JPH0244031A - 非線形光学用ガラスの製造方法 - Google Patents

非線形光学用ガラスの製造方法

Info

Publication number
JPH0244031A
JPH0244031A JP19447888A JP19447888A JPH0244031A JP H0244031 A JPH0244031 A JP H0244031A JP 19447888 A JP19447888 A JP 19447888A JP 19447888 A JP19447888 A JP 19447888A JP H0244031 A JPH0244031 A JP H0244031A
Authority
JP
Japan
Prior art keywords
glass
particles
porous
porous body
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19447888A
Other languages
English (en)
Inventor
Makoto Shimizu
誠 清水
Yoshinori Hibino
善典 日比野
Takao Kimura
隆男 木村
Masaharu Horiguchi
堀口 正治
Fumiaki Hanawa
文明 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19447888A priority Critical patent/JPH0244031A/ja
Publication of JPH0244031A publication Critical patent/JPH0244031A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1438Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. solution doping of the article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (発明の産業上分野) 本発明は非線形光学用ガラスの製造方法、さらに詳細に
は非線形光学効果の大きな金属・酸化物微粒子添加ガラ
スの製造方法に属する。
(従来の技術) 最近、比較的大きな非線形光学効果を有する媒質として
金属・酸化物微粒子を添加したガラスが注目されている
。この種のガラスにおける非線形光学効果は、ガラス内
に添加されている金属・酸化物微粒子により生じている
。金属微粒子が添加されている場合、金属微粒子と媒質
の誘電率により決定されるプラズマ周波数において非線
形光学定数が極大値を収ることか明かとなっている。
また、酸化物微粒子が添加されている場合には、酸化物
微粒子の吸収端の波長において強い非線形性を有し、そ
の起源はバンドフィリング効果により説明されている。
(発明が解決する問題点) 従来非線形光学用媒質として検討されている金属微粒子
添加ガラスとしては、゛■右カメラの色調整フィルタと
して市販されているAu微粒子添加多成分ガラスに関す
る報告がある。このAu微粒子添加多成分ガラスは、ガ
ラス内に10人程度の粒径を有するAu微粒子を分散さ
せた構造を持ち、バッチ溶融法により製造されている。
この方法では、多成分ガラスの原材料と金を混合し、溶
融・急冷・再加熱のプロセスによりガラス内にAu微粒
子を析出させる。このため、使用できるガラス材料とし
てはある程度低温で完全溶融でき、かつある程度金に対
する溶融度が大きいことが必要である。このため、光通
信に広く使用され、耐候性などの優れた石英ガラスをベ
ースガラスとした金属・酸化物微粒子添加ガラスを製造
することは不可能であった。
本発明は、上記の問題点に鑑みなされたものであり、非
線形光学用ガラス体として、許容入力光強度値が高く、
耐候性に優れた石英ガラスを母体ガラスとした金属・酸
化物微粒子添加ガラスを製造する方法を提供することに
ある。
(問題点を解決するための手段) 上記問題点を解決するため、本発明による非線形光学用
ガラスの製造方法は、主としてSiO2微粒子の集合し
た多孔質体あるいは多孔質膜をガラス化処理して光ファ
イバ用母材あるいは光回路用石英系導波路膜を作製する
方法において、当該多孔質体あるいは多孔質膜を形成し
た後、金属コロイド溶液中に当該多孔質体あるいは多孔
質膜を漬け、次に当該多孔質体あるいは多孔質膜を乾燥
し、最後に当該多孔質体あるいは多孔質膜を加熱処理す
ることを特徴とするものである。
本発明の方法は、高品質光通信用石英ガラス合成法であ
る■0、○■法(以下気相合成法と呼ぶ)やゾル・ゲル
法を金属・酸化物微粒子添加石英ガラス合成法に適用し
たものである。
気相合成法およびゾル・ゲル法の特徴として、多孔質体
を経由して石英ガラスを製造する点が挙げられるが、本
発明はこの点を生かして金属微粒子添加石英ガラスを合
成することに特徴かある。
従来のAu添加多成分ガラス製造技術に比較して、■バ
ッチ溶融を経ないため従来法で作製不可能な石英ガラス
を母体ガラスとした金属・酸化物微粒子添加ガラスが合
成できること、■添加される金属微粒子の粒径は、使用
する金属コロイド溶液中に含まれる微粒子の径で決定さ
れるためガラス合成後に光回路形成のためにたとえ加熱
処理などを行なっても金属・酸化物微粒子径の変化は小
さい、などの優れた特徴を有する。
(実施例1) 第1図および第2図は、本発明の第1の実施例を示す図
である。各々、lはガラス微粒子合成用トーチ、2は排
気管、3は酸水素火炎、4は多孔質体、5は種棒、6は
液浸用容器、7は金コロイド溶液、8はガラス化処理用
炉芯管、9は電気炉発熱体である。
まず、第1図の多孔質体合成部分について説明する。ガ
ラス微粒子合成用トーチ1には、原料として5iC14
(保持温度40°、キャリアカス流量100cc/mi
n、 )で供給し、火炎形成のために酸素(10)/m
in、 )及び水素(3,07/m1n)を流した。な
お、ガラス微粒子合成用トーチ1は同心円状4重管構造
をしており中心より原料、分離用アルゴン、水素、分離
用アルゴン、酸素の順で供給した0分離用アルゴンは各
々17/min、の流量とした。
火炎3中で形成したガラス微粒子は、回転および上下動
@横をもつ種棒5の下面に堆積する。未堆積ガラス微粒
子および未反応原料は排気管2より排出される。堆積量
に応じて種棒5を引き上けれは、多孔質母材4が形成さ
れる。
本実施例では、直径15mm・長さ200mm  かさ
密度1.0g/cm2の多孔質母材を合成した。
合成した多孔質母材を使用して、次に金コロイド溶液7
を浸透させた。使用した金コロイド溶液7は金コロイド
の平均粒径が20nmのもので、塩化金酸をアルカリ性
水溶液中で還元して作製したものである。浸透用容器6
を使用して浸透処理した後、溶媒である水を乾燥させた
後に、電気炉8.9中でヘリウムガス雰囲気中で150
0°Cまで加熱しガラス化した。
第2図は、ガラス化後の母材より厚さ2mmの円盤状に
カットし研磨した試料の透過特性である。
0.54μmの波長をピークとした吸収があることがわ
かる。この吸収は、金微粒子のプラズマ振動周波数に対
応しており、作製したガラスが充分非線形ガラスとして
使用可能なことがわかる。
なお、縮退4光子混合実験により評価した3次非線形感
受率は約1. OX 10 ’esu、であった。
(実施例2) 実施例1で作製した金微粒子添加ガラス母材の外側に、
VAD法を使用してクラッド部を形成後ファイバ化した
。まず、ファイバ化の手順について第3図により説明す
る。ガラス微粒子合成用トーチlは同心円状4重管構造
をしており、中心より原料(SiC14) 、分離用ア
ルゴン、水素、分離用アルゴン、酸素の順で供給した。
分離用アルゴンは各々1、p/min、の流量とした。
火炎3中で形成したガラス微粒子は、回転および動機構
を持つ種棒5に取付けられた金微粒子添加ガラスロッド
4′の側面に堆積する。
未堆積ガラス微粒子および未反応原料は排気管2より排
出される。堆積量に応じて種棒5を引き上げれば、クラ
ッド部用多孔質体10が形成される。クラッド部堆積後
に、金微粒子添加ガラスロッド4′(多孔質体を含む)
を電気炉8.9中でヘリウムガスとSiF4の混合雰囲
気中で1500’Cまで加熱しガラス化した。ガラス化
後のクラッド部と全微粒子添加部分との比屈折率差は0
.3%(クラッド部が低い)である0作製したファイバ
母材を通常の方法によりカットオフ波長が0.5μmに
なるようにして線引きした。
第4図に線引きした光ファイバの伝送損失特性を示す。
0.54μmの波長をピークとした吸収があることがわ
かる。この吸収は、金微粒子のプラズマ振動周波数に対
応しており、作製したガラスが充分非線形ガラスとして
使用可能なことがわかる。
(実施例3) 本実施例では、コア部の組成としてゲルマニウムを添加
した多孔質体を形成し、同時に純粋石英の組成を持つク
ラッド部多孔質体をコア部の外側に合成した。作製した
多孔質複合体を実施例1と同様の方法により全体に金コ
ロイド溶液中に浸漬した。その後乾燥過程を経た後に、
実施例1と同様にしてガラス化した。ガラス化後の母材
は、コア・クラッド部に均一に金微粒子が添加されてお
り、またコア・クラッド間の比屈折率差は多孔質複合体
時のシリコン・ゲルマニウム原料の比に対応して0.3
%の値が得られた。
(実施例4) 本実施例においては、石英系ガラス導波路の作製例につ
いて述べる。第5図は、FHD法(火炎堆積法)に基づ
いた全微粒子添加ガラス薄膜の作製手順を示したもので
ある。ガラス微粒子合成用トーチ11には、原料として
5iC14,BCl3.GeCl4.PC+3を供給し
、火炎形成のために酸素(107/min、 )および
水素 (3、07/min、 )を流しな。なお、ガラス微粒
子合成用トーチ1は同心円状3重管構造をしており中心
より原料、水素、分離用アルゴン、酸素の順で供給した
0分離用アルゴンは1 #min、の流量とした。
火炎3中で形成したガラス微粒子は、X−Y2軸移動機
構を有する黒鉛性基板ホルダー13上のシリコン基板1
2上に堆積する。未堆積ガラス微粒子および未反応原料
は排気管14より排出される。適当ながさ密度で多孔質
膜15を堆積した後、金コロイド溶液7を浸透させた。
使用した金コロイド溶液7は金コロイドの平均粒径が2
0nmのもので、塩化金酸をアルカリ性水溶液中で還元
して作製したものである。
浸透用容器6を使用して浸透処理した後、溶媒である水
を乾燥させた後に、電気炉16.17中でヘリウムガス
雰囲気中で約1300℃まで加熱しガラス化した。
第5図に示した方法を用いて、コア部分18ガラス膜と
して金微粒子添加ガラスを作製し、クラッド部19とし
てコア部分より屈折率が0,3%低いガラス膜を使用し
て作製した光導波路の断面を第6図に示す、この導波路
では、0.54μmの波長をピークとした吸収があり、
この吸収は金微粒子のブラズマ振動周波数に対応してい
る。このことは、作製した石英系ガラス導波路が充分非
線形導波路として使用可能なことを示している。
(実施例5) 実施例4と同様にして、導波路膜を合成したが、コア・
クラッド各多孔質膜合成時に金コロイド溶液浸漬を行な
いコア・クラッド全体に金微粒子を添加しな。この結果
、添加される金微粒子の濃度は、多孔質膜のかさ密度と
使用する金コロイド溶液の濃度に依存しているものの、
これらを調整することによりガラス化後のコア・クラッ
ドでの全微粒子濃度を任意に調整できることか明かとな
った。
(実施例6) 実施例1と同様の手法で、多孔質母材中にMnコロイド
溶液を使用した。Mnコロイドを浸透した後、溶媒を乾
燥後に電気炉8.9中でヘリウムガスと酸素カスの混合
雰囲気中で1500°Cまで加熱しガラス化した。ガラ
ス化したロッドより厚さ0.3mmの円盤状にカットし
研磨した試料を使用して、TEMによる写真観測および
1.064μmの波長のYAGレーザを使用して縮退4
光子混合実験により3次非線形感受率を評価した。rE
Mによる評価では、ガラス中に100nmの微粒子が分
散していることがわかり、光学的吸収特性の結果と合わ
せるMnO2微粒子であると考えられる。
一方、3次の非線形感受率は約1. OX 10 ’e
su、であり充分非線形ガラスとして使用できることが
明かとなった。
(実施例7) 本実施例においては、テトラエトキシシラン(5i(O
C2Hs)4)を加水分解・脱水縮合により作製した乾
燥ゲル体を多孔質体として使用した。乾燥ゲル体の作製
手順は以下のとおりである。
■テトラエトキシシラン、希アンモニア水、エチルアル
コールをモル比で1:4:4で混合し、密閉容器中で7
0°C約1週間保持する。
■混合溶液400m Iに対して(Si(OC2I(s
)3FノIチルアルコール溶液を加え、蒸発量が制御可
能な容器中に入れ70℃で保持し、ゲル化させる。
■ケル化後、温度を徐々に上げ120℃程度までにして
乾燥ゲル体にする。
以上の工程で作製した乾燥ゲル体を使用して、まず電気
炉中で酸素・ヘリウム混合雰囲気下で500°Cで熱処
理を行なった。ついで、実施例1の方法と同様な方法に
より、金コロイド溶液を浸透処理した。ついで乾燥工程
を経た後に、ヘリウム・酸素混合雰囲気下で1300°
Cまで加熱しガラス化した。
作製したガラスは、実施例1と同様の光学的特性を有し
、充分非線形光学ガラスとして使用可能なことが明かと
なった。
以上の実施例においては、添加する微粒子として金およ
び二酸化マンガンについてのみ示したが、本発明の主要
な点は多孔質体形成後にコロイド溶液に浸漬し、その後
ガラス化処理することにあり、使用可能なコロイド溶液
としては金コロイド溶液、マンガン・コロイド溶液の2
種類に限定されるものではない。
(発明の効果) 以上説明したように、本発明の方法に従えば幅広い種類
の金属・酸化物微粒子がホストガラスとして優れた特性
を有する石英系ガラスに添加できるという利点がある。
【図面の簡単な説明】
第1図は本発明の第1の実施例のプロセスを示す図、第
2図は本発明の第1の実施例で作製したガラスの特性を
示す図、第3図は本発明の第2の実施例のプロセスを示
す図、第4図は光ファイバの伝送損失特性を示す図、第
5図は金微粒子添加ガラス薄膜の作製プロセスを示した
図、第6図は作製した光導波路の断面図である。 1・・・ガラス微粒子合成用トーチ、 2・・・排気管
、 3・・・酸水素火炎、 4・・・多孔質体、5・・
・種棒、 6・・・液浸用容器、7・・・金コロイド溶
液、 8・・・ガラス化処理用炉芯管、9・・・電気炉
発熱体、 IO・・・クラッド部用多孔質体、 11・
・・ガラス微粒子合成用トーチ、12−・・シリコン基
板、13・・・X−Y2軸移動機構を有する黒鉛製基板
ホルダー  14・・・排気管、 15・・・多孔質膜
、 16・・・ガラス化用電気炉発熱体、 17・・・
ガラス化用電気炉炉芯管、 18・・・コア都合微粒子
添加ガラス膜、19・・・クラッド部ガラス膜。 出願人代理人   雨 宮  正 季 第2図 透過率(%) e長(μm) 第4図 fi長(μm 第1〔ゴ 8ガラス化処:l庁禮芯管 第3図 トーチ

Claims (1)

  1. 【特許請求の範囲】 1、主としてSiO_2微粒子の集合した多孔質体ある
    いは多孔質膜をガラス化処理して光ファイバ用母材ある
    いは光回路用石英系導波路膜を作製する方法において、
    当該多孔質体あるいは多孔質膜を形成した後、金属コロ
    イド溶液中に当該多孔質体あるいは多孔質膜を漬け、次
    に当該多孔質体あるいは多孔質膜を乾燥し、最後に当該
    多孔質体あるいは多孔質膜を加熱処理することを特徴と
    する非線形光学用ガラスの製造方法。 2、ガラス化処理以前あるいはガラス化処理中に添加し
    た金属コロイド粒子の酸化処理を行なうことを特徴とす
    る特許請求の範囲第1項記載の非線形光学用ガラスの製
    造方法。
JP19447888A 1988-08-05 1988-08-05 非線形光学用ガラスの製造方法 Pending JPH0244031A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19447888A JPH0244031A (ja) 1988-08-05 1988-08-05 非線形光学用ガラスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19447888A JPH0244031A (ja) 1988-08-05 1988-08-05 非線形光学用ガラスの製造方法

Publications (1)

Publication Number Publication Date
JPH0244031A true JPH0244031A (ja) 1990-02-14

Family

ID=16325211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19447888A Pending JPH0244031A (ja) 1988-08-05 1988-08-05 非線形光学用ガラスの製造方法

Country Status (1)

Country Link
JP (1) JPH0244031A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477898A2 (en) * 1990-09-25 1992-04-01 Sumitomo Electric Industries, Ltd. Method for producing a quartz optical waveguide
JPH07248516A (ja) * 1994-03-11 1995-09-26 Agency Of Ind Science & Technol 非線形光学材料およびその製造方法
US5688442A (en) * 1994-03-11 1997-11-18 Agency Of Industrial Science & Technology Nonlinear optical materials and process for producing the same
US5993701A (en) * 1996-11-27 1999-11-30 Industrial Science & Technology Third-order nonlinear optical material and method for production thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477898A2 (en) * 1990-09-25 1992-04-01 Sumitomo Electric Industries, Ltd. Method for producing a quartz optical waveguide
JPH07248516A (ja) * 1994-03-11 1995-09-26 Agency Of Ind Science & Technol 非線形光学材料およびその製造方法
US5688442A (en) * 1994-03-11 1997-11-18 Agency Of Industrial Science & Technology Nonlinear optical materials and process for producing the same
US5800925A (en) * 1995-03-07 1998-09-01 Agency Of Industrial Science & Technology Nonlinear optical materials and process for producing the same
US5993701A (en) * 1996-11-27 1999-11-30 Industrial Science & Technology Third-order nonlinear optical material and method for production thereof

Similar Documents

Publication Publication Date Title
US3868170A (en) Method of removing entrapped gas and/or residual water from glass
US4203744A (en) Method of making nitrogen-doped graded index optical waveguides
EP0300610A1 (en) Method of producing an optical fiber
CA1311127C (en) Glass body formed from a vapor-derived gel and process for producing same
JPS61155225A (ja) 光導波管製造方法
MacChesney et al. Materials development of optical fiber
JPS58145634A (ja) ド−プされたガラス状シリカの製造方法
JPH05350B2 (ja)
JPH0244031A (ja) 非線形光学用ガラスの製造方法
JP2931026B2 (ja) 希土類元素ドープガラスの製造方法
JP3188309B2 (ja) 光増幅器用光ファイバ母材の製造方法
JPS63315530A (ja) 光ファイバ母材の製造方法
JPH0324415B2 (ja)
Uhlmann et al. Wet chemical synthesis of bulk optical materials
JPH01294548A (ja) 光ファイバ母材の製造方法
JPS60108325A (ja) ガラスの製造方法
JPS6289B2 (ja)
JPH11180719A (ja) 光ファイバ用ガラス母材の製造方法
JPH089487B2 (ja) 光フアイバ−用ガラス母材の製造方法
JPS61106433A (ja) 光フアイバ母材の製造方法
JPS6296339A (ja) 光フアイバ用母材の製造方法
JPH01219804A (ja) 光導波路用ガラス薄膜の作製方法
JP3310159B2 (ja) Coドープ光減衰器用透明ガラス体の製造方法
JPS6259059B2 (ja)
JPH05105466A (ja) 光フアイバ母材の製造方法