JPH02417B2 - - Google Patents

Info

Publication number
JPH02417B2
JPH02417B2 JP58098512A JP9851283A JPH02417B2 JP H02417 B2 JPH02417 B2 JP H02417B2 JP 58098512 A JP58098512 A JP 58098512A JP 9851283 A JP9851283 A JP 9851283A JP H02417 B2 JPH02417 B2 JP H02417B2
Authority
JP
Japan
Prior art keywords
temperature
annealing
hot
soaking
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58098512A
Other languages
Japanese (ja)
Other versions
JPS59226120A (en
Inventor
Jiro Harase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9851283A priority Critical patent/JPS59226120A/en
Publication of JPS59226120A publication Critical patent/JPS59226120A/en
Publication of JPH02417B2 publication Critical patent/JPH02417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は加工性にすぐれたフエライト系ステン
レス薄板の製造法、詳しくは0.08〜0.5%のAlを
含有するSUS430鋼を代表とするフエライト系ス
テンレス鋼の薄板の製造法に関するものである。 Al含有量が0.08%以下の通常のSUS430型フエ
ライト系ステンレス薄板は、熱延板をほぼ800〜
850℃の温度で2時間以上箱焼鈍した後、冷間圧
延し、次いで通常820〜850℃の温度で短時間焼鈍
して製造されるのが一般的であり、製品のr値及
びリジング特性は均熱温度、均熱時間によつて殆
んど変化しないことが知られている。 この熱延板焼鈍工程において、熱延板の状態で
存在していたα′相は、フエライト相+炭化物に変
化し、熱延板焼鈍後にはフエライト相と炭化物相
となる。このような素材を冷間圧延後加熱すれば
回復、再結晶がおこり、再結晶後のミクロ組織は
等軸粒となり、結晶粒径は均熱温度、時間に殆ん
ど影響を受けず一定となる。再結晶が完了する温
度は、成分、熱延条件、冷延圧下率によつて若干
異なるが、材料温度が800℃以上に達すれば均熱
時間に関係なく再結晶し、再結晶すれば均熱温
度、時間に関係なくほぼ一定のr値、リジング特
性が得られることがわかつた。更に降伏強度、降
伏点のび、抗張力、全伸び、均一伸び等の機械的
性質も、再結晶すれば、ほぼ一定の特性が得られ
ることがわかつた。 しかしながら、Alを多量に含有したSUS430型
フエライト系ステンレス鋼の熱延板を、熱延板焼
鈍なしで冷間圧延して再結晶焼鈍した場合の再結
晶温度は熱延板焼鈍後冷間圧延した場合と比べて
より高温となり結晶粒も混粒となる。r値、リジ
ング特性は均熱温度及び時間により大幅に変化す
ること、その際r値およびリジング特性を同時に
満足する焼鈍条件は、均熱温度850〜900℃、均熱
時間60秒以内の高温短時間焼鈍であることを確め
本発明を完成したものである。更に機械的性質
も、再結晶が完了しても均熱温度および時間によ
り大幅に変化すること、特に均一伸びを大きく
し、降伏強度を下げ、降伏点伸びを小さくするに
は、850℃〜900℃の温度域で高温程、又均熱時間
が60秒以内長い程効果的であることを見い出し、
本発明を完成させたものである。 すなわち本発明の要旨とするところはAl0.08%
〜0.5%を含有するフエライト系ステンレス鋼の
熱延板を熱延板焼鈍することなく冷間圧延後、仕
上焼鈍するにあたり、850〜900℃の温度範囲で60
秒以内の均熱を行うことを特徴とする加工性のす
ぐれたフエライト系ステンレス薄板の製造法にあ
る。 以下本発明を詳細に説明する。 本発明において、本発明の対象鋼であるAl含
有フエライト系ステンレス鋼の熱延板を、熱延板
焼鈍することなく、冷間圧延した後、仕上焼鈍す
るにあたり、仕上焼鈍の均熱温度及び時間を850
〜900℃、60秒以内と限定した理由は以下のとお
りである。 前記した均熱条件と製品r値との関係は、均熱
温度875℃迄の範囲では高温長時間程向上し、875
℃を超え900℃まではゆるやかに劣化するが、850
℃以下の均熱温度の場合と比べて高いレベルにあ
る。また均熱時間は長い程r値の向上は顕著であ
るが、それは均熱温度が約875℃以下の場合に限
られ、均熱温度が約875℃を超えるとr値の向上
がみられるのは均熱時間10秒までであり、それ以
上均熱時間を長くしてもr値の向上代は僅かであ
る。 リジング特性に及ぼす最終焼鈍サイクルの影響
は複雑であるが、均熱時間を一定として、種々の
温度で焼鈍する場合には、ある均熱温度の場合に
最少のリジングを示し、その温度より低い場合
も、高い場合もリジングが増加し、その最適温度
は、均熱時間が短い程高温側に移行し、しかも最
適温度範囲が狭く、リジングの減少が大きいとい
う傾向がある。例えば均熱時間が60秒と長い場合
には、リジングの相対値は比較的大きく、850〜
875℃の範囲でほぼ一定の値を示し、875℃を超え
る温度又は850℃未満の温度では逆にリジングが
劣化する傾向を示し、均熱時間が10秒と短い場合
は、均熱温度が875〜900℃という比較的狭い温度
範囲で、リジングは低い値を示し、且つこの絶対
値は、均熱時間が60秒と長い場合の最適温度で焼
鈍して得られるリジングの値と比べて良好であ
る。 本発明鋼の均熱条件と製品の機械的性質の関係
は次の通りである。第1図に均熱時間、均熱温度
と降伏強度の代表的な関係を模式的に示した。図
で比較品は、Al含有量が0.08%以下の通常の430
鋼の熱延板を箱焼鈍後冷延焼鈍した材料である。
図から明らかの如く、比較品は均熱時間、温度の
影響が小さいが、本発明鋼の場合は、低い降伏強
度を得るには、均熱時間、温度に最適組合わせが
あることがわかる。最適組合わせ条件は、熱延条
件特にスラブ加熱温度と捲取条件によつても異な
る。即ちスラブ加熱温度が1150℃又はそれ以下の
低温の場合は、低温になる程、1200℃又はそれ以
上の高温スラブ加熱した材料と比べて、最適均熱
条件は、低温、短時間側に変わり、且つ、均熱温
度条件の影響が小さくなり、比較品に近い挙動を
示す。捲取温度の影響は、スラブ加熱温度の影響
程顕著ではないが、捲取温度を高くすることは、
スラブ加熱温度を下げるのと同様な作用効果があ
る。影響は更に小さいが、均熱温度に達するまで
の昇温速度、冷却速度も影響し、昇温、冷却の速
度が遅いのは、均熱時間を長くするのと同傾向の
効果がある。以上述べた如く、降伏強度を下げる
為の最適温度、時間の組合せは条件は、素材の前
歴によつて異なるが、最も高温長時間焼鈍が必要
と考えられる1200℃以上の高温スラブ加熱で、且
つ600℃以下の低温捲取を行つた熱延板を出発素
材とし、ソールドバス加熱等により急速昇温した
場合に35Kgf/mm2以下の低い降伏強度を得るに
は、均熱温度825℃では60秒以上、850℃〜875℃
では30秒〜60秒以上、900℃〜925℃では20秒以上
の均熱時間をとればよい。950℃では、10秒程度
の均熱で降伏点がさがるが、逆にこれ以上均熱時
間が長くなると再び降伏点が増加し、好ましくな
い。これはγ相析出によるものである。 第2図に均熱時間、均熱温度と降伏点伸びの代
表的な関係を模式的に示した。図から降伏点のび
の挙動は、降伏点の挙動とほぼ類似していること
がわかる。熱延条件、昇温、冷却速度の影響も降
伏点に及ぼす影響とほぼ対応している。第2図で
均熱温度が高温では、比較品も本発明品もともに
降伏点伸びがなくなるのはγ相析出によるもので
あり、この場合降伏強度が上がり、伸びも減少す
るので好ましくない。 全伸び、均一伸び、抗張力のいずれも、従来品
は均熱温度条件の影響はきわめて小さいが、本発
明鋼では、均熱温度、時間の影響が大きく、従来
の焼鈍より、高温長時間とすることで改良され
る。具体的には、素材の前歴を考慮して、850℃
以上、900℃以下の温度で最長60秒以内の均熱を
与えれば、従来品と同等レベルの良好な値を得る
ことが出来る。 Alを含有したSUS430型フエライト系ステンレ
ス鋼熱延板を熱延板焼鈍なしで冷間圧延して得ら
れた薄板の場合、再結晶してもr値およびリジン
グ特性、機械的性質が大巾に変化する理由は次の
ように考えられる。Alを含有したSUS430型フエ
ライト系ステンレス鋼においては、Alを含有し
ていない通常のSUS430型フエライト系ステンレ
ス鋼と比べて、熱延ままの状態ではマルテンサイ
ト相やベイナイト相等の硬い相が少ないとはい
え、数10%程度存在する。この硬い相は引続く冷
間圧延工程で、圧延方向に伸ばされ、仕上焼鈍工
程で、分解し、フエライト相と炭化物となり、再
結晶温度以上の温度で、このフエライト相も再結
晶する。まずr値が高温焼鈍で向上する理由は、
このような硬い相から分離した炭化物や、すでに
存在していた微細な炭化物が凝集し、これらの炭
化物が塑性変形に際して活動する転位の活動を妨
げるような働きがなくなり、塑性変形しやすくな
るためと、焼鈍中にAlNが析出するためにr値
を向上させるものと考えられる。熱延板焼鈍した
場合には、熱延板焼鈍工程で炭化物にサイズ、分
散状況が決まつてしまい、更に固溶Nも窒化Cr
や微量に含まれているAl等により固定され、仕
上焼鈍工程ではこれらの析出物の分散状況は焼鈍
方法によつて変化しないので、再結晶が完了すれ
ばr値は焼鈍条件にかかわらず変化しないもので
ある。熱延板焼鈍温度が875℃を超えるとr値が
ゆるやかに劣化するのは、AlNが再固溶をはじ
めることと、炭化物が再固溶し、再び微細化し、
マトリツクスの固溶CやN量が高くなるからであ
る。 次にリジング特性であるが、焼鈍温度が低い場
合に劣化するのは、本発明の対象鋼の場合焼鈍中
にAlNが析出し、再結晶完了温度が高温になる
ので完全な再結晶が起こらず、集合組織のランダ
ム化が不十分なためである。更に温度が高くなる
とリジング特性が逆に劣化する傾向があるのは、
微細炭化物が再固溶することにより、旧フエライ
ト相の粒界に存在した微細結晶粒が消滅し、隣接
する伸長フエライト相は小傾角粒界からなつてい
る場合が多いので、実質的に粒結晶が粗大化した
のと同じように働き、リジング特性が劣化する。 次に本発明鋼の場合、機械的性質が焼鈍条件に
よつて大幅に変化する理由を説明する。本発明鋼
の最終焼鈍工程における主たる治金的変化は再
結晶、α′相→α+炭化物への分離と、それに伴
うフリーNの放出、Cr2N等の分離に伴なうフ
リーNの放出、、で放出されたN及び本焼
鈍前に過飽和に固溶していたフリーNとAlの反
応によるAlNの析出、フエライトマトリツク
スの固溶C、Nの溶解度変化、微小炭化物の凝
集又は再固溶、γ相の析出(焼鈍温度が高い場
合)と冷却に伴うγ相のα′相への変態等が考えら
れる。 まず降伏強度の変化とこれらの治金的変化、焼
鈍条件の変化との関係について説明する。焼鈍温
度が低い場合(例えば775℃〜800℃、第1図a相
当)は、従来品と比べて降伏点が著しく高く、焼
鈍時間が長くなると、それに従つて降伏点が低下
するのは、主としての再結晶挙動に関連するも
ので、従来品がこのような低温焼鈍でも完全に再
結晶するのに対し、本発明鋼では、再結晶温度が
高くなつているため、焼鈍温度が低温では再結晶
が不充分であるためであり、均熱時間が長くなる
と低下してくるのは、再結晶率が増すためであ
る。焼鈍温度がやや高い場合(例えば850℃〜875
℃、第1図b相当)には主として、、によ
るフエライトマトリツクスの固溶Nの変化に対応
するものである。従来品は熱延板のフエライト域
での長時間の箱焼鈍により、α′相は消滅してお
り、Nは大部分AlN及びCr2Nの形で固定され、
固溶C、Nは、ほぼ一定の低い値(箱焼鈍温度
(≒840℃)とほぼ平衡するC、N、相当量)とな
つており、この程度の焼鈍温度条件ではCr2Nが
若干分解することでフリーNが放出されるが、そ
の量が少ないので、固溶Nの増加はわずかであ
り、それに比例して降伏強度の増加は少ないと考
えられる。本発明鋼の場合は、まずα′相の分解に
よるフリーNの放出、Cr2Nの分解によるフリー
Nの放出により、フエライトマトリツクス中にフ
リーNが増加し、その結果均熱時間に比例して降
伏強度が増加する。均熱時間が更に増すと逆に降
伏強度が低下していくのは、α′相→α相に変態す
ることによる強度低下と、フリーNがAlと反応
することでAlNとして固定されることによるフ
エライトマトリツクスの固溶Nの低下にもとづく
ものが主因であり、更には微細炭化物の凝集によ
る強度低下によるものと考えられる。 焼鈍温度が更に高い場合(例えば900℃〜925
℃、第1図1c相当)も主として、、のフ
エライトマトリツクスの固溶Nの変化に対応する
ものである。この場合均熱時間がある程度以上長
いと、本発明品が比較品と比べて降伏強度が低く
なるという逆転現象が生じる。これは従来品が
Al含有量が少なく、Cr2Nの分解によつて放出さ
れるフリーのNはAlが0.08%以下と少ないので、
AlNの形で固定されないため、マトリツクスの
固溶Nが増して、降伏強度が増加するのに対し、
本発明品は、α′相の分解、Cr2Nの分解によつて
放出されるNがAl含有量が多く、AlNの析出し
やすい温度域であるため、AlNとして固定され、
マトリツクスの固溶Nが、従来品より逆に低くな
るので、従来品より降伏強度が下がるという逆転
現象が生じるものである。この場合、均熱時間が
長い程降伏強度が低下するのは、α′相の分解と
AlNの析出が、均熱時間が長い程多くなるため
と考えられる。 焼鈍温度が著しく高い場合(例えば950℃〜
1000℃以上、第1図d相当)には、従来品、本発
明品ともに、均熱時間が長い程降伏強度が上昇す
る。これは前述の→に加え→も関与する
からである。即ちγ相析出以下の温度領域でも高
温長時間加熱では、C、Nの溶解度が増して、
C、Nが再固溶し、冷却速度が速い(空冷以上)
場合、主としてフエライトマトリツクスの過飽和
C、Nの増加、冷却過程での微細炭化物相の析出
により、降伏強度が上昇するものである。更に高
温の場合、γ相が析出し、冷却過程でα′相にな
り、主としてα′相により、降伏強度が増加するこ
とになる。 降伏点伸びについても降伏強度と同様主として
フエライトマトリツクス中の固溶Nの変化にもと
づき変化するものであり、降伏強度と同一のメタ
ラジーで整理できる。即ち焼鈍温度が低い場合に
降伏点伸びがみられないのは、主として未再結晶
部分によるものであり、焼鈍温度がきわめて高い
場合も降伏点伸びがないのは、焼鈍中のγ相の析
出によるα′相形成によるものであり、その中間温
度領域で、焼鈍条件によつて微妙に降伏点伸びが
変化するのは熱延中に形成されたα′相、Cr2Nの
分解によりフリーNの増加と、AlNの析出によ
るフリーNの減少関係によつて決まるものであ
る。 抗張力、全伸び、均一伸びの変化は主として
α′相→フエライト+炭化物への分解によるもの
で、高温、長時間程フエライトマトリツクスが清
浄化され、炭化物が凝集粗大化するため、伸びは
増加し、抗張力は低下することになる。しかしな
がら焼鈍温度が高すぎると、γ相の再析出に基づ
くα′相の生成により、伸びが減少し、抗張力が高
くなるのは言うまでもない。以上のメタラジーの
説明から自づからの如く、スラブ加熱が低温にな
る程スラブ加熱の状態ですでにAlNが析出する
こと、更にスラブ加熱温度が約1150℃以下低温に
なる程スラブ加熱時に存在するγ相が減少するの
で、熱延ままの状態でα′相が減少し、このような
状態で熱延された熱延板は、熱延ままの状態で全
Nの数10%はAlNの形で固定されており、最終
焼鈍工程で固定すべきNの量が少なく、かつα′相
をフエライト+炭化物に変態させることが容易で
あるので、高温スラブ加熱材と比較して良好な機
械的性質を得るために必要な均熱温度はより低
く、均熱時間はより短かくても良いことになる。
スラブ加熱後の抽出から熱延して捲取る迄の時間
が長い程、又捲取温度が高い程、AlNの析出が
促進され、α′相も減少するので、良好な機械的性
質を得るために必要な均熱温度は低く、均熱時間
は短かくなる。 粗圧延終了後仕上圧延開始までに粗圧延片をコ
イルボツクス等で保熱したり、積極的な加熱をし
ないでも、60秒以上の時間を置く等のいわゆるデ
イレー圧延等を行うと、この工程でγ→α変態が
促進され、AlNの析出も進行するので、最終焼
鈍工程の焼鈍条件を緩和できることは言うまでも
ない。熱延条件ほど顕著ではないが、最終焼鈍時
の昇温冷却速度、特に800℃以上から均熱温度ま
での速度が遅い程、均熱温度は低く、均熱時間は
短かくても良好な機械的性質を得ることが可能と
なる。なお本発明の対象鋼のAlを0.08%以上とし
たのは、0.08%未満では、製品の機械的性質、特
に降伏点がどのような焼鈍温度、時間を選んでも
高くなることと、どのような条件で熱処理しても
r値が低いこと、更にはきらきら疵と呼ばれる表
面欠陥が出やすくなるためであり、0.5%以下と
限定したのは、これより多く含有しても実質的な
効果は変らず、経済的でないからである。 成品の機械的性質、特に降伏強度、降伏点の
び、全伸び、均一伸び等は以上述べた如く、特に
熱延条件、中でもスラブ加熱温度や捲取温度条件
によつても最適焼鈍条件は変化するが、最もきび
しい熱延条件の場合(高温スラブ加熱、低温捲
取)でも850℃で約60秒、900℃で約20秒程度、
950℃なら10秒以下の均熱で良好な機械的性質を
得ることが出来る。熱延条件がこのようにきびし
い場合は、最も良好なr値、リジングが得られる
熱処理条件と比べ、最も良好な機械的性質が得ら
れる熱処理条件は高温、長時間側にずれている。
機械的性質のみに着目すれば均熱温度は950℃で
も短時間焼鈍すれば良いが、この場合、r値、リ
ジングには好ましくない。本発明で均熱温度を
900℃以下と限定したのはこの点を考慮したもの
であり、850℃以上としたのは、r値、リジング、
機械的性質の3点を考慮したものである。均熱時
間を60秒以内としたのは素材の前歴に応じて均熱
温度を適当に選べば機械的性質は満足できるし、
前述の如く、r値、リジングも均熱時間60秒以上
としても効果が少なく、経済的でないためであ
る。 以上説明した如く、Alを0.08%以上0.5%以下
含有したSUS430鋼においては、通常行われる熱
延板焼鈍を行うことなく1回の冷延で最終板厚ま
で冷間圧延後、仕上焼鈍するにあたり、850〜900
℃の温度範囲で60秒以内の均熱を行うことによ
り、加工性、即ち良好なr値、リジング、機械的
性質を与えることが出来るものである。 以下本発明を実施例に従つて具体的に説明す
る。 実施例 1 表1に示した厚さ2.70mmのAlを含有した
SUS430型フエライト系ステンレス鋼の熱延板(A)
を、熱延板焼鈍することなく板厚1.0mm及び0.4mm
の冷延板とした。これらの冷延板を塩浴中で熱処
理を行い、熱処理後r値及びリジングの測定を行
つた。比較のためAlを少量含有したSUS430型フ
エライト系ステンレス鋼の熱延板(B)については、
840℃×4hrの熱延板焼鈍後板厚1.0mm及び0.4mmの
冷延板として、同様の熱処理を行い、r値及びリ
ジング高さの測定を行つた。リジング高さ及びr
値の測定結果を表2に示したが、本発明の対象鋼
を850〜900℃の温度範囲で60秒以内の熱処理した
場合は、r値、リジング特性ともに良好であるこ
とがわかる。
The present invention relates to a method for manufacturing a thin sheet of ferritic stainless steel with excellent workability, and more particularly, to a method for manufacturing a thin sheet of ferritic stainless steel, typified by SUS430 steel containing 0.08 to 0.5% Al. Normal SUS430 type ferritic stainless steel sheet with Al content of 0.08% or less is hot rolled sheet with approximately 800~
It is generally manufactured by box annealing at a temperature of 850℃ for more than 2 hours, followed by cold rolling, and then annealing for a short time usually at a temperature of 820~850℃, and the r value and ridging properties of the product are It is known that the soaking temperature and soaking time hardly change. In this hot-rolled sheet annealing step, the α' phase present in the hot-rolled sheet changes into a ferrite phase + carbide, and becomes a ferrite phase and a carbide phase after the hot-rolled sheet annealing. If such a material is heated after cold rolling, recovery and recrystallization will occur, and the microstructure after recrystallization will become equiaxed grains, and the grain size will remain constant with almost no effect on soaking temperature or time. Become. The temperature at which recrystallization is completed varies slightly depending on the ingredients, hot rolling conditions, and cold rolling reduction ratio, but if the material temperature reaches 800°C or higher, recrystallization will occur regardless of the soaking time; It was found that almost constant r value and ridging characteristics were obtained regardless of temperature and time. Furthermore, it was found that almost constant mechanical properties such as yield strength, yield point elongation, tensile strength, total elongation, and uniform elongation can be obtained by recrystallization. However, when a hot-rolled sheet of SUS430 type ferritic stainless steel containing a large amount of Al is cold-rolled and recrystallized without hot-rolled sheet annealing, the recrystallization temperature is the same as that of cold-rolled after hot-rolled sheet annealing. The temperature is higher than that in the case where the crystal grains become mixed grains. The r value and ridging properties vary greatly depending on the soaking temperature and time.The annealing conditions that simultaneously satisfy the r value and ridging properties are a soaking temperature of 850 to 900℃ and a soaking time of 60 seconds or less at a high temperature and short time. The present invention was completed after confirming that time annealing was used. Furthermore, even after recrystallization is completed, the mechanical properties change significantly depending on the soaking temperature and time. We found that the higher the temperature in the temperature range of ℃, and the longer the soaking time was 60 seconds or less, the more effective it was.
This completes the present invention. In other words, the gist of the present invention is Al0.08%
When a hot rolled sheet of ferritic stainless steel containing ~0.5% is cold rolled without hot rolling sheet annealing and then finish annealed, 60°C is applied in the temperature range of 850 to 900℃.
The present invention provides a method for producing a thin ferritic stainless steel plate with excellent workability, which is characterized by soaking within seconds. The present invention will be explained in detail below. In the present invention, when a hot-rolled sheet of Al-containing ferritic stainless steel, which is the target steel of the present invention, is cold-rolled without hot-rolled sheet annealing and then finish annealed, the soaking temperature and time of finish annealing are performed. 850
The reason for limiting the temperature to ~900°C and within 60 seconds is as follows. The relationship between the above-mentioned soaking conditions and product r value is that in the soaking temperature range up to 875°C, the longer the temperature increases, the higher the R value becomes.
It deteriorates slowly above 900°C, but at 850°C
This is at a higher level than when the soaking temperature is below ℃. Furthermore, the longer the soaking time is, the more remarkable the improvement in r-value is, but this is limited to cases where the soaking temperature is approximately 875°C or lower; when the soaking temperature exceeds approximately 875°C, an improvement in r-value is seen. The soaking time is up to 10 seconds, and even if the soaking time is increased beyond that, the r value will only improve slightly. The effect of the final annealing cycle on the ridging properties is complex, but when annealing at various temperatures with a constant soaking time, the least ridging occurs at a certain soaking temperature, and when lower than that temperature There is also a tendency that the optimal temperature shifts to the higher temperature side as the soaking time is shorter, and that the optimal temperature range is narrower and the reduction in ridging is large. For example, if the soaking time is long, 60 seconds, the relative value of ridging is relatively large, 850 ~
The value is almost constant in the range of 875℃, and at temperatures above 875℃ or below 850℃, the ridging tends to deteriorate.If the soaking time is as short as 10 seconds, the soaking temperature is 875℃. In a relatively narrow temperature range of ~900℃, the ridging shows a low value, and this absolute value is better than the ridging value obtained by annealing at the optimum temperature when the soaking time is as long as 60 seconds. be. The relationship between the soaking conditions for the steel of the present invention and the mechanical properties of the product is as follows. Figure 1 schematically shows the typical relationship between soaking time, soaking temperature, and yield strength. The comparative product in the figure is regular 430 with an Al content of 0.08% or less.
This material is made by box annealing a hot rolled steel plate and then cold rolling annealing it.
As is clear from the figure, the influence of the soaking time and temperature is small on the comparative product, but in the case of the steel of the present invention, it can be seen that there is an optimal combination of soaking time and temperature in order to obtain a low yield strength. The optimum combination conditions also vary depending on the hot rolling conditions, particularly the slab heating temperature and winding conditions. In other words, when the slab heating temperature is 1150℃ or lower, the lower the temperature, the more the optimal soaking conditions will change to the lower temperature and shorter time compared to materials heated to high temperature slabs of 1200℃ or higher. In addition, the influence of soaking temperature conditions is reduced, and the product exhibits behavior similar to that of comparative products. The effect of winding temperature is not as pronounced as that of slab heating temperature, but increasing the winding temperature
It has the same effect as lowering the slab heating temperature. Although the influence is smaller, the heating rate and cooling rate until the soaking temperature is reached also has an effect, and slow heating and cooling rates have the same effect as lengthening the soaking time. As mentioned above, the optimum combination of temperature and time to reduce yield strength varies depending on the material's previous history, but it is best to heat the slab at a high temperature of 1200℃ or higher, which is considered to require long-term annealing at the highest temperature. In order to obtain a low yield strength of 35 Kgf/mm 2 or less when the starting material is a hot-rolled sheet that has been rolled at a low temperature of 600°C or less and is rapidly heated by sold bath heating, etc., at a soaking temperature of 825°C, 60 More than seconds, 850℃~875℃
In this case, soaking time should be 30 seconds to 60 seconds or more, and in case of 900℃ to 925℃, soaking time should be 20 seconds or more. At 950°C, soaking for about 10 seconds will lower the yield point, but if the soaking time is longer than this, the yield point will increase again, which is not preferable. This is due to γ phase precipitation. Figure 2 schematically shows a typical relationship between soaking time, soaking temperature, and elongation at yield point. It can be seen from the figure that the behavior of yield point elongation is almost similar to that of yield point. The effects of hot rolling conditions, temperature increase, and cooling rate also roughly correspond to the effects on yield point. In FIG. 2, when the soaking temperature is high, the elongation at yield point disappears in both the comparative product and the product of the present invention due to γ phase precipitation. In this case, the yield strength increases and the elongation decreases, which is not preferable. For the total elongation, uniform elongation, and tensile strength, the influence of the soaking temperature condition is extremely small for conventional products, but for the steel of the present invention, the influence of the soaking temperature and time is large, and the annealing is performed at a higher temperature for a longer period of time than conventional annealing. This will improve the results. Specifically, considering the previous history of the material, the temperature is 850℃.
As mentioned above, if soaking is performed for a maximum of 60 seconds at a temperature of 900°C or less, good values on the same level as conventional products can be obtained. In the case of a thin plate obtained by cold rolling a SUS430 type ferritic stainless steel hot-rolled plate containing Al without hot-rolled plate annealing, the r value, ridging properties, and mechanical properties are significantly improved even after recrystallization. The reason for the change is thought to be as follows. SUS430 type ferritic stainless steel containing Al has fewer hard phases such as martensite and bainite phases in the as-hot-rolled state compared to regular SUS430 type ferritic stainless steel that does not contain Al. No, it exists in about 10%. This hard phase is elongated in the rolling direction in the subsequent cold rolling process, and decomposed in the final annealing process to form a ferrite phase and carbide, and this ferrite phase also recrystallizes at a temperature higher than the recrystallization temperature. First of all, the reason why the r value improves with high temperature annealing is
This is because the carbides separated from the hard phase and the fine carbides that were already present agglomerate, and these carbides no longer have the ability to hinder the activity of dislocations that are active during plastic deformation, making plastic deformation easier. , it is thought that the r value improves because AlN precipitates during annealing. When hot-rolled sheets are annealed, the size and dispersion of carbides are determined during the hot-rolled sheet annealing process, and solid solution N and nitride Cr
In the final annealing process, the dispersion of these precipitates does not change depending on the annealing method, so once recrystallization is complete, the r value does not change regardless of the annealing conditions. It is something. When the hot-rolled sheet annealing temperature exceeds 875℃, the r value gradually deteriorates because AlN begins to dissolve into solid solution again, and carbides dissolve into solid solution again and become finer again.
This is because the amount of solid solution C and N in the matrix increases. Next, regarding ridging properties, the reason for deterioration when the annealing temperature is low is that in the case of the target steel of the present invention, AlN precipitates during annealing, and the recrystallization completion temperature becomes high, so complete recrystallization does not occur. , this is due to insufficient randomization of the texture. Furthermore, as the temperature rises, the ridging properties tend to deteriorate.
As the fine carbides re-dissolve, the fine crystal grains that existed at the grain boundaries of the old ferrite phase disappear, and the adjacent elongated ferrite phase is often made up of small-angle grain boundaries, so that the grain crystals are substantially reduced. It acts in the same way as when the pores become coarse, and the ridging characteristics deteriorate. Next, the reason why the mechanical properties of the steel of the present invention vary significantly depending on the annealing conditions will be explained. The main metallurgical changes in the final annealing process of the steel of the present invention are recrystallization, separation from α' phase to α+ carbide, and the release of free N accompanying the separation of Cr 2 N, etc. , precipitation of AlN due to the reaction between the N released during the process and the free N that was in supersaturated solid solution before the main annealing, and the change in solubility of N, solid solution C in the ferrite matrix, and agglomeration or re-solid solution of microcarbides. , precipitation of γ phase (when the annealing temperature is high) and transformation of γ phase into α' phase due to cooling. First, the relationship between changes in yield strength, these metallurgical changes, and changes in annealing conditions will be explained. When the annealing temperature is low (for example, 775°C to 800°C, equivalent to Figure 1 a), the yield point is significantly higher than that of conventional products, and as the annealing time increases, the yield point decreases mainly because This is related to the recrystallization behavior of the steel, and while the conventional steel completely recrystallizes even when annealed at such low temperatures, the steel of the present invention has a high recrystallization temperature, so recrystallization does not occur at low annealing temperatures. This is because the temperature is insufficient, and the reason why it decreases as the soaking time increases is because the recrystallization rate increases. If the annealing temperature is slightly high (e.g. 850℃~875℃)
℃, corresponding to Fig. 1 b) mainly corresponds to the change in solid solution N in the ferrite matrix due to . In the conventional product, the α' phase has disappeared due to long box annealing in the ferrite region of the hot-rolled sheet, and most of the N is fixed in the form of AlN and Cr 2 N.
The solid solution C and N are almost constant and low values (C, N, equivalent amounts that are almost in equilibrium with the box annealing temperature (≒840℃)), and at this level of annealing temperature condition, Cr 2 N decomposes slightly. As a result, free N is released, but since the amount thereof is small, the increase in solid solution N is small, and it is thought that the increase in yield strength is proportionally small. In the case of the steel of the present invention, free N increases in the ferrite matrix due to the release of free N due to the decomposition of the α' phase and the release of free N due to the decomposition of Cr 2 N, and as a result, the amount of free N increases in proportion to the soaking time. yield strength increases. The reason why the yield strength decreases as the soaking time increases further is because the strength decreases due to the transformation from α' phase to α phase, and the free N is fixed as AlN by reacting with Al. The main cause is thought to be a decrease in solid solution N in the ferrite matrix, and it is also thought to be due to a decrease in strength due to agglomeration of fine carbides. If the annealing temperature is higher (e.g. 900℃~925℃)
℃, corresponding to FIG. 1c) mainly corresponds to the change in solid solution N in the ferrite matrix. In this case, if the soaking time is longer than a certain degree, a reverse phenomenon occurs in which the yield strength of the product of the present invention is lower than that of the comparative product. This is the conventional product
The Al content is low, and the free N released by decomposition of Cr 2 N is less than 0.08% Al.
Since it is not fixed in the form of AlN, the solid solution N in the matrix increases and the yield strength increases.
In the product of the present invention, the N released by the decomposition of the α' phase and the decomposition of Cr 2 N has a high Al content and is in a temperature range where AlN tends to precipitate, so it is fixed as AlN.
Since the solid solution N in the matrix is lower than that of the conventional product, a reverse phenomenon occurs in which the yield strength is lower than that of the conventional product. In this case, the reason why the yield strength decreases as the soaking time increases is due to the decomposition of the α′ phase.
This is thought to be due to the fact that the longer the soaking time, the more AlN precipitates. When the annealing temperature is extremely high (e.g. 950℃~
At temperatures above 1000°C (corresponding to Figure 1 d), the longer the soaking time, the higher the yield strength of both the conventional product and the product of the present invention. This is because in addition to the above-mentioned →, → is also involved. In other words, even in the temperature range below γ phase precipitation, when heated at high temperature for a long time, the solubility of C and N increases,
C and N are re-dissolved and the cooling rate is fast (more than air cooling)
In this case, the yield strength increases mainly due to an increase in supersaturated C and N in the ferrite matrix and precipitation of a fine carbide phase during the cooling process. Furthermore, at high temperatures, the γ phase precipitates and becomes the α' phase during the cooling process, and the yield strength increases mainly due to the α' phase. Like the yield strength, the yield point elongation also changes mainly based on changes in solid solution N in the ferrite matrix, and can be summarized using the same metallurgy as the yield strength. In other words, the reason why no yield point elongation is observed when the annealing temperature is low is mainly due to the unrecrystallized portion, and the reason why there is no yield point elongation even when the annealing temperature is extremely high is due to the precipitation of the γ phase during annealing. This is due to the formation of the α' phase, and in the intermediate temperature range, the slight change in yield point elongation depending on the annealing conditions is due to the α' phase formed during hot rolling, and the release of free N due to the decomposition of Cr 2 N. This is determined by the relationship between the increase in free N and the decrease in free N due to the precipitation of AlN. Changes in tensile strength, total elongation, and uniform elongation are mainly due to the decomposition of the α′ phase → ferrite + carbide.The longer the temperature and the longer the time, the more the ferrite matrix is cleaned and the carbides aggregate and coarsen, resulting in an increase in elongation. , the tensile strength will decrease. However, it goes without saying that if the annealing temperature is too high, the elongation decreases and the tensile strength increases due to the formation of the α' phase based on the reprecipitation of the γ phase. As is obvious from the above explanation of metallurgy, the lower the slab heating temperature is, the more AlN is already precipitated during slab heating, and the lower the slab heating temperature is about 1150°C or lower, the more AlN is present during slab heating. As the γ phase decreases, the α' phase decreases in the as-hot-rolled state, and a hot-rolled sheet hot-rolled in such a state has several 10% of the total N in the form of AlN in the as-hot-rolled state. The amount of N to be fixed in the final annealing process is small, and it is easy to transform the α' phase into ferrite + carbide, so it has better mechanical properties compared to high-temperature slab heating materials. In order to obtain this, the soaking temperature required is lower and the soaking time is shorter.
The longer the time from extraction after heating the slab until hot rolling and winding, and the higher the winding temperature, the more precipitation of AlN will be promoted and the α' phase will also be reduced, so that good mechanical properties can be obtained. The required soaking temperature is lower and the soaking time is shorter. If the rough rolled piece is heat-retained in a coil box etc. after the completion of rough rolling and before the start of finish rolling, or if so-called delay rolling is performed, such as leaving it for 60 seconds or more without active heating, γ will be reduced in this process. It goes without saying that the annealing conditions in the final annealing step can be relaxed because the →α transformation is promoted and the precipitation of AlN also progresses. Although it is not as noticeable as in the hot rolling condition, the slower the temperature increase and cooling rate during final annealing, especially the speed from 800℃ or higher to the soaking temperature, the lower the soaking temperature and the better the machine even if the soaking time is short. It becomes possible to obtain the following properties. The reason why the Al content of the target steel of the present invention is set to 0.08% or more is that if it is less than 0.08%, the mechanical properties of the product, especially the yield point, will increase regardless of the annealing temperature and time selected. The reason for limiting the content to 0.5% or less is that the r value is low even after heat treatment under these conditions, and surface defects called sparkling scratches are likely to occur.The reason for limiting the content to 0.5% or less is that even if the content is higher than this, the actual effect will not change. First, it is not economical. As mentioned above, the mechanical properties of the product, especially the yield strength, elongation at yield point, total elongation, uniform elongation, etc., also change depending on the hot rolling conditions, especially the slab heating temperature and winding temperature conditions. However, even under the most severe hot rolling conditions (high temperature slab heating, low temperature rolling), it takes about 60 seconds at 850℃ and about 20 seconds at 900℃.
At 950℃, good mechanical properties can be obtained by soaking for less than 10 seconds. When the hot rolling conditions are severe like this, the heat treatment conditions that provide the best mechanical properties are shifted toward higher temperatures and longer times than the heat treatment conditions that provide the best r value and ridging.
If we focus only on mechanical properties, it is sufficient to anneal for a short time even if the soaking temperature is 950°C, but in this case, it is not preferable for the r value and ridging. With this invention, the soaking temperature can be adjusted
The reason why we limited the temperature to 900℃ or less was with this in mind, and the reason why we limited it to 850℃ or higher was because of r-value, ridging,
Three points of mechanical properties are taken into consideration. The reason why we set the soaking time to within 60 seconds is because mechanical properties can be satisfied if the soaking temperature is selected appropriately depending on the material's previous history.
As mentioned above, this is because even if the soaking time is 60 seconds or more, there is little effect on the r value and ridging, and it is not economical. As explained above, SUS430 steel containing 0.08% or more and 0.5% or less of Al can be cold rolled to the final thickness in one round without performing the usual hot rolled sheet annealing, and then subjected to finish annealing. ,850~900
By performing soaking within 60 seconds in the temperature range of °C, it is possible to provide good workability, that is, good r value, ridging, and mechanical properties. The present invention will be specifically described below with reference to Examples. Example 1 Containing Al with a thickness of 2.70 mm shown in Table 1
SUS430 type ferritic stainless steel hot rolled plate (A)
The thickness of the hot-rolled sheet is 1.0mm and 0.4mm without annealing.
It was made into a cold-rolled sheet. These cold rolled sheets were heat treated in a salt bath, and after the heat treatment the r value and ridging were measured. For comparison, hot rolled sheet (B) of SUS430 type ferritic stainless steel containing a small amount of Al is as follows.
After hot-rolled sheets were annealed at 840°C for 4 hours, cold-rolled sheets with thicknesses of 1.0 mm and 0.4 mm were subjected to the same heat treatment, and the r value and ridging height were measured. Riding height and r
The measurement results are shown in Table 2, and it can be seen that when the target steel of the present invention was heat treated in the temperature range of 850 to 900°C for 60 seconds or less, both the r value and ridging properties were good.

【表】【table】

【表】【table】

【表】 実施例 2 表3に示した化学成分の厚さ200mmのSUS430
型フエライト系ステンレススラブを1220℃の温度
で2時間加熱後6パスで厚さ20mmまで粗圧延し、
引続き6パスで2.3mmの熱延コイルとした。2.3mm
に仕上つた時の温度は900℃であり、仕上熱延終
了後直ちに急冷して600℃の低温で捲取つた。こ
のようにして製造した熱延コイルを従来のAlの
低い素材については、840℃×4hrの箱焼鈍後、1
回の冷間圧延で0.4mmまで冷延した。Alを含有し
た本発明鋼は、熱延板焼鈍を行うことなく1回の
冷間圧延で0.4mmまで冷延した。ついでこれらの
冷延板を775℃〜1000℃の各温度で均熱時間を0
秒から最大2分まで変化させて加熱後空冷した。
このように熱処理した材料の機械的性質を表3に
示した。表4から明らかの如く、従来材の機械的
性質は、いづれの熱処理条件でも良好な機械的性
質を示すが、本発明鋼の場合は、熱延板焼鈍なし
の場合も、本発明の特許請求の範囲に示した如
く、850℃以上900℃の温度で30秒〜60秒の均熱時
間を付与することにより、従来品と同等又はそれ
以上の良好な機械的性質を付与できることがわか
る。
[Table] Example 2 SUS430 with a thickness of 200 mm and the chemical components shown in Table 3
A molded ferrite stainless steel slab was heated at a temperature of 1220℃ for 2 hours and then roughly rolled in 6 passes to a thickness of 20mm.
Subsequently, it was made into a 2.3 mm hot-rolled coil by 6 passes. 2.3mm
The temperature at the time of finishing was 900°C, and immediately after finishing hot rolling, it was rapidly cooled and rolled at a low temperature of 600°C. For the conventional low Al material, the hot-rolled coil manufactured in this way was box annealed at 840°C for 4 hours.
It was cold rolled to 0.4mm by 2 times cold rolling. The steel of the present invention containing Al was cold-rolled to 0.4 mm in one cold rolling without hot-rolled plate annealing. Next, these cold-rolled sheets were heated at each temperature between 775℃ and 1000℃ for 0 soaking time.
The heating time was varied from seconds to a maximum of 2 minutes, and then the temperature was air cooled.
Table 3 shows the mechanical properties of the thus heat-treated materials. As is clear from Table 4, the mechanical properties of the conventional material show good mechanical properties under any heat treatment conditions, but in the case of the steel of the present invention, even when hot-rolled sheets are not annealed, the patent claims of the present invention As shown in the above range, it can be seen that by applying a soaking time of 30 seconds to 60 seconds at a temperature of 850°C or higher and 900°C, it is possible to provide good mechanical properties equivalent to or better than conventional products.

【表】【table】

【表】 実施例 3 表5に示したAlを含有したSUS430型フエライ
ト系ステンレススラブ(厚さ250mm)を1250℃の
温度で2時間加熱後、7パスで厚さ20mmまで粗圧
延を行つた。粗圧延終了温度は1150℃であつた。
ついで6パスで仕上圧延を行い厚さ3.0mmの熱延
板とした。仕上圧延終了温度は920℃であつた。
こうして圧延した熱延板は直ちに急冷して630℃
の温度で捲取り後、室温まで冷却し、熱延板焼鈍
を行うことなく厚さ1.0mmまで冷間圧延し、本発
明の特許請求の範囲で示した熱処理条件及び、比
較のため従来の430鋼で一般に行われている熱処
理条件で熱処理を行い、機械的性質を測定し、表
6に示した。表6に示した如く本発明鋼を本発明
で示した熱処理条件で処理することにより、良好
な機械的性質を得ることが出来る。 表 5 供試材の主要化学成分(重量%) C Si Mn Cr Al Fe 0.047 0.15 0.15 16.8 0.14 残り
[Table] Example 3 A SUS430 type ferritic stainless steel slab (thickness 250 mm) containing Al shown in Table 5 was heated at a temperature of 1250° C. for 2 hours, and then rough rolled in 7 passes to a thickness of 20 mm. The rough rolling completion temperature was 1150°C.
Then, finish rolling was performed in 6 passes to obtain a hot rolled sheet with a thickness of 3.0 mm. The temperature at the end of finish rolling was 920°C.
The hot-rolled sheet rolled in this way is immediately quenched to 633°C.
After rolling at a temperature of Heat treatment was performed under heat treatment conditions commonly used for steel, and mechanical properties were measured and are shown in Table 6. As shown in Table 6, by treating the steel of the present invention under the heat treatment conditions specified in the present invention, good mechanical properties can be obtained. Table 5 Main chemical components of sample materials (wt%) C Si Mn Cr Al Fe 0.047 0.15 0.15 16.8 0.14 Remaining

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼の降伏強度と均熱時間、温度
の関係を示す模式図、第2図は本発明鋼の降伏点
伸びと均熱時間、温度の関係を示す模式図を示し
たものである。
Figure 1 is a schematic diagram showing the relationship between yield strength, soaking time, and temperature of the steel of the present invention, and Figure 2 is a schematic diagram showing the relationship between yield point elongation, soaking time, and temperature of the steel of the present invention. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 Al0.08%〜0.5%を含有するフエライト系ス
テンレス鋼の熱延板を熱延板焼鈍することなく冷
間圧延後、仕上焼鈍するにあたり、850〜900℃の
温度範囲で60秒以内の均熱を行うことを特徴とす
る加工性のすぐれたフエライト系ステンレス薄板
の製造法。
1 When finishing annealing a hot-rolled ferritic stainless steel sheet containing 0.08% to 0.5% Al without hot-rolling the hot-rolled sheet annealing, the hot-rolled sheet must be equalized within 60 seconds in a temperature range of 850-900℃. A method for producing ferrite-based stainless steel sheets with excellent workability, which involves heating.
JP9851283A 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability Granted JPS59226120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9851283A JPS59226120A (en) 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9851283A JPS59226120A (en) 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability

Publications (2)

Publication Number Publication Date
JPS59226120A JPS59226120A (en) 1984-12-19
JPH02417B2 true JPH02417B2 (en) 1990-01-08

Family

ID=14221697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9851283A Granted JPS59226120A (en) 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability

Country Status (1)

Country Link
JP (1) JPS59226120A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190527A (en) * 1984-03-12 1985-09-28 Nippon Steel Corp Manufacture of ferritic stainless steel sheet having superior workability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770233A (en) * 1980-10-20 1982-04-30 Nippon Steel Corp Production of ferritic stainless steel sheet having excellent workability
JPS5770236A (en) * 1980-10-20 1982-04-30 Nippon Steel Corp Manufacture of ferritic stainless thin steel plate excellent in deep drawability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770233A (en) * 1980-10-20 1982-04-30 Nippon Steel Corp Production of ferritic stainless steel sheet having excellent workability
JPS5770236A (en) * 1980-10-20 1982-04-30 Nippon Steel Corp Manufacture of ferritic stainless thin steel plate excellent in deep drawability

Also Published As

Publication number Publication date
JPS59226120A (en) 1984-12-19

Similar Documents

Publication Publication Date Title
US5009726A (en) Method of making non-oriented silicon steel sheets having excellent magnetic properties
US4040873A (en) Method of making low yield point cold-reduced steel sheet by continuous annealing process
US4014717A (en) Method for the production of high-permeability magnetic steel
JPS5830937B2 (en) Manufacturing method of AI-killed cold-rolled steel sheet for deep drawing by short-time continuous annealing
JPH0770650A (en) Production of cold rolled steel sheet extremely excellent in deep drawability
US4116729A (en) Method for treating continuously cast steel slabs
JP4744033B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent workability
JPH02417B2 (en)
JPS6261646B2 (en)
JPH0564212B2 (en)
JP2526122B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting
JPH075984B2 (en) Method for producing Cr-based stainless steel thin plate using thin casting method
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPH08225842A (en) Production of grain-oriented silicon steel sheet
JPH08295943A (en) Production of ferritic stainless steel thin sheet excellent in cold rolled surface property
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPH01198428A (en) Production of non-oriented silicon steel sheet having excellent magnetic characteristic
JPS6024325A (en) Production of ferritic stainless steel plate having less ridging and excellent formability
JPS5830934B2 (en) Manufacturing method of cold-rolled steel sheet with good formability by short-time continuous annealing
JPH073332A (en) Production of cold rolled steel sheet excellent in cold nonaging property
JPS592725B2 (en) Method for producing thermosetting high-strength cold-rolled steel sheet for deep drawing
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
EP0510249B1 (en) Cold reduced non-aging deep drawing steel and method for producing
JPH0570841A (en) Manufacture of hot rolled steel sheet excellent in deep drawability by using thin slab