JPH0243822B2 - - Google Patents

Info

Publication number
JPH0243822B2
JPH0243822B2 JP58116317A JP11631783A JPH0243822B2 JP H0243822 B2 JPH0243822 B2 JP H0243822B2 JP 58116317 A JP58116317 A JP 58116317A JP 11631783 A JP11631783 A JP 11631783A JP H0243822 B2 JPH0243822 B2 JP H0243822B2
Authority
JP
Japan
Prior art keywords
thin film
oxide thin
tellurium
low
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58116317A
Other languages
English (en)
Other versions
JPS609870A (ja
Inventor
Noboru Yamada
Mutsuo Takenaga
Kenichi Nishiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58116317A priority Critical patent/JPS609870A/ja
Priority to DE8484304250T priority patent/DE3473670D1/de
Priority to EP84304250A priority patent/EP0130755B1/en
Priority to US06/624,571 priority patent/US4659588A/en
Publication of JPS609870A publication Critical patent/JPS609870A/ja
Publication of JPH0243822B2 publication Critical patent/JPH0243822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光学情報記録体としてのテルル低酸
化物薄膜を再現性よく形成する製造方法に関する
ものである。
従来例の構成と問題点 テルル低酸化物薄膜TeOx(0<x<2)は、
高感度で、かつ信号品質の高い光学情報記録薄膜
として公知であり(特公昭54−3725)、既にこれ
を用いて静止画フアイル、文書フアイル等が製品
化されている。
従来、TeOx(0<x<2)薄膜の形成手段と
しては、次のようなものが知られていた。
(1) タングステンボートあるいは、モリブデンボ
ートにTeO2粉末を乗せて真空蒸着する方法。
この方法は、タングステンボートあるいはモ
リブデンボートに通電,加熱して、ボート表面
でTeO2との間に還元反応をおこさせ、TeO2
の酸素を一部除きながら蒸着してTeOx(0<
x<2)を得ようというものである。この方法
は極めて容易にTeOxを得ることができるとい
う特長が有るが、反面、反応の進行に従つてボ
ート表面の還元力が低下し、膜厚方向において
TeとOの組成比のズレが生じる、又毎回ボー
トの交換が必要なため、その反応速度の制御,
再現性が難しいという点が問題であつた。
(2) TeとTeO2の2つのソースを用意し、各々の
ソースからの蒸着温度を制御して、基材上に同
時に蒸着し、TeOx(0<x<2)を合成する
方法。
この方法は各ソースの蒸着温度を制御するこ
とで任意の組成比のTeOx薄膜を得ることがで
き、また、連続的に多数回の蒸着を行なうこと
ができる等のメリツトが考えられる優れた方法
である(第28回応用物理学関係連合講演会予稿
集P108(1981))。ただしTeは非常に蒸気圧の高
い物質であるため、その蒸着速度の制御は非常
に困難であり、突沸によりドロツプアウトが生
じ、特性の再現性が十分ではないとの問題があ
つた。
(3) TeO2に還元物質として金属を混合し、石英
ルツボ中でコイルヒータ等により還元反応を生
じさせながら蒸着する方法(第28回応用物理学
関係連合講演会予稿集P108(1981))。
この方法はTeO2粉末と還元金属の粉末とを
あらかじめ混ぜ合わせて置き、これを石英ルツ
ボ中で加熱してTeO2を還元しつつ蒸着する方
法であるが、この方法も反応が進行するにつれ
て還元金属の還元力が低下し、膜厚方向の組成
ずれが大きい、逆に、初期において反応が急激
に進んでソースがこぼれる等、技術的な問題が
あつた。
発明の目的 本発明は、上記各方法における、再現性,制御
性、均一性といつた課題を解決し、容易に、かつ
効率よく、そして再現性に優れた、光学情報記録
材料としてのテルル低酸化物薄膜の製造方法を提
供するものである。
発明の構成 本発明は、上記目的を達成するため、以下に述
べるような工程で得られる焼結体を蒸着ソースと
して用いることを特徴とする。
a TeO2と還元性物質とを混ぜ合わせる工程、 b 前記混合物を熱処理して、TeO2の一部を還
元性物質と反応させる工程。
本発明によれば、熱処理によつて生じたTeO2
の還元形の大部分は、還元金属の一部と結合して
化合物Te−Mを形成し、未反応のTeO2および、
反応の結果酸化されたMOと一諸になつて均一な
焼結体を形成する。蒸着時には、この焼結体中の
TeO2と、Te−M間の結合からはずれたTeとが
同時に蒸着され、基材上でTeOx(0<x<2)
を形成するわけであるが、この焼結体を用いる方
法は還元しながら蒸着する方法に比べて急激な反
応が無いためソースが吹きこぼれるといつた現象
は無く、またTeの解難は序々に一定の速度で進
行するため膜厚方向で組成がズレることも少な
い。また、一度に大量にソースを作成し、そこか
ら分取して使用することで、他の方法に比べては
るかに再現性よく同じ特性の膜が得られる。加え
て、湿度に対して強い膜が得られるという結果が
観察された。
実施例の説明 第1〜第3図は、本発明による焼結体を作る工
程の例を示す。
1は、乳鉢の断面である。この中に、TeO2
末3と還元性物質4を入れ乳棒2でよく混合す
る。混合は、ボールミルを用いることも可能であ
る。又、アルコール,アセトン等を加えて混合す
ることで均一にすることが容易になる。混合した
粉末5は、乾燥した後、第2図に示すように石英
ボート6に乗せ、第3図に示すように電気炉で熱
処理する。第3図中、7は石英の炉心管、8はヒ
ーター、9は断熱材、10は外壁、11は熱電対
を示す。熱処理の際はN2,Ar等の不活性ガス雰
囲気中で行なう。12はガスインレツト、13は
ガスアウトレツトを示す。熱処理温度は還元性物
質によつて異なるが、おおよそ400℃から1000℃
の間で十分反応し、きれいな焼結体を得ることが
できた。熱処理温度が400℃以下は反応が十分進
行せず、1000℃以上では処理中にTe成分が蒸着
してしまい好ましくない。
還元性物質としては、Al,Si,Ti,V,Cd,
In,Sn,Sb,Ta,W,Cr,Mn,Fe,Co,Ni,
Cu,Zn,Ge,Mo,Bi,Pb等の金属又は半金属
またはS,Se,C等を用いることができる。上
記還元性物質は、熱処理によつてTeO2と反応し、
例えば mTeO2+nM→TeM+MO+TeO2 のような模式で示される変化をおこす。すなわ
ち、TeO2の一部は還元性物質Mの一部によつて
還元されTeとなり、同時にMは、0を奪つて
MO,M2O3,MO2といつた形の酸化物となる。
この時、還元されて生じたTeの大部分は、未反
応で残されていたMと結合しM2Te,MTe,
M2Te3,MTe2のような形をとり、焼結体中に含
まれる。従つて、熱処理の結果、得られる焼結体
は、M−Te合金,M−O酸化物,TeO2の集合体
になつていると言える。
前述の還元性物質の中で、Cu,Sb,Pb,Al,
In,Zn,Bi,Ge,Se,Cdは、二酸化テルルを適
度な速度で還元するばかりでなく、還元されて生
じるTeとの相溶性が良く均一な焼結体を得るこ
とができた。とりわけCu,Al,Sb,Pb,Inの各
元素は、Teとの相溶性が非常に高く、極めて均
一な焼結体が得られることがわかつた。
還元性物質剤の混合比は15mol%ないし80mol
%が適当であつた。混合比が15mol%以下では還
元が十分に進行せず、この焼結体を用いて蒸着し
たテルル低酸化物薄膜は、後に述べるように非常
にO成分に多い膜で、光吸収係数が小さく記録前
後の光学的変化が不十分であつた。また、混合比
が80%以上では、還元が進みすぎて、この焼結体
を用いて蒸着したテルル低酸化物薄膜は、非常に
Te成分の多い膜となり熱的に不安定な特性とな
つて光学情報記録膜としては使用できなかつた。
混合比が15mol%から80mol%の間では、適度に
TeO2の還元が進んだ焼結体が得られ、それを用
いて混合比に応じた特性の光学情報記録体として
のテルル低酸化物薄膜が得られることがわかつ
た。
以上のことは第10図により説明できる。同図
はTeO2と還元性物質との混合物 (TeO2100−x〓Mx〓(x〓mol%の意味)を熱処理
し、反応が理想的に終了した場合に生成される
TeとTeO2の相対的な割合(O/Te比で表され
る)を説明する図である。同図a,b,c,dは
それぞれ還元性物質Mの還元能力が異なる場合を
示したもので、それぞれMO3,MO2,M2O3
M2Oの形の酸化物が生成されることによりTeが
生成される。還元能力は物質固有の特性である
が、本発明で提案している物質の場合にはいずれ
も上記aからdの間の還元能力範囲に含まれる。
この図から、(1)還元性物質Mの還元能力が高い
同図aの場合では、熱処理前の混合物
(TeO2100−x〓Mx〓において還元材料の組成比x〓
を40mol%以上としたとき、熱処理によつて
TeO2はすべて還元されてしまうこと、(2)還元性
物質Mとして最も還元能力の低い物質を用いた同
図dの場合でさえ、還元性物質Mの濃度x〓が
80mol%より大きい場合には、熱処理により
TeO2は完全に還元されてしまうこと、(3)還元性
物質の濃度が15mol%付近と低い場合には同図a
の還元能力の大きい還元性物質を用いた場合でも
O/Te比が1.47と大きなこと、(4)還元性物質の
濃度が高い組成ほどO/Teの変化率が大きくな
ること等が分かる。
焼結体中のO/Te比が小さければ蒸着した記
録膜中でのO/Te比もそれにつれて小さくなる。
すなわち、還元性物質Mの濃度x〓が80mol%以上
の場合には還元性物質の種類によらず蒸着した記
録膜中にはTeO2が含まれないことになり、Teだ
けの記録膜が形成される。逆に焼結体中のO/
Te比が大きければ記録膜中でのO/Te比も大き
くなるといえる。
実際には焼結体中のO/Te比は記録膜の組成
とは一定の方向にずれる。その理由はTeが蒸発
する速度がTeO2が蒸発する速度に比べて大きい
ためである。従つて、記録膜中でのO/Te比は
焼結体中のO/Te比に比較してやや小さくなる
が、ただし還元性物質Mの濃度x〓依存性の傾向は
保存され、還元性物質Mの濃度x〓を0から最大
80mol%の範囲で選ぶことでO/Te比が2から
0の間にある任意のTe低酸化物膜を得ることが
できるものである。
複数の還元性物質を混合して用いる場合、例え
ば(TeO2100−x〓Mx〓(この場合の還元性物質M
は複数の還元性物質M1,M2,……,Moの集合
体であり、x〓はx〓=X1,X2……、+xoただしxo
は還元性物質Moの濃度を表わす)なる混合物を
準備し、熱処理する場合には、上記還元能力の異
なる場合の結果を組合せて、同様に考えることが
できる。すなわち、複数の還元性物質M1,M2
……Moの集合体の総濃度を最大80mol%の範囲
で選ぶことによつて任意のx〓の値を有するテルル
低酸化物薄膜TeOx〓(0<x〓<2)を得ることが
できる。
第4図は、上記のようにして得た焼結体を用い
て、テルル低酸化物薄膜を形成する方法を示した
ものである。真空系12の真空度は10-3Torr〜
10-7Torr程度で良いが、10-5Torr以下では、付
着性の高い、強い膜が得られる。例えば、前記焼
結体19を石英容器17に入れ、コイルヒーター
16で外部から加熱して支持台14上に設置され
た基材13上に、テルル低酸化物薄膜を蒸着して
形成する。ヒーター温度は500℃〜1000℃が適当
であり、この間で蒸着速度,膜組成を制御するこ
とができる。コイルヒーターは電極15を介して
外部電源18に接続され、通電加熱する仕組みに
なつている。
焼結体ソースは大量に製造して粉砕し、そこか
ら分取して使用することで均質になり、更に再現
性を高めることができる。
加熱方法としては、前記のよにヒーターで外側
から全体を加熱する方法以外に、電子線ビームを
用いて局所的に急加熱する方法がある。この場合
にはソースとして焼結体を固めた第5図のような
ペレツト状のもの20を用いる方が加熱がしやす
い。このペレツトは、第6図に示すような治具2
1を用いて形成する。治具は、押え棒部21a,
本体21b,底部21cから成る。この中に焼結
体を粉砕した粉末22を入れて、プレスし、粉末
を押し固め整形する。電子線ビームによる方法は
ヒータを用いる場合に比べて、(イ)ペレツトの温度
を急激にかつ局所的に昇温させることが可能であ
り、ヒータで全体を加熱する場合よりも組成ズレ
がより少なくなる、(ロ)応答が速いので蒸着速度の
コントロールが容易であるといつた利点に加え
て、(ハ)後に述べるように、更に耐湿性が改善向上
することがわかつた。焼結体を用いる方法で作つ
た膜は、他の方法による膜よりも、膜の構造が緻
密であり、そのため外気の影響を受けにくいと考
えられるが、電子線ビームによる薄膜は、膜構造
が更に鑿密かつ均質で、外気の影響がほとんどお
よばないため湿度劣化が小さいと考えられる。
次に、更に具体的な例をもつて、本発明を説明
する。
実施例 1 出発原料として、TeO2粉末と、Cu粉末を用
い、TeO2を111.72g(約0.7mol),Cuを19.68g
(約0.3mol)の割合で第1図に示したような方法
で少量のアルコールを用いて混合する。混合粉末
100gを石英ボートに乗せ、第3図の電気炉を用
いて熱処理する。炉心管に試料を入れて2/H
程度のN2ガスを流しながら、炉の温度を上げて
約30分間で700℃とし、そのまま約2H保持したの
ち、試料を炉の低温部に引き出して冷却した。約
1H後、炉から取り出したところ黒カツ色のガラ
ス状の固形物が得られた。
この固形物を石英ボートから取り出し、その一
部を用いて第4図の系によつて蒸着を行なつた。
真空度は1×10-5Torr、ヒータ温度700℃とし、
石英容器に前記固形物の小さい固まり約200mgを
入れ、加熱したところ、膜厚が約1200Åでやや黄
色味をおびたカツ色の透明なTeOx薄膜がアクリ
ル樹脂基材上に形成された。この薄膜にλ=
900nmの半導体レーザ24光を第7図に示す光学
系を用いて集光し、照射すると照射部が黒化変態
することが確かめられた。
実施例 2 実施例1においてCuの混合比を0〜100mol%
の間で変えて同様の実験を行なつた結果、混合比
が0〜90mol%の範囲に渡つて黒カツ色の均一な
焼結体が得られた。この焼結体を用いて実施例1
と同様に蒸着した結果、混合比が0〜15mol%の
間では非常に光学的濃度の小さい膜で、判導体レ
ーザ光の照射によつても大きい濃度変化が得られ
なかつた。また、混合比が80mol%以上になる
と、光学的濃度は上がるが、膜として不安定であ
つて、蒸着分はカツ色の透明膜であるが、室温で
どんどん変化し、不透明なややメタリツクな黒色
の膜になつてしまつた。混合比が15〜80mol%の
間では、安定な黄色味をおびたカツ色透明な膜が
得られ、半導体レーザ光により黒化変態した。
オージエ電子分光法を用いて組成分析した結果
膜厚方向の組成ズレはほとんど無く均質であり、
また混合比が少ないものから多いものにかけて
O/Teの比が減少しており、添加物濃度を0〜
80mol%の範囲で選ぶ間に、O/Te比が2から
0まで連続的に変化していた。
実施例 3 Cu粉末に代えて、Al,Si,Ti,V,Cd,In,
Sn,Sb,Bi,Pb,Ta,W,Cr,Mn,Fe,Co,
Ni,Zn,Ge,Mo,S,Se,Cの各元素を用い、
実施例1,2と同様の実験を行ない、それぞれ焼
結体を得ることができた。この中で、Sb,Pb,
Al,In,Zn,Bi,Ge,Se,Cdを用いた場合は、
それぞれ黒色,黄カツ色,黒色,黒カツ色,黒
色,灰カツ色,黄カツ色,赤カツ色,灰カツ色の
ガラス状で均質な焼結体が得られた。特にAl,
Sb,Pb,Inを用いた場合は、Cuの場合と同様に
広い混合比に渡つて均質なガラス状の焼結体を得
ることができた。反対に、Si,C,Mnを用いた
場合は、やや不均質な焼結体しか得られなかつ
た。
これらの焼結体を真空中で加熱して、それぞれ
TeOx(0<x<2)薄膜が得られた。
実施例 4 次に、複数の還元性物質を用いて得るべき
TeOx薄膜の特性を細かく制御する方法を検討し
た。実施例3に述べた還元性物質は、その還元能
力はどれも同じというわけでは無く、MO2ある
いはM2O3のように酸化され比較的還元能力の高
い激しい反応をするものと、MO,M2Oのように
しか酸化されず、比較的還元能力の低い、おだや
かな反応をするものに分かれる。従つて、この両
者を組み合わせて細かい制御することができる。
実施例3の結果、前者の代表としてAl、後者の
代表としてCuが特に使い易いことがわかつた。
そこで、TeO2に、Al,Cuをそれぞれ混合比を
変えて混合し、各700℃,N2ガス雰囲気で2H熱
処理して黒カツ色の焼結体を得た。これらの焼結
体各200mgを用いて10-5Torrの真空度でヒータで
加熱した結果、混合比のわずかな変化に対応した
特性の膜が得られた。この結果を半導体レーザで
照射して詳しく調べて、Alの混合比x〓およびCu
の混合比x〓が、15x〓50、かつ20≦x〓≦60mol
%で、また2成分を同時に混合するときには50≦
x〓+x〓≦80mol%の領域において特に光学的情報
の記録特性に適した薄膜が得られることがわかつ
た。
実施例 5 実施例4で得た焼結体のうち、出発組成が
(TeO230(Al)30(Cu)40mol%の焼結体を選び、こ
れを粉砕して粉末化した。この粉末を約2gに秤
量し、第6図の治具を用いて直径20mm,厚さ約15
mmのペレツトにプレス整形した。プレス圧力は
5t/cm2である。
このペレツトを、1つは第4図のような系でヒ
ータ加熱により、1つは電子線ビーム加熱により
パイレツクスガラス基板上に蒸着したところ、や
や黄色つぽいカツ色のTeOx薄膜が得られた。こ
の2種の膜を50℃,90H%の恒温,恒湿槽内に放
置し、その透過率変化を定期的に調べたところ第
8図に示すように、電子線ビームによる膜bはヒ
ーター加熱による膜aに比べて変化が少なく、湿
度の影響を受けにくく、より安定であることがわ
かつた。
実施例 6 150rpmで回転する1.1t,200φのPMMA樹脂基
材上に、実施例5で用いた電子線ビームの系を用
い、出発組成TeO230Al30Cu40のペレツトを用い
て、3Å/secの速度で厚さ約1200ÅのTeOx(0
<x<2)薄膜を蒸着し、光デイスクを試作し
た。
このデイスクを用い、第9図のような系で記録
実験を行なつた。半導体レーザ39を出た光は、
第1のレンズ37によつて疑似平行光40とな
り、第2のレンズ36で丸く整形した後、第3の
レンズ35で再び平行光になり、ハーフミラー3
3を介して第4のレンズ31で、波長限界約0.8μ
の大きさのスポツト42の集光される。この円ス
ポツトによつて照射されたデイスク30上の記録
膜は黒化変態し記録が行なわれる。ここで半導体
レーザを変調してデイスク上に情報信号を記録す
ることができる。
信号の検出は、デイスク面30からの反射光4
1をハーフミラー32を介して受け、レンズ34
を通じて光感応ダイオードで行なつた。
半導体レーザ光を単一周波数5MHzで変調し、
照射パワー8mWで1800rpmで回転43するデイス
ク面を照射したところ、記録が行なわれた。スペ
クトルアナライザーを用いてC/Nを測定し、
60dBが得られた。
発明の効果 以上のように、本発明によれば、従来のテルル
低酸化物薄膜の製造方法に比べて、 (1) 特性の再現性に優れている (2) 組成ずれがおきにくい (3) 突沸によるドロツプ・アウトが無い (4) 湿度劣化が小さい (5) 特性の制御,蒸着が容易 等の特徴をもつテルル低酸化物薄膜を得ることが
できる。
【図面の簡単な説明】
第1図は本発明の蒸着ソースとしての焼結体を
得る一つの課程で、出発原料の混合のようすを示
す断面図、第2図は焼結前の混合粉末の斜視図、
第3図は焼結に用いる電気炉の断面図、第4図は
本発明の焼結体を用いてテルル低酸化物薄膜の製
造する装置の断面図、第5図は蒸着ソースをペレ
ツト状にした一形態を示す斜視図、第6図はペレ
ツトをプレスして作る治具の断面図、第7図は本
発明で得たテルル低酸化物薄膜に記録する記録装
置の概略図、第8図はテルル低酸化物薄膜の蒸着
方法の違いによる耐湿特性の差を示す図、第9図
は本発明の製造方法で形成した光デイスクに情報
信号を記録・再生する装置の概略図、第10図
a,b,c,dはそれぞれ還元性物質Mの濃度x〓
に対するTe,TeO2の生成量の特性図である。 24……半導体レーザ、25……レーザ光、2
6……対物レンズ1、27……対物レンズ2、2
8……TeOx薄膜、29……基材。

Claims (1)

  1. 【特許請求の範囲】 1 二酸化テルルに還元性物質としてAl,Si,
    Ti,V,W,Cr,Mn,Fe,Co,Ni,Cu,Zn,
    Ge,Mo,Cd,In,Sn,Sb,Ta,Bi,Pbの金
    属、半金属またはS,Se,Cの中の少なくとも
    一種を混合して、TeO2100−x〓Mx〓 (0<x〓80mol%、Mは還元性物質M1,M2
    ……,Moの集合体でx1+x2+……+xo=x〓)の
    形で熱処理を行ない、二酸化テルルの一部が還元
    された形で含まれる焼結体を得、この焼結体を真
    空中で加熱して基板上に光学情報記録媒体として
    のテルル低酸化物薄膜TeOx〓(0<x〓<2)を形
    成することを特徴とするテルル低酸化物薄膜の製
    造方法。 2 還元性物質の添加量を15x〓80mol%とす
    ることを特徴とする特許請求の範囲第1項記載の
    テルル低酸化物薄膜の製造方法。 3 還元性物質としてCu,Alを選び、混合する
    ことを特徴とする特許請求の範囲第1項記載のテ
    ルル低酸化物薄膜の製造方法。 4 AlおよびCuの組成比x〓,x〓がそれぞれ15≦
    x〓≦50,20≦x〓≦60,50≦x〓+x〓≦80mol%であ
    ることを特徴とする特許請求の範囲第3項記載の
    テルル低酸化物薄膜の製造方法。 5 熱処理を、不活性ガス中で行なうことを特徴
    とする特許請求の範囲第1項記載のテルル低酸化
    物薄膜の製造方法。 6 熱処理温度を400℃〜1000℃の間で行うこと
    を特徴とする特許請求の範囲第1項記載のテルル
    低酸化物薄膜の製造方法。 7 真空度を1×10-5Torr程度以下に設定する
    ことを特徴とする特許請求の範囲第1項記載のテ
    ルル低酸化物薄膜の製造方法。 8 二酸化テルルに還元性物質としてAl,Si,
    Ti,V,W,Cr,Mn,Fe,Co,Ni,Cu,Zn,
    Ge,Mo,Cd,In,Sn,Sb,Taの金属,半金属
    またはS,Se,Cの中の少なくとも一種を混合
    して、 TeO2100−x〓Mx〓(0<x〓80mol%、Mは還元性
    物質M1,M2……,Moの集合体でx1+x2+……
    +xo=x〓)の形で熱処理を行ない、二酸化テルル
    の一部が還元された形で含まれる焼結体を得、こ
    の焼結体を粉砕した後、加工整形して得た物体を
    真空中で加熱して基板上に光学情報記録体として
    のテルル低酸化物薄膜TeOx〓(0<x〓<2)を形
    成することを特徴とするテルル低酸化物薄膜の製
    造方法。 9 二酸化テルルに還元性物質としてAl,Si,
    Ti,V,W,Cr,Mn,Fe,Co,Ni,Cu,Zn,
    Ge,Mo,Cd,In,Sn,Sb,Taの金属,半金属
    またはS,Se,Cの中の少なくとも一種を混合
    して、TeO2100−x〓Mx〓(0<x〓<80mol%、Mは
    還元性物質M1,M2,……,Moの集合体でx1
    x2+…+xo=x〓)の形で熱処理を行ない、二酸化
    テルルの一部が還元された形で含まれる焼結体を
    得、この焼結体を粉砕した後、加圧整形して得た
    物体を真空中で、電子線ビームを用いて加熱し
    て、基板上に光学情報記録体としてのテルル低酸
    化物薄膜TeOx〓(0<x〓<2)を形成することを
    特徴とするテルル低酸化物薄膜の製造方法。
JP58116317A 1983-06-27 1983-06-27 テルル低酸化物薄膜の製造方法 Granted JPS609870A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58116317A JPS609870A (ja) 1983-06-27 1983-06-27 テルル低酸化物薄膜の製造方法
DE8484304250T DE3473670D1 (en) 1983-06-27 1984-06-22 Method of producing optical recording medium
EP84304250A EP0130755B1 (en) 1983-06-27 1984-06-22 Method of producing optical recording medium
US06/624,571 US4659588A (en) 1983-06-27 1984-06-26 Method of producing optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58116317A JPS609870A (ja) 1983-06-27 1983-06-27 テルル低酸化物薄膜の製造方法

Publications (2)

Publication Number Publication Date
JPS609870A JPS609870A (ja) 1985-01-18
JPH0243822B2 true JPH0243822B2 (ja) 1990-10-01

Family

ID=14683993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58116317A Granted JPS609870A (ja) 1983-06-27 1983-06-27 テルル低酸化物薄膜の製造方法

Country Status (1)

Country Link
JP (1) JPS609870A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169690A (ja) * 1986-01-22 1987-07-25 Nec Corp 光記録材料
JPH04147435A (ja) * 1990-10-11 1992-05-20 Matsushita Electric Ind Co Ltd 真空蒸着方法
WO2008053792A1 (fr) * 2006-11-01 2008-05-08 Panasonic Corporation Support d'enregistrement d'informations, son procédé de fabrication, et cible de pulvérisation pour former un support d'enregistrement d'informations

Also Published As

Publication number Publication date
JPS609870A (ja) 1985-01-18

Similar Documents

Publication Publication Date Title
KR890004231B1 (ko) 광학정보 기록부재와 그 제조방법
US7897068B2 (en) Sputtering target, thin film for optical information recording medium and process for producing the same
EP0130755B1 (en) Method of producing optical recording medium
KR860002121B1 (ko) 광학정보 기록부재
JP2970813B2 (ja) スパッタリングターゲットおよびその製造方法,およびそのターゲットを用いて形成された記録薄膜,光ディスク
JPH0249238B2 (ja)
JP2000064035A (ja) 光記録媒体の干渉膜用スパッタリングターゲットおよびその製造方法
JPH0243822B2 (ja)
JPH0452537B2 (ja)
JPH043574B2 (ja)
KR890003202B1 (ko) 광학 기록매체 및 그 제조방법
JPS60112490A (ja) 光学情報記録部材の製造法
JPS6134743A (ja) 光学記録媒体の製造方法
EP1591555A1 (en) Ge-Cr ALLOY SPUTTERING TARGET AND PROCESS FOR PRODUCING THE SAME
EP1394284A1 (en) Sputtering target for forming phase change optical disc protective film and optical recording medium having phase change optical disc protective film formed using that target
JPH029954B2 (ja)
JPH0737180B2 (ja) 光学情報記録部材
JPS60263355A (ja) 光学記録媒体の製造方法
JPS61204844A (ja) 光学情報記録再生デイスクの製造方法
JPS63175243A (ja) 光学情報記録再生部材の製造方法
JP2001011614A (ja) 光ディスク保護膜形成用スパッタリングターゲットおよびその製造方法
JPS61158054A (ja) 光学情報記録再生デイスクの製造方法
JPS6177316A (ja) 磁気光学記録再生用薄膜材料の製造法
JPH0971861A (ja) スパッタリングターゲット
JPS63304440A (ja) 光記録媒体とその製造方法