aufweist. Durch die Bestrahlung wird die leicht sublimierende Komponente freigesetzt. Die be­ strahlten Oberflächenbereiche des Substrates werden dann durch die verbleibenden Komponenten der chemischen Ver­ bindung gebildet. Da sowohl die Aluminiumschichten als auch die bei anderen Substraten gebildeten Schichten mit den darunter befindlichen Schichten einen atomaren Ver­ bund bilden, wird hierdurch eine sehr große Haftfestig­ keit bewirkt.The method of the invention is not only applicable to substrates made of aluminum nitride. Rather, it is possible to irradiate substrates made of silicon nitride (Si 3 N 4 ) with the excimer laser. As a result, the nitrogen in the irradiated surface areas (not shown here) is also released with this substrate. There is also the possibility of also irradiating ceramic substrates which are formed by a chemical bond which has a slightly subliming component. The slightly subliming component is released by the radiation. The irradiated surface areas of the substrate are then formed by the remaining components of the chemical compound. Since both the aluminum layers and the layers formed on other substrates form an atomic bond with the layers underneath, this results in a very high adhesive strength.

Claims (6)

1. Verfahren zur Ausbildung von Schichten auf einem Substrat, dadurch gekennzeichnet, daß ein Substrat oder eine Schicht (1) aus einer chemischen Verbindung, die wenigstens eine leicht oxidierbare, nitrierbare oder sublimierbare Komponente aufweist, zur Beseitigung die­ ser Komponente partiell oder ganzflächig so bestrahlt wird, daß die bestrahlten Bereiche (1B) der Oberfläche (1A) des Substrates (1) nur noch durch die restlichen Komponenten der chemischen Verbindung gebildet werden.1. A method for forming layers on a substrate, characterized in that a substrate or a layer ( 1 ) made of a chemical compound, which has at least one easily oxidizable, nitratable or sublimable component, irradiated so partially or over the entire surface to eliminate this component is that the irradiated areas ( 1 B) of the surface ( 1 A) of the substrate ( 1 ) are only formed by the remaining components of the chemical compound. 2. Verfahren nach Anspruch 1, dadurch gekennzeich­ net, daß das Substrat oder die Schicht (1), welche durch Sputtern, Verdampfen oder CVD-Verfahren hergestellt wird, mit UV-Strahlung mit einer Wellenlängen zwischen 60 und 370 nm bestrahlt wird.2. The method according to claim 1, characterized in that the substrate or the layer ( 1 ), which is produced by sputtering, evaporation or CVD processes, is irradiated with UV radiation with a wavelength between 60 and 370 nm. 3. Verfahren nach Anspruch 1, dadurch gekennzeich­ net, daß das Substrat oder die Schicht (1) mit einem in der EP-OS 02 54 111 beschriebenen Hochleistungsstrahler (2) oder mit einem Excimerlaser bestrahlt wird, der eine Pulsrate von 100 bis 200 Hz und eine Pulsenergie von 100 bis 200 mJ aufweist.3. The method according to claim 1, characterized in that the substrate or the layer ( 1 ) is irradiated with a high-power radiator ( 2 ) described in EP-OS 02 54 111 or with an excimer laser having a pulse rate of 100 to 200 Hz and has a pulse energy of 100 to 200 mJ. 4. Verfahren nach einem der Ansprüche 1 bis 3, da­ durch gekennzeichnet, daß ein Substrat (1) aus Alumi­ niumnitrid (AlN) mit einem Hochleistungsstrahler (2) bestrahlt wird, der eine Gasfüllung aus Kryptonfluorid aufweist und eine UV-Strahlung im Bereich von 240 bis 270 nm abstrahlt. 4. The method according to any one of claims 1 to 3, characterized in that a substrate ( 1 ) made of aluminum nitride (AlN) is irradiated with a high-power lamp ( 2 ) which has a gas filling of krypton fluoride and UV radiation in the range Emits 240 to 270 nm. 5. Verfahren nach einem der Ansprüche 1 bis 4, da­ durch gekennzeichnet, daß ein Substrat oder eine Schicht (1) aus einem keramischen Werkstoff von einem Hochleistungsstrahler (2) bestrahlt wird, der UV-Strah­ lung im Wellenlängenbereich zwischen 60 nm und 320 nm aussendet.5. The method according to any one of claims 1 to 4, characterized in that a substrate or a layer ( 1 ) made of a ceramic material is irradiated by a high-power radiator ( 2 ), the UV radiation in the wavelength range between 60 nm and 320 nm sends out. 6. Verfahren nach einem der Ansprüche 1 bis 4, da­ durch gekennzeichnet, daß die aus Aluminium bestehenden Oberflächenbereiche (1B) des aus Aluminiumnitrid gefer­ tigten Substrates (1) in einem stromlosen Metallbad, mittels CVD-Verfahren oder elektrolytischer Metallisie­ rung mit einer Schicht aus Kupfer, Nickel, Gold, Zink mit einer Dicke von bis zu 30 µm verstärkt werden.6. The method according to any one of claims 1 to 4, characterized in that the surface areas ( 1 B) made of aluminum of the substrate made of aluminum nitride ( 1 ) in an electroless metal bath, by means of CVD processes or electrolytic metallization with a layer made of copper, nickel, gold, zinc with a thickness of up to 30 µm.
DE19893942472 1989-12-22 1989-12-22 COATING PROCESS Withdrawn DE3942472A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE19893942472 DE3942472A1 (en) 1989-12-22 1989-12-22 COATING PROCESS
JP50206591A JPH04505481A (en) 1989-12-22 1990-12-20 Coating method
PCT/EP1990/002270 WO1991009984A1 (en) 1989-12-22 1990-12-20 Coating process
CA 2048669 CA2048669A1 (en) 1989-12-22 1990-12-20 Coating process
US07/944,036 US5225251A (en) 1989-12-22 1992-09-11 Method for forming layers by UV radiation of aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19893942472 DE3942472A1 (en) 1989-12-22 1989-12-22 COATING PROCESS

Publications (1)

Publication Number Publication Date
DE3942472A1 true DE3942472A1 (en) 1991-06-27

Family

ID=6396137

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19893942472 Withdrawn DE3942472A1 (en) 1989-12-22 1989-12-22 COATING PROCESS

Country Status (4)

Country Link
JP (1) JPH04505481A (en)
CA (1) CA2048669A1 (en)
DE (1) DE3942472A1 (en)
WO (1) WO1991009984A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501278A1 (en) * 1991-02-28 1992-09-02 Texas Instruments Incorporated Method to produce masking
DE4141365A1 (en) * 1991-12-14 1993-06-17 Mathias Dr Herrmann Sintered silicon nitride body with modified surface - consists of silicon nitride, amorphous or semi-crystalline grain boundary phase and sintering aid
EP0661110A1 (en) * 1993-11-26 1995-07-05 Ushiodenki Kabushiki Kaisha Process for oxidation of an article surface
US5700628A (en) * 1994-05-31 1997-12-23 Texas Instruments Incorporated Dry microlithography process
DE10137763A1 (en) * 2001-08-02 2003-04-30 Siemens Ag Process for coating a surface of a substrate with a coating material used in the production of coatings for bulbs comprises pre-treating the surface using a laser, and coating the surface with the coating material
EP1845170A2 (en) * 2006-04-12 2007-10-17 LPKF Laser & Electronics AG Method for manufacturing a conductor path structure and such a conductor path structure
WO2007115546A2 (en) * 2006-04-12 2007-10-18 Lpkf Laser & Electronics Ag Method for production of a conductor track structure and a correspondingly produced conductor track structure
WO2013072457A1 (en) * 2011-11-16 2013-05-23 Ceramtec Gmbh Embedded metal structures in ceramic substrates
DE102017223648A1 (en) 2017-12-22 2019-06-27 Robert Bosch Gmbh A method of forming aluminum circuit traces by converting aluminum nitride into aluminum and circuit carrier assembly with aluminum tracks on a carrier substrate
DE102017223647A1 (en) 2017-12-22 2019-06-27 Robert Bosch Gmbh Method for producing an electronic component, electronic component, SMD component and circuit carrier assembly
DE102017223646A1 (en) 2017-12-22 2019-06-27 Robert Bosch Gmbh A method of manufacturing a circuit carrier assembly and circuit carrier assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342258A1 (en) * 1993-12-10 1995-06-14 Resma Gmbh Conductive region prodn. on or in ceramic
DE4401612A1 (en) * 1994-01-20 1995-07-27 Resma Gmbh Conductive region prodn. in or on ceramic workpiece

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256109A (en) * 1962-12-20 1966-06-14 Berger Carl Metal formation within a substrate
US3390012A (en) * 1964-05-14 1968-06-25 Texas Instruments Inc Method of making dielectric bodies having conducting portions
JPS60253207A (en) * 1984-05-30 1985-12-13 株式会社東芝 Method of producing capacitor
US4547432A (en) * 1984-07-31 1985-10-15 The United States Of America As Represented By The United States Department Of Energy Method of bonding silver to glass and mirrors produced according to this method
JPS62136897A (en) * 1985-12-11 1987-06-19 株式会社東芝 Manufacture of ceramic circuit substrate
US4691091A (en) * 1985-12-31 1987-09-01 At&T Technologies Direct writing of conductive patterns
CH670171A5 (en) * 1986-07-22 1989-05-12 Bbc Brown Boveri & Cie
WO1989002697A1 (en) * 1987-09-14 1989-03-23 Hughes Aircraft Company Induced metallization process by way of dissociating aluminum nitride ceramic
GB2217349B (en) * 1988-03-29 1992-06-24 Univ Hull Vapour deposited self-sealing ceramic coatings
US4933206A (en) * 1988-08-17 1990-06-12 Intel Corporation UV-vis characteristic writing in silicon nitride and oxynitride films

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501278A1 (en) * 1991-02-28 1992-09-02 Texas Instruments Incorporated Method to produce masking
US6432317B1 (en) 1991-02-28 2002-08-13 Texas Instruments Incorporated Method to produce masking
DE4141365A1 (en) * 1991-12-14 1993-06-17 Mathias Dr Herrmann Sintered silicon nitride body with modified surface - consists of silicon nitride, amorphous or semi-crystalline grain boundary phase and sintering aid
EP0661110A1 (en) * 1993-11-26 1995-07-05 Ushiodenki Kabushiki Kaisha Process for oxidation of an article surface
US5700628A (en) * 1994-05-31 1997-12-23 Texas Instruments Incorporated Dry microlithography process
DE10137763A1 (en) * 2001-08-02 2003-04-30 Siemens Ag Process for coating a surface of a substrate with a coating material used in the production of coatings for bulbs comprises pre-treating the surface using a laser, and coating the surface with the coating material
DE10137763C2 (en) * 2001-08-02 2003-08-14 Siemens Ag Process for the surface pretreatment of a surface of a substrate to be coated with a coating material
WO2007115546A2 (en) * 2006-04-12 2007-10-18 Lpkf Laser & Electronics Ag Method for production of a conductor track structure and a correspondingly produced conductor track structure
EP1845170A2 (en) * 2006-04-12 2007-10-17 LPKF Laser & Electronics AG Method for manufacturing a conductor path structure and such a conductor path structure
DE102006017630A1 (en) * 2006-04-12 2007-10-18 Lpkf Laser & Electronics Ag Method for producing a printed conductor structure and a printed conductor structure produced in this way
EP1845170A3 (en) * 2006-04-12 2007-11-21 LPKF Laser & Electronics AG Method for manufacturing a conductor path structure and such a conductor path structure
WO2007115546A3 (en) * 2006-04-12 2007-12-27 Lpkf Laser & Electronics Ag Method for production of a conductor track structure and a correspondingly produced conductor track structure
WO2013072457A1 (en) * 2011-11-16 2013-05-23 Ceramtec Gmbh Embedded metal structures in ceramic substrates
DE102017223648A1 (en) 2017-12-22 2019-06-27 Robert Bosch Gmbh A method of forming aluminum circuit traces by converting aluminum nitride into aluminum and circuit carrier assembly with aluminum tracks on a carrier substrate
DE102017223647A1 (en) 2017-12-22 2019-06-27 Robert Bosch Gmbh Method for producing an electronic component, electronic component, SMD component and circuit carrier assembly
DE102017223646A1 (en) 2017-12-22 2019-06-27 Robert Bosch Gmbh A method of manufacturing a circuit carrier assembly and circuit carrier assembly

Also Published As

Publication number Publication date
CA2048669A1 (en) 1991-06-23
WO1991009984A1 (en) 1991-07-11
JPH04505481A (en) 1992-09-24

Similar Documents

Publication Publication Date Title
DE3826046C2 (en)
DE69506000T2 (en) METHOD FOR COATING THROUGH HOLES WITH THE AID OF A LASER
DE4447897B4 (en) Process for the production of printed circuit boards
DE69125333T2 (en) Making metal patterns on a substrate
DE3921600C1 (en)
DE3942472A1 (en) COATING PROCESS
DE69013310T2 (en) Housing for power semiconductor components.
DE2440481B2 (en) PROCESS FOR PRODUCING THIN-FILM CONDUCTORS ON AN ELECTRICALLY INSULATING CARRIER
DE3421989A1 (en) METHOD FOR METALLIZING CERAMIC SURFACES
DE10227658B4 (en) Metal-ceramic substrate for electrical circuits or modules, method for producing such a substrate and module with such a substrate
DE1943519A1 (en) Semiconductor component
EP0643153A1 (en) Process for the fabrication of structured metallizations on surfaces
DE4035080A1 (en) METHOD AND DEVICE FOR PRODUCING PARTIAL METAL LAYERS
DE19546569A1 (en) Solder connection method for large scale integration and power semiconductor
DE3139168A1 (en) Structured chemically reducing metal deposit
DE4010899A1 (en) Multilayer circuit board assembly
US5225251A (en) Method for forming layers by UV radiation of aluminum nitride
EP0966186B1 (en) Process for manufacturing a metal-ceramic substrate
EP0374505B1 (en) Metallizing process
DE4042220C2 (en) Process for the production of all-over or partial gold layers
EP0349882B1 (en) Process for manufacturing metal layers
EP0446835B1 (en) Galvanizing process
DE4125863A1 (en) METHOD FOR APPLYING STRUCTURED METAL LAYERS TO GLASS SUBSTRATES
DE19708254A1 (en) Perforating organic film by two successive pulsed laser beams
DE19824225A1 (en) Method of manufacturing a printed circuit board

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee