JPH0244786A - ジョセフソン素子の製造方法 - Google Patents

ジョセフソン素子の製造方法

Info

Publication number
JPH0244786A
JPH0244786A JP63194486A JP19448688A JPH0244786A JP H0244786 A JPH0244786 A JP H0244786A JP 63194486 A JP63194486 A JP 63194486A JP 19448688 A JP19448688 A JP 19448688A JP H0244786 A JPH0244786 A JP H0244786A
Authority
JP
Japan
Prior art keywords
crystal
josephson
superconductive
superconducting
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63194486A
Other languages
English (en)
Inventor
Yuji Kasanuki
有二 笠貫
Keisuke Yamamoto
敬介 山本
Kiyozumi Niitsuma
清純 新妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63194486A priority Critical patent/JPH0244786A/ja
Publication of JPH0244786A publication Critical patent/JPH0244786A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はジョセフソン素子の製造方法に関する。この素
子は磁場の測定用計測器、赤外検知器、増幅器、SQU
 I D、ジョセフソンコンピューター等に幅広く使わ
れるものである。
〔従来の技術〕
従来、ジョセフソン結合の型式としては、■酸化スズ、
酸化アルミニウムのような酸化物質、■銅のような常伝
導金属、■超伝導材の一部を細くしたもの、■超伝導材
の一部を細くした上で常伝導金属を蒸着したもの、■超
伝導片の針によるポイントコンタクト等を利用する型式
が知られている。
〔発明が解決しようとする課題〕
こららの結合型式すべては、ジョセフソン素子の製造に
際して、かかる結合を形成する操作を他部分の形成操作
と別途に実施することが必要である。
本発明は上に述べたようにジョセフソン結合を形成する
操作を別途・人工的に実施することなく、ジョセフソン
素子を製造しようとするものであって、結晶と結晶とが
成長して他方の結晶と接するときに自然にできる結晶粒
界を、ジョセフソン結合に利用してジョセフソン素子の
製造を図ろうとするものである。
しかし、基板上で単に結晶を成長させても無秩序に結晶
が成長し、いくつものジョセフソン結合か複雑に連なっ
た構造になってしまうだけであり、基板上の目的の位置
に、目的の数のジョセフソン素子ができない。
さらに、77により高温で超伝導を示す超伝導結晶、例
えば、La5r2(:u30x、Y Ba2(:u、、
Ox1. Er11a2Cu30x(x > O) 、
更にB1−5r−Ca−Cu−0、TlCa−Ba−C
u−0系などは、水分に対する安定性がなく、超伝導状
態にするために、あるいは熱雑音を少なくするために、
ジョセフソン素子を冷却すると、素子に吸着した大気中
の水分による劣化や、動作時に流れる電流による水の電
気分解等によって、素子が劣化するという大きな問題で
ある。
そこで、本発明者らは、ジョセフソン結合を形成する操
作を別途実施しなくても、基板上の所望位置に所望数の
ジョセフソン素子を製造すること、および温度の変動に
強いジョセフソン素子をを製造することを目的として、
研究を重ねた結果、次の本発明が完成された。
〔課題を解決するための手段〕
即ち、本発明は、基板表面よりも超伝導結晶の生起・成
長を速める性質によって超伝導結晶の成長起点となる、
少なくとも2つで1組の核を、基板上に所望のパターン
て形成した後、 該基板上での該超伝導結晶の選択的生起と結晶化の進行
とによって結晶粒界を生じさせて、ジョセフソン接合を
形成し、 配線と、水分の侵入を防止する保護膜の該超伝導結晶上
への成膜とを実施する、ジョセフソン素子の製造方法で
ある。
この本発明は、基板表面よりも超伝導結晶が速く成長で
きる物質(核)を基板上にパターニングして結晶の成長
位置をコントロールすることによって、所定の位置にの
みジョセフソン素子を製造するものである。
以下、本発明を図面を参照しつつ詳細に説明する。
第1図から第3図に、本発明のジョセフソン素子の製造
法の一実施態様を、過程に従って示す。
この態様においては、まず、少なくとも2つが組になっ
た核1を、基板2上の所望位置に所望数生じさせる(第
1図)。即ち、核1のパターンを基板2上に形成する。
核1は、次の工程における超伝導結晶の成長の起点とな
り、基板2の任意位置からの超伝導結晶の成長を防ぐ役
目を果たす。つまり、核1は超伝導結晶の生起・成長を
基板表面よりも速めるものである。したがって、この役
目をはだすものならばいかなる物質も用いることもでき
る。核1は好ましくは、基板表面よりも超伝導結晶を1
03倍以上速く成長させつるようなもの、例えば1!2
03 、5rTi03、TiO2、Be01Mg0 、
 CaO。
SrOまたはBaOとするのが好ましい。−組の対とな
った核1において、個々の核の相互間隔は、種々の要因
によって変わるが、100−程度が一つの目安となる。
かかる核1のパターンを形成する具体的な方法としては
、例えば第5図に示すように、所望数、所望位置に穴が
あいたマスク3を基板2上に載置し、それに向かって核
1となる物質を蒸着(例えば、スパッタリング法による
)すればよい。
なお、基板2の材料としては、回路基板に用いられてい
るものならば特に制限はなく、例えばサファイヤ、石英
、Si等が利用できる。
次に、核1の形成された基板2に対して超伝導結晶の構
成成分をスパッタして超伝導結晶4を生J戊ざπる(第
二図)。
基板2の核1が設けられていない部分よりも核1の方か
超伝導結晶を生起・成長させる速度が大きいので、通常
の条件下で個々の核のみから結晶が成長し始め、実質的
に所望位置で結晶が衝突し、その地点において粒界がで
きジョセフソン結合となる。
ここで用いる超伝導結晶4の材質に関して特に制限はな
いか、例えばA−B−C−D (ただし、AはLa、C
e、 Pr、 Nd、 Pm、 Srn、 Eu、 G
d、Tb、 Dy。
Ho、 Er、 Tm、 Yb、 Sc、Lu 、 D
i、TffiおよびYから成る群、BはCa、 Pb、
 SrおよびBaから成る群、ZはV、 Ti、  C
r、 Mn、  Fe、  Ni、  Go、 Ag、
  Cd、  Zn、  [:uおよびHgから成る群
、DはSおよびOから成る群よりそれぞれ選ばれた一種
以上の元素である)で示されるものが挙げられる。この
なかで、超伝導転移点が77に以上であり、液体窒素で
素子の動作が可能なLa5r2[:u30x、 Yfl
a2Cu30x、ビrBa2Gu30x(x>0)、更
にB1−5r−Ca−Cu−0系、 Tl−Ca−Ba
Cu −0;f−等の化合物が好ましい。
上では、スパッタ法により超伝導結晶の生起と結晶化の
進行とを実施したか、他にも、例えば化学気相蒸着法、
スパッタリンク法、電子ビーム法、イオンクラスタービ
ーム法、分子線エピタキシー法が利用できる。
次に、基板と超伝導結晶の間で、エツチング速度差が生
ずる反応性エツチング(RIE)の実施により超伝導結
晶をエツチングして、単結晶−粒界−単結晶から成る表
面を平坦化する(第3図)。
その後、単結晶部には、例えば、Or−Agのような電
極材料を用いて配線を行なった後、水分の侵入を防止で
きる保護膜5を全体に設ける(第4図)。
保護膜5はかかる作用を果たしうるものであればよい。
一般に、プラスチックコーティング法は、ジョセフソン
素子に急激に熱変化があった場合、クラック等かはいる
。また、スパッタリング法、真空蒸着法、CVD法、ス
プレーパイロリシス法などで保護膜を形成した場合も同
様である。
このため、本発明では保護膜形成のため代表的には、密
着性が良く、かつパッチング密度の高い膜をクラスター
イオンビーム法で成膜する。
第7図にクラスターイオンビーム蒸着法の原理図を示す
。6はルツボ、7は蒸発物質、8はイオン化ユニット、
9は加速電極、10は基板、11は蒸発物質のクラスタ
ーイオンヒームである。ルツボにはノズルか取り付けて
あり、不図示の加熱装置によりルツボを加熱するか、こ
のときノズル部を蒸発物質が通過し、断熱膨張により5
00〜1000個の原子からなるクラスターを形成する
ように加熱装置を制御する。具体的には、ルツボの内外
で蒸発物質の蒸気圧差が約1桁以上程度になるようにす
る。このようにして生じたクラスターにイオン化ユニッ
ト部分で熱電子のシャワーを照射してクラスターの一部
をイオン化する。このときのイオン化率は不図示の電源
により制御する。
不図示の電源により、基板と加速室8i9の間に約10
KVあるいは一10KV程度の加速電圧か印加出来、こ
れによりクラスターイオンを加速する。
ここで重要なのは、イオン化ユニットも加速電圧も電気
的に制御している点である。つまり蒸着中にこれらは連
続的にも不連続的にも自由にかつ極めて短時間に制御で
きる。この特徴を利用して保護膜を成膜するわけである
が、−船釣にはイオン化率を高く、加速電圧を高くする
ことによって、膜の密着性、バッキング密度は良くなる
が、逆にスパッタ現象も起きてしまう。したがって本発
明では、保護膜の蒸着開始後、しばらくは大きなイオン
化率、大きな加速電圧で蒸着し、その後、スパッタ現象
を防ぐためにそれらの値を小さくして保護膜を作製する
つまり、密着性、パッチング密度の高い保護膜は、クラ
スターイオンビーム法において、イオン化電流、加速電
圧を蒸着中に連続または不連続に変化させることにより
得られる。
保護膜5は、不純物の混入を避けるため超伝導結晶を構
成する金属元素、 八!、およびSiから成る群より選
ばわた〜種以上の元素の酸化物または窒化物を用いるの
が好ましい。
[実施例] 実施例1 まず、第5図に示したよう、マスクを利用したRFスパ
ッタ法を実施することによって石英の基板(1インチ×
2インチ、1mm)Jlに5rTi03の核を形成した
。マスクにあけられた2つ一組の穴の相互間隔は100
 pである。個々の核の大きさは約1胛であった。なお
、基板の温度は800℃に加熱した状態でRFスパッタ
法を実施した。
この基板上に次のようにして、超伝導結晶を生成させた
。基板上にLa、Sr、 Cuが1 :2:3に蒸着で
きるように、CuO、SrCO3,La2(]+の混合
物を焼結し、4インチφの円板ターゲットを用いて、ア
ルゴンと酸素の混合ガス中で、スパッタし、結晶粒界が
できるまで、結晶を成長させた。
スパッタ条件は、真空度10−6Torr以下にし、ア
ルゴンと酸素を1:1に混合し、10−2〜10−’T
orr程度にした。蒸着速度は1〜100人/秒である
次にエツチングガスとして、NH3とIIcIを用いた
反応性イオネッチングにより単結晶−粒界−単結晶の表
面を平坦化した。
配線を次のように行った。材料は0r−Auを用い、真
空蒸着法によりまず、Orを200〜500人、その上
にAuを2000〜5000人蒸着した。バターニング
は、通常のフォトリソグラフィ技術で行なった。
その後、Al2O3の保護膜をイオンクラスタービーム
法により成膜した。
条件は以下の通り。
・真空度:まず、10 ””Torr以下にし、02を
入れて2〜4 X 10−’Torrにした・蒸着速度
、1〜10人/秒 ・膜厚:約8000人 ・蒸着の様子:最初約30秒間はイオン化電流を200
mA、加速電圧を4KV、その後、イオン化電流を10
0mA、加速電圧を2KVにした。このように作成した
ジョセフソン素子は、77Kにおいて、第6図の電流電
圧特性を示した。
保護膜を取り付けないジョセフソン素子は、液体窒素に
直接素子を入れて、室温→77に→室温という熱サイク
ルを与えると、2回目には、動作しなくなフだが、保護
膜が取り付けられた本発明のジョセフソン素子は、熱サ
イクルを加えても安定に動作した。
なお、超伝導結晶作成のためのターゲット構成元素とし
て、Laの代わりにGe、 Pr、 Nd、Pm、 S
m、Eu、Gd、Tb、Dy、 llo、 Er、 T
m、 Yb、 Lu、 YまたはLace、 GdTb
、HoYb、あるいはSrの代わりにBa、Ca、Ba
’Caを用いても、第6図とほとんど同様な電圧・電流
特性か得られだ。
実施例2 基板として5i(l I 1) 、超伝導性結晶として
Y 、Ba2Cu307の結晶を成長させたこと、保護
膜をY203としたこと以外は実施例1と同様にして、
ジョセフソン素子を形成した。保護膜形成の条件は以下
の通り。
・真空度:まず、10−6Torr以下にし、02を人
わでI X 10−S〜4 X 10−’Torrにし
た・蒸着速度:1〜10人/秒 ・膜厚:約1胛 ・蒸着の様子:最初約20秒間はイオン化′准流を30
0mA、加速電圧を3KV、その後、イ才ン化電流を5
0mA、加速電圧をIKVにした。
こうして形成されたジョセフソン素子の電圧・電流特性
も第6図と同様であった。
実施例3 石英基板上に実施例1と同様に5rTiO3の核を形成
した。この基板上にBi、 Sr、 Ca、 Cuが2
=2=2:3に蒸着できるように、Bi2O3、S r
 CO、、、CaC0,、GuOの混合物を焼結し、4
インチφの円板ターケラトを用いて、アルゴンと酸素の
混合ガス中でスパッタし、結晶粒界かできるまで結晶を
成長させた。
スパッタリングは真空度10−  Torr以下、アル
ゴンと酸素を1・1に混合し、10−2〜10Torr
の雰囲気で行った。また、保護膜は実施例1と同様にA
IJ3を用いた。
このように作成したジョセフソン素子の電圧電流特性も
第6図と同様てあった。
〔発明の効果〕
以上詳細に説明したように本発明によって、ジョセフソ
ン結合を形成する操作を別途実施しなくても、基板上の
所望位置に所望数のジョセフソン素子が製造できるよう
になった。このため、論理回路等の製造に際して、製造
工程数の減縮、操作の簡略化等が図れる。
更に、密着性、バッキング密度の高い保護膜で表面がコ
ーティングされることにより、急激な温度変化にも十分
耐えて正常に動作を示すジョセフソン素子が提供できる
ようになった。
【図面の簡単な説明】
第1図から第4図は本発明の実施態様を、その工程順に
示す図、第5図は核の基板上へのバターニック法を示す
図、第6図は本発明の実施例で形成された結晶粒界のジ
ョセフソン結合の電流〜電圧特性を示す図、第7図は、
クラスターイオンビーム蒸R法の原理図である。 1;核     2:基板 3:マスク   4:超伝導結晶 5:保護膜

Claims (1)

  1. 【特許請求の範囲】 1)基板表面よりも超伝導結晶の生起・成長を速める性
    質によって超伝導結晶の成長起点となる、少なくとも2
    つで1組の核を、基板上に所望のパターンで形成した後
    、 該基板上での該超伝導結晶の選択的生起と結晶化の進行
    とによって結晶粒界を生じさせて、ジョセフソン接合を
    形成し、 配線と、水分の侵入を防止するための保護膜の該超伝導
    結晶上への成膜とを実施する、ジョセフソン素子の製造
    方法。 2)前記超伝導結晶の選択的生起と結晶化の進行とを、
    化学気相蒸着法、スパッタリング法、電子ビーム法、ク
    ラスターイオンビーム法、分子線エピタキシー法により
    実施する請求項1記載の製造方法。 3)前記超伝導結晶をA−B−C−D(ただし、AはL
    a、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb
    、Dy、Ho、Er、Tm、Yb、Lu、Sc、Bi、
    TlおよびYから成る群、BはCa、Sr、Baおよび
    Pbから成る群、CはV、Ti、Cr、Mn、Fe、N
    i、Co、Ag、Cd、Cu、ZnおよびHgから成る
    群、DはSおよびOから成る群よりそれぞれ選ばれた一
    種以上の元素である)で示される結晶とする請求項1ま
    たは2記載の製造方法。 4)前記保護膜は、超伝導結晶を構成する金属元素、A
    l、およびSiから成る群より選ばれた一種以上の元素
    の酸化物または窒化物である請求項3記載の製造方法。 5)前記保護膜をクラスターイオンビーム法で設ける請
    求項1〜4いずれかに記載の製造方法。 6)前記核をAl_2O_3、SrTiO_3、TiO
    _2、BeO、MgO、CaO、SrOまたはBaOと
    する請求項1〜5いずれかに記載の製造方法。
JP63194486A 1988-08-05 1988-08-05 ジョセフソン素子の製造方法 Pending JPH0244786A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63194486A JPH0244786A (ja) 1988-08-05 1988-08-05 ジョセフソン素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63194486A JPH0244786A (ja) 1988-08-05 1988-08-05 ジョセフソン素子の製造方法

Publications (1)

Publication Number Publication Date
JPH0244786A true JPH0244786A (ja) 1990-02-14

Family

ID=16325335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63194486A Pending JPH0244786A (ja) 1988-08-05 1988-08-05 ジョセフソン素子の製造方法

Country Status (1)

Country Link
JP (1) JPH0244786A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263883A (ja) * 1990-03-14 1991-11-25 Canon Inc ジョセフソン接合素子
US5215960A (en) * 1990-07-02 1993-06-01 Sumitomo Electric Industries, Ltd. Method for manufacturing oxide superconducting devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065583A (ja) * 1983-09-20 1985-04-15 Nippon Telegr & Teleph Corp <Ntt> ジヨセフソン接合素子及びその製法
JPS62189776A (ja) * 1986-02-15 1987-08-19 Nippon Telegr & Teleph Corp <Ntt> ジヨセフソン接合素子及びその製法
JPS62243768A (ja) * 1986-04-15 1987-10-24 Canon Inc 堆積膜形成法
JPS6344720A (ja) * 1986-04-11 1988-02-25 Canon Inc 結晶性堆積膜の形成方法
JPH01283884A (ja) * 1988-05-10 1989-11-15 Matsushita Electric Ind Co Ltd ジョセフソン素子アレイおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065583A (ja) * 1983-09-20 1985-04-15 Nippon Telegr & Teleph Corp <Ntt> ジヨセフソン接合素子及びその製法
JPS62189776A (ja) * 1986-02-15 1987-08-19 Nippon Telegr & Teleph Corp <Ntt> ジヨセフソン接合素子及びその製法
JPS6344720A (ja) * 1986-04-11 1988-02-25 Canon Inc 結晶性堆積膜の形成方法
JPS62243768A (ja) * 1986-04-15 1987-10-24 Canon Inc 堆積膜形成法
JPH01283884A (ja) * 1988-05-10 1989-11-15 Matsushita Electric Ind Co Ltd ジョセフソン素子アレイおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263883A (ja) * 1990-03-14 1991-11-25 Canon Inc ジョセフソン接合素子
US5215960A (en) * 1990-07-02 1993-06-01 Sumitomo Electric Industries, Ltd. Method for manufacturing oxide superconducting devices

Similar Documents

Publication Publication Date Title
US5047385A (en) Method of forming superconducting YBa2 Cu3 O7-x thin films with controlled crystal orientation
JPS63237313A (ja) 超伝導構造体およびその製造方法
KR100428910B1 (ko) 다층 복합체 및 그의 제조방법
JPH0577347B2 (ja)
JPH0244786A (ja) ジョセフソン素子の製造方法
JP2854623B2 (ja) 酸化物超電導体薄膜の製造方法
JPH0297427A (ja) 酸化物超伝導薄膜の製造方法
JPS63301424A (ja) 酸化物超伝導体薄膜の製造方法
JP2919956B2 (ja) 超電導部材の製造方法
JP2736062B2 (ja) 酸化物超電導体薄膜の製造方法
JPH01260717A (ja) 金属酸化物超伝導材料層の製造方法及び装置
JPH05170448A (ja) セラミックス薄膜の製造方法
JPH0244784A (ja) 超伝導パターンの形成方法
JP2919954B2 (ja) 超電導部材の製造方法
JPH08306977A (ja) 薄膜超伝導体およびその製造方法
JPH01249607A (ja) 酸化物超電導体膜の製造方法
JPH0244783A (ja) 超伝導パターンの形成方法
JPH08106827A (ja) 超伝導線の製造方法
JPH0238310A (ja) 酸化物高温超電導薄膜の製造方法
JPH06287100A (ja) 希土類元素を含む超電導酸化物薄膜の形成方法
JPH01100095A (ja) 酸化物超伝導体配線の作製方法
JPH03232723A (ja) 超伝導体
JPS63283179A (ja) ジョセフソン接合素子の製造方法
JPH0244782A (ja) 超伝導素子およびその製造方法
JPH0499077A (ja) 超伝導体