JPH01198428A - Production of non-oriented silicon steel sheet having excellent magnetic characteristic - Google Patents

Production of non-oriented silicon steel sheet having excellent magnetic characteristic

Info

Publication number
JPH01198428A
JPH01198428A JP2264188A JP2264188A JPH01198428A JP H01198428 A JPH01198428 A JP H01198428A JP 2264188 A JP2264188 A JP 2264188A JP 2264188 A JP2264188 A JP 2264188A JP H01198428 A JPH01198428 A JP H01198428A
Authority
JP
Japan
Prior art keywords
steel
hot
temperature
rolling
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2264188A
Other languages
Japanese (ja)
Inventor
Taisei Nakayama
大成 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2264188A priority Critical patent/JPH01198428A/en
Publication of JPH01198428A publication Critical patent/JPH01198428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To prevent generation of ridging by specifying the values of Si+Al and Mn of a specifically composed steel to obtain an alpha-gamma transformed steel and subjecting this steel to hot rolling under specific conditions. CONSTITUTION:The ingot contg. <=0.01% C, 1.65-2.4% (Si+Al), <=0.006% S, <=2.0% Mn, and the components satisfying the formula is heated and is then subjected to the hot rolling at a finishing temp. of 700 deg.C-A1 transformation point. Or the ingot may be reheated after rough rolling of >=10% draft at 1000-1200 deg.C prior to this hot rolling. The resulted steel sheet is coiled at <=600 deg.C and is annealed at 600-750 deg.C before or after pickling. The annealed sheet is cold rolled down to a desired sheet thickness and is then subjected to continuous annealing under ordinary conditions. The alpha-gamma transformed steel is not obtainable in both cases in which the content of the Si+Al exceeds the upper limit unless the Mn is added at the excess ratio to deteriorate the magnetic characteristics and in which said content is below the lower limit. The formula is not satisfied and the ridging prevention is not possible if the content of the Si+Al is above the lower limit and, therefore, the austenite region is expanded by positively adding the Mn to the steel.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はりジングの生じない無方向性電磁鋼板の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing non-oriented electrical steel sheets that do not cause creasing.

[従来技術] 従来は、JIS中級(50A310〜50A470)の
電磁鋼板用の材料としては通常、Si含含量量1.5〜
2.5%の鋼を用いている。ところが、このような材料
を用いると冷間圧延時にリジングと称される凹凸の表面
欠陥が生じやすいことが一般に知られている。
[Prior Art] Conventionally, materials for electrical steel sheets of JIS intermediate grade (50A310 to 50A470) usually have a Si content of 1.5 to 1.5.
2.5% steel is used. However, it is generally known that when such a material is used, uneven surface defects called ridging are likely to occur during cold rolling.

このリジングを防止するためには、例えば特公昭5B−
4614号に示されるように、再結晶温度以上の高温熱
延板焼鈍を行う方法が開示されている。しかし、この方
法ではSi含有量が1.5〜2.5%の電磁鋼板では6
50〜900℃の焼鈍温−を確保し゛なければならず、
エネルギー原単位や、生産性が悪化するといった欠点が
あった。
In order to prevent this ridging, for example,
No. 4614 discloses a method of annealing a hot rolled sheet at a temperature higher than the recrystallization temperature. However, with this method, for electrical steel sheets with a Si content of 1.5 to 2.5%,
An annealing temperature of 50 to 900°C must be ensured,
There were drawbacks such as deterioration in energy consumption and productivity.

リジングの発生は熱間圧延時の集合組織に起因すると言
われている。本発明者はりジングを防止する方法として
この点に着目し、α−γ変態鋼を材料に用いれば熱間圧
延中またはその後の冷却過程でのα−γ変態により集合
組織が変化し、リジングを防止できることを見いだした
It is said that the occurrence of ridging is caused by the texture during hot rolling. The present inventor focused on this point as a method to prevent ridging, and found that if α-γ transformed steel is used as a material, the texture changes due to α-γ transformation during hot rolling or the subsequent cooling process, which prevents ridging. I discovered that it can be prevented.

しかし、C含有量が0.005%の場合のα−γ領域限
界に相当するSi含有量は1.5%であり、これ以上の
Siを含有する材料ではα−γ変態鋼を適用することは
できなかった。またAQもα−γ変態に対してSiと同
様の働きをするため、(Si+Al)51.5%の範囲
でのみ、有効であり、これ以上の(Si+Al)の含有
率の材料には適用することができなかった。
However, when the C content is 0.005%, the Si content corresponding to the α-γ region limit is 1.5%, and for materials containing more than this, α-γ transformation steel should be applied. I couldn't. In addition, since AQ has the same effect as Si on α-γ transformation, it is effective only in the range of (Si + Al) 51.5%, and cannot be applied to materials with a higher (Si + Al) content. I couldn't do that.

なお、γ領域を拡大するためにはCを増加すればよいが
、Cの増加は磁気特性を著しく劣化させるために実用的
ではない。
Note that in order to expand the γ region, it is sufficient to increase C, but increasing C significantly deteriorates the magnetic properties and is therefore not practical.

[発明が解決しようとする課題] 本発明は上記事実に鑑みてなされたものであり、(Si
+Al)が1.5%以上の材料を用いる場合においても
、前述したような高温の熱延板焼鈍を必要とせずにリジ
ングの発生を防止できる無方向性電磁鋼板の製造方法を
実現しようとするためのものである。
[Problems to be solved by the invention] The present invention has been made in view of the above facts, and
To realize a method for manufacturing a non-oriented electrical steel sheet that can prevent the occurrence of ridging without requiring high-temperature hot-rolled sheet annealing as described above even when using a material with +Al) of 1.5% or more. It is for.

[課題を解決するための手段] 前記課題を解決するための本発明は、C50゜01%、
(Si+Al): 1.65〜2.4%、S≦0.00
6%、Mn≦2.0%)でかつ、(。
[Means for Solving the Problems] The present invention for solving the problems described above includes C50°01%,
(Si+Al): 1.65-2.4%, S≦0.00
6%, Mn≦2.0%) and (.

Si+Al)−0,5Mn:1.4〜1.8%を満足す
る成分を含有する鋼片を加熱後、1,000〜1,10
0℃の温度で圧下率210%以上の粗圧延を行い、その
後再び加熱を行い、700℃〜A、変態点の仕上げ温度
で熱間圧延し600℃以下の巻取温度で巻取り、酸洗前
あるいは酸洗後に600〜750℃の熱延板焼鈍を行っ
た後に所望の板厚まで冷間圧延し、通常の条件で連続焼
鈍を行うことを特徴とする、磁気特性の優れた無方向性
電磁鋼板の製造方法である。
Si+Al)-0,5Mn: After heating a steel piece containing a component satisfying 1.4 to 1.8%, 1,000 to 1,10
Rough rolling is performed at a temperature of 0°C with a reduction ratio of 210% or more, then heating is performed again, hot rolling is performed at a finishing temperature of 700°C to A, the transformation point, and coiling is performed at a winding temperature of 600°C or less, and pickling is performed. Non-directional with excellent magnetic properties, characterized by hot-rolled plate annealing at 600-750°C before or after pickling, cold rolling to the desired thickness, and continuous annealing under normal conditions. This is a method for manufacturing electrical steel sheets.

、また、前記課題を解決するためのもう1つの本発明は
、C≦0.01%、(Si+Al): 1゜65〜2.
4%、S≦0.006%、Mn≦2゜0%)でかつ、(
S i+Al)−0,5Mn : 1.4〜1.6%を
満足する成分を含有する鋼片を加熱後、1s 000〜
1..100℃の温度で圧下率210%以上の粗圧延を
行い、その後再び加熱を行い、700℃〜At変態点の
仕上げ温度で熱間圧延し600℃以下の巻取温度で巻取
り、酸洗前あるいは酸洗後に600〜750℃の熱延板
焼鈍を行った後に所望の板厚まで冷間圧延し、通常の条
件で連続焼鈍を行うことを特徴とする、磁気特性の優れ
た無方向性電磁鋼板の製造方法である。
Another aspect of the present invention for solving the above problems is that C≦0.01%, (Si+Al): 1°65 to 2.
4%, S≦0.006%, Mn≦2゜0%) and (
Si+Al)-0,5Mn: After heating a steel piece containing components satisfying 1.4 to 1.6%, 1s 000 to
1. .. Rough rolling is performed at a temperature of 100°C with a reduction ratio of 210% or more, then heating is performed again, hot rolling is performed at a finishing temperature of 700°C to At transformation point, and coiling is performed at a winding temperature of 600°C or less, before pickling. Alternatively, a non-directional electromagnetic material with excellent magnetic properties is produced by hot-rolled plate annealing at 600-750°C after pickling, followed by cold rolling to the desired thickness, and continuous annealing under normal conditions. This is a method for manufacturing steel plates.

[作用] まず、本発明の材料である鋼片の添加成分の限定、理由
について説明する。
[Function] First, the limitations and reasons for the added components of the steel slab, which is the material of the present invention, will be explained.

Cは、’o、oi%を超えると著しく磁気時効を生じて
磁気特性を劣化させるため、上限を0.01%とした。
When C exceeds 'o, oi%, magnetic aging occurs significantly and the magnetic properties deteriorate, so the upper limit was set at 0.01%.

(Si+Al)は、磁気特性改善のために必須の元素で
あり、かつ前述したようにα−γ変態に重要な影響を及
ぼす。すなわち5(Si+Al)が2.4%を超えると
Mnの過度の添加を行わなければα−γ変態鋼になり得
ない。Mnの過度の添加は後述のように磁気特性を劣化
させるため、(Si+Al)の添加は2.4%を上限と
した。・また、(Si+Al)が1.65%未溝では後
述するように通常のMn含有率の鋼においては、α−γ
変態鋼になり得ないことと、所望の磁気特性が得られな
いためである。
(Si+Al) is an essential element for improving magnetic properties, and has an important effect on α-γ transformation as described above. That is, when 5(Si+Al) exceeds 2.4%, α-γ transformed steel cannot be obtained unless Mn is excessively added. Since excessive addition of Mn deteriorates the magnetic properties as described later, the upper limit of the addition of (Si+Al) was set at 2.4%.・Also, when (Si + Al) is 1.65% ungrooved, as will be described later, in steel with normal Mn content, α-γ
This is because it cannot become transformed steel and desired magnetic properties cannot be obtained.

Sは、Mnと結合してMnSを生成し、焼鈍時の結晶粒
成長が阻害されて鉄損値(W/Kg)が悪化するため、
上限を0.006%とした。
S combines with Mn to produce MnS, which inhibits grain growth during annealing and worsens the iron loss value (W/Kg).
The upper limit was set at 0.006%.

Mnは、固有抵抗を高めて鉄損値の改善に有効な元素で
ある。また、M n、はγ生成元素でもあり、添加量を
増加することによりγ生成領域が拡大される。しかし、
Mnを過度に添加するとα−γ変態点が著しく低下して
磁性を失ってしまい、また熱間圧延中にα−γ変態点を
通過する事態が生じ、これによる板厚変動が発生するた
め、inの上限は2.0%とした。
Mn is an element effective in increasing the specific resistance and improving the iron loss value. Furthermore, Mn is also a γ-producing element, and by increasing the amount added, the γ-producing region is expanded. but,
If Mn is added excessively, the α-γ transformation point will drop significantly and magnetism will be lost, and a situation will occur where the α-γ transformation point will be passed during hot rolling, which will cause plate thickness fluctuations. The upper limit of in was set to 2.0%.

このようにMnを適度に添加したことにより、従来と同
等の磁気特性を確保するのに必要な(Si+Al )の
添加量を低減することができ、その結果として磁束密度
、磁歪を改善することができる。
By adding an appropriate amount of Mn in this way, it is possible to reduce the amount of (Si+Al) added necessary to ensure magnetic properties equivalent to conventional ones, and as a result, magnetic flux density and magnetostriction can be improved. can.

さらに本発明者は以上の成分範囲内において、α−γ変
態鋼を実現させるためには下記(1)式を滴定する成分
にする必要があることを見いだした。
Furthermore, the present inventors have found that within the above component range, in order to realize α-γ transformed steel, it is necessary to use the following formula (1) as the component to be titrated.

(Si+Al)−0,5Mn=1.4〜1.8%−一−
(1) 以下、上記(1)式の意味を説明する。
(Si+Al)-0,5Mn=1.4-1.8%-1-
(1) The meaning of the above formula (1) will be explained below.

Mnは溶銑自体に存在する元素であり、これをなくすこ
とはできない。通常の溶銑成分ではMnは0.1%程度
であり、このとき(1)式を溝たす(Si+Al)の含
有量は1.45〜1.65%となる。通常、この範囲の
(S i +Al )の含<f mではりジンクは発生
しなC)。しかし、本発明のよ5に(S i+Al)(
1)含有量がt、es%以゛、上の電磁鋼板においては
上記(1)式を滴定せず、リジングを防止することがで
きないために、Mnを積極的に添加する。このことによ
りオーステナイト領域を拡大することができ、その結果
として(Si+Al)≧1.65%の鋼においてもリジ
ングを防止することができる。
Mn is an element that exists in hot metal itself, and cannot be eliminated. In a normal hot metal component, Mn is about 0.1%, and at this time, the content of (Si+Al) satisfying equation (1) is 1.45 to 1.65%. Normally, when the content of (S i +Al ) is < f m in this range, no shear or zinc occurs C). However, according to the present invention, (S i + Al) (
1) In electrical steel sheets with a content of t, es% or more, the above formula (1) is not titrated and ridging cannot be prevented, so Mn is actively added. This allows the austenite region to be expanded, and as a result, ridging can be prevented even in steel where (Si+Al)≧1.65%.

次に、上記成分の鋼片を熱間圧延する際の条件の限定理
由についてのべる。
Next, the reason for limiting the conditions when hot rolling a steel slab having the above components will be described.

まず、熱間仕上げ圧延の前に行う粗圧延を圧下率:10
%以上で行う理由は、この粗圧延により圧延材に歪みを
付与して結晶粒を細粒化、その後の約1,200℃程度
の再加熱で材料組織を整粒化させるためである。圧下率
が10%未横では上記の効果が充分に得られないため、
下限値を10%とした。また、このときの圧延材温度を
1,000〜1.200℃としたのはこの範囲外の温度
領域で結晶を生じさせるに必要な圧下率が非常に大きく
なるためである。
First, rough rolling is performed before hot finish rolling at a rolling reduction rate of 10.
% or more is that the rough rolling imparts strain to the rolled material to make the crystal grains finer, and the subsequent reheating to about 1,200° C. makes the material structure regular. If the rolling reduction rate is less than 10%, the above effect cannot be obtained sufficiently.
The lower limit was set at 10%. Moreover, the reason why the temperature of the rolled material at this time was set to 1,000 to 1.200°C is that the rolling reduction required to form crystals becomes extremely large in a temperature range outside this range.

このように、熱間圧延中に軽圧下率の圧延を行うことで
結晶粒を微細化することにより、さらにリジングの発生
を防止することができる。しかし、上記のような熱間圧
延中に軽圧下を行い、再加熱を行うことは能率、エネル
ギーコストの点で不利になるために、鋼の成分とりジン
クの発生杖況を考慮して必要に応じて行えばよい。
In this way, the occurrence of ridging can be further prevented by refining the crystal grains by performing rolling at a light reduction rate during hot rolling. However, performing light reduction and reheating during hot rolling as described above is disadvantageous in terms of efficiency and energy cost, so it is necessary to take into account the composition of the steel and the generation of zinc. You can do it accordingly.

熱間圧延の仕上げ温度は高い程、集合組織が改善されて
製品の磁束密度が向上する。ただし、圧延スケジュール
の後半に圧延材温度がA、変態点を通過すると、圧延材
の板厚変動が大きくなるために、仕上げ温度はA、変態
点以下にする必要がある。また、仕上げ温度が700℃
未満では圧延性、磁束密度が悪化するために下限値は7
00℃とした。
The higher the hot rolling finishing temperature, the better the texture and the higher the magnetic flux density of the product. However, when the temperature of the rolled material passes through A, the transformation point, in the latter half of the rolling schedule, the thickness variation of the rolled material increases, so the finishing temperature needs to be below A, the transformation point. In addition, the finishing temperature is 700℃
If it is less than 7, the rollability and magnetic flux density will deteriorate, so the lower limit is 7.
The temperature was 00°C.

熱間圧延後の巻取温度は低い程、続いて行う酸洗時の酸
洗性が良好になるために、600℃以下とした。
The winding temperature after hot rolling was set to 600° C. or lower because the lower the temperature, the better the pickling properties during the subsequent pickling.

酸洗は、冷間圧延時にスケールがロールに付着して圧延
製品に表面疵が発生するのを防止するために、圧延前に
酸洗してデスケーリングを行うために必要である。
Pickling is necessary to perform descaling by pickling before rolling in order to prevent scale from adhering to the rolls during cold rolling and causing surface flaws in the rolled product.

次に、熱延板焼鈍は磁気特性改善のために行う。Next, hot-rolled sheet annealing is performed to improve magnetic properties.

熱延板焼鈍の焼鈍温度は、600℃未満では磁束密度向
上の効果がな(、また磁束密度向上のためには750℃
までで充分であり、それ以上の温度ではN2雰囲気では
加窒を起こして磁気特性が悪化することに加え、前述し
たように高温焼鈍を行うとエネルギー原単位や生産性も
悪化するために、600〜750℃とした。また、前記
酸洗と熱延板焼鈍を行う手順はいずれを先に行ってもか
まわない。
The annealing temperature for hot-rolled sheet annealing is less than 600°C, which has no effect on improving magnetic flux density.
If the temperature is higher than 600°C, nitridation will occur in the N2 atmosphere, deteriorating the magnetic properties, and as mentioned above, high-temperature annealing will also deteriorate the energy consumption and productivity. The temperature was set at ~750°C. In addition, either of the pickling and hot-rolled sheet annealing steps may be performed first.

冷間圧延の圧下率は特に限定しないが、70%未横では
熱間圧延時の負荷が大きくなり、95%を超えると冷間
圧延が困難になる。
The rolling reduction ratio in cold rolling is not particularly limited, but if it is less than 70%, the load during hot rolling becomes large, and if it exceeds 95%, cold rolling becomes difficult.

連続焼鈍を行う理由は、急速加熱/急速冷却を行って集
合組織を改善するためであり、バッチ焼鈍ではこのよう
な効果が得られない。また、連続焼鈍条件は通常行われ
ている条件でよいが、下記の点を考慮に入れる。まず、
焼鈍温度は600℃未1)嘴”・で!は充分な結晶粒の
成長が得られず、10001℃を超えると結晶粒が過大
になり、いずれも所望の磁気特性が得られない。均熱時
間は30秒以上が必要であり、それより短いと鋼板内の
結晶粒度が均一にならず、磁気特性にバラツキを生じる
ため、均熱時間は30秒以上が必要である。
The reason for performing continuous annealing is to perform rapid heating/rapid cooling to improve the texture, and batch annealing cannot achieve this effect. Further, the continuous annealing conditions may be those normally used, but the following points should be taken into consideration. first,
When the annealing temperature is less than 600℃, sufficient growth of crystal grains cannot be obtained, and when the annealing temperature exceeds 10001℃, the crystal grains become excessively large, and the desired magnetic properties cannot be obtained in either case. Soaking The soaking time must be at least 30 seconds; if it is shorter than that, the grain size within the steel sheet will not be uniform and the magnetic properties will vary, so the soaking time must be at least 30 seconds.

[実施例コ 次に、本発明方法の実施例について説明する。[Example code] Next, examples of the method of the present invention will be described.

第1表中に示される成分で、厚: 230 mm1幅:
、1000mmの連続鋳造スラブを同表中に示す熱延条
件にて板厚:2.3mmまで熱間圧延を行い、続いて酸
洗後、同表中に示す条件にて熱延板焼鈍をバッチ焼鈍に
て実施した。その後、板厚:0.5mmまで冷間圧延し
、同表中の条件にて連続焼鈍を行った。その時の磁気特
性として、同表中に鉄損値w 115/B(1と、磁束
密度B6oの測定結果を示し、さらに鋼板表面のりジン
グ発生状況の有無を調べた結果を実施例1#4として示
した。
Ingredients shown in Table 1, Thickness: 230 mm Width:
, hot rolling a 1000 mm continuous cast slab to a thickness of 2.3 mm under the hot rolling conditions shown in the same table, followed by pickling and batch annealing the hot rolled sheet under the conditions shown in the same table. It was performed by annealing. Thereafter, it was cold rolled to a plate thickness of 0.5 mm and continuously annealed under the conditions shown in the same table. As for the magnetic properties at that time, the same table shows the iron loss value w 115/B (1) and the measurement results of the magnetic flux density B6o, and the results of examining the presence or absence of the occurrence of sliding on the steel plate surface are shown as Example 1 #4. Indicated.

さらに本、発明方法の別の実施例として、第1表中に示
されるように実施例1と同じ成分で、厚:23 Omm
x幅:1000mmの連続鋳造スラブを加熱後、スラブ
厚:150mmまで粗圧延した後、1200℃まで再加
熱を行い、続いて同表中に示すように上述の実施例と同
じ条件および同様の製造工程により電磁鋼板を製造した
後、同様に鉄損値Wt6/150と、磁束密度Booの
測定結果およびリジング発生状況の有無を調べた結果を
実施例5〜8として示した。
Furthermore, as another example of the method of the present invention, as shown in Table 1, the same ingredients as in Example 1 were used, and the thickness was 23 Omm.
x Width: After heating a continuous casting slab of 1000 mm, it was roughly rolled to a slab thickness of 150 mm, and then reheated to 1200°C, and subsequently, as shown in the same table, it was manufactured under the same conditions and similar to the above-mentioned example. After producing electrical steel sheets through the process, the results of similarly measuring the iron loss value Wt6/150, the magnetic flux density Boo, and the presence or absence of ridging were shown as Examples 5 to 8.

また、同様に比較例として本発明の成分範囲外であり、
α−γ変態を考慮していない成分系のスラブを比較例1
〜4として同表中に示す条件にて製造を行った。
Similarly, as a comparative example, it is outside the component range of the present invention,
Comparative example 1 is a slab with a component system that does not take α-γ transformation into consideration.
Production was carried out under the conditions shown in the same table as -4.

(以下、余白) その結果、S1含有量が1.5%以下で熱間粗圧延を行
っていない比較例2、比較例4ではりジンクは発生して
いないが、鉄損値WIIS150がいずれも5 (W/
Kg)以上と非常に大きな値を示している。
(Hereinafter, blank space) As a result, in Comparative Examples 2 and 4, in which the S1 content was 1.5% or less and hot rough rolling was not performed, no welding and zinc occurred, but the iron loss value WIIS150 was 5 (W/
Kg) or more, which is a very large value.

また、Si含有量が1.5%以上の比較例1、比較例3
ではりジンクが発生している。
In addition, Comparative Example 1 and Comparative Example 3 with Si content of 1.5% or more
Zinc is occurring.

これに対して、(Si+Al)とMnの値を適正な値に
選択した本発明の実施例1〜4ではいずれもリジングが
発生することなしに、しかも磁気特性の優れた電磁鋼板
を製造することができた。
On the other hand, in Examples 1 to 4 of the present invention in which the values of (Si+Al) and Mn were selected to appropriate values, electrical steel sheets with excellent magnetic properties were manufactured without causing ridging. was completed.

さらに、(S i+Al )とMnの値を適正な値に選
択したことに加え、熱間粗圧延を行った後、再加熱した
本発明の実施例5〜8も同様に、リジングが発生するこ
となしに、しかも磁気特性の優れた電磁鋼板を製造する
ことができた。
Furthermore, in addition to selecting appropriate values for (S i + Al ) and Mn, ridging also occurred in Examples 5 to 8 of the present invention, which were reheated after rough hot rolling. It was possible to produce an electrical steel sheet with excellent magnetic properties without using any of the above methods.

[発明の効果コ 以上述べた如く、本発明によれば(Si+Al)とMn
の値を適正な値にすることにより、α−γ変態を利用す
ることに加え、熱間粗圧延を行った後、再加熱して熱間
圧延を続けて行うことにより、リジングが発生すること
なしに、比較的に低温での熱延板焼鈍にてエネルギー原
単位、生産性を悪化させることなく、磁気特性の優れた
電磁鋼板を製造することができる。
[Effects of the invention] As described above, according to the present invention, (Si+Al) and Mn
By setting the value of to an appropriate value, in addition to utilizing α-γ transformation, ridging can occur by performing hot rough rolling and then reheating and continuing hot rolling. It is possible to produce an electrical steel sheet with excellent magnetic properties without deteriorating energy consumption or productivity by hot-rolled sheet annealing at a relatively low temperature.

Claims (2)

【特許請求の範囲】[Claims] (1)C≦0.01%、(Si+Al):1.65〜2
.4%、S≦0.006%、Mn≦2.0%でかつ、(
Si+Al)−0.5Mn:1.4〜1.6%を満足す
る成分を含有する鋼片を加熱後、700℃〜A_1変態
点の仕上げ温度で熱間圧延し、600℃以下の巻取温度
で巻取り、酸洗前あるいは酸洗後に600〜750℃の
熱延板焼鈍を行った後に所望の板厚まで冷間圧延し、通
常の条件で連続焼鈍を行うことを特徴とする、磁気特性
の優れた無方向性電磁鋼板の製造方法。
(1) C≦0.01%, (Si+Al): 1.65-2
.. 4%, S≦0.006%, Mn≦2.0%, and (
Si+Al)-0.5Mn: After heating a steel billet containing a component satisfying 1.4 to 1.6%, it is hot rolled at a finishing temperature of 700°C to A_1 transformation point, and then rolled at a coiling temperature of 600°C or less. The magnetic property is characterized by hot-rolled plate annealing at 600 to 750°C before or after pickling, cold rolling to the desired thickness, and continuous annealing under normal conditions. A method for producing excellent non-oriented electrical steel sheets.
(2)C≦0.01%、(Si+Al):1.65〜2
.4%、S≦0.006%、Mn≦2.0%でかつ、(
Si+Al)−0.5Mn:1.4〜1.6%を満足す
る成分を含有する鋼片を加熱後、1,000〜1,20
0℃の温度で圧下率:10%以上の粗圧延を行い、その
後再び加熱を行い、700℃〜A_1変態点の仕上げ温
度で熱間圧延し、600℃以下の巻取温度で巻取り、酸
洗前あるいは酸洗後に600〜750℃の熱延板焼鈍を
行った後に所望の板厚まで冷間圧延し、通常の条件で連
続焼鈍を行うことを特徴とする、磁気特性の優れた無方
向性電磁鋼板の製造方法。
(2) C≦0.01%, (Si+Al): 1.65-2
.. 4%, S≦0.006%, Mn≦2.0%, and (
Si+Al)-0.5Mn: 1,000 to 1,20 after heating a steel piece containing a component satisfying 1.4 to 1.6%
Rough rolling is performed at a temperature of 0°C with a reduction ratio of 10% or more, then heating is performed again, hot rolling is performed at a finishing temperature of 700°C to A_1 transformation point, coiling is performed at a winding temperature of 600°C or less, and acid A non-directional sheet with excellent magnetic properties, characterized by hot-rolled sheet annealing at 600-750°C before washing or pickling, followed by cold rolling to the desired sheet thickness, and continuous annealing under normal conditions. manufacturing method of magnetic steel sheet.
JP2264188A 1988-02-01 1988-02-01 Production of non-oriented silicon steel sheet having excellent magnetic characteristic Pending JPH01198428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2264188A JPH01198428A (en) 1988-02-01 1988-02-01 Production of non-oriented silicon steel sheet having excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2264188A JPH01198428A (en) 1988-02-01 1988-02-01 Production of non-oriented silicon steel sheet having excellent magnetic characteristic

Publications (1)

Publication Number Publication Date
JPH01198428A true JPH01198428A (en) 1989-08-10

Family

ID=12088471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2264188A Pending JPH01198428A (en) 1988-02-01 1988-02-01 Production of non-oriented silicon steel sheet having excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPH01198428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609696A (en) * 1994-04-26 1997-03-11 Ltv Steel Company, Inc. Process of making electrical steels
US6068708A (en) * 1998-03-10 2000-05-30 Ltv Steel Company, Inc. Process of making electrical steels having good cleanliness and magnetic properties
US6217673B1 (en) 1994-04-26 2001-04-17 Ltv Steel Company, Inc. Process of making electrical steels
EP1838882A1 (en) * 2004-12-21 2007-10-03 Posco Co., Ltd. Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609696A (en) * 1994-04-26 1997-03-11 Ltv Steel Company, Inc. Process of making electrical steels
USRE35967E (en) * 1994-04-26 1998-11-24 Ltv Steel Company, Inc. Process of making electrical steels
US6217673B1 (en) 1994-04-26 2001-04-17 Ltv Steel Company, Inc. Process of making electrical steels
US6068708A (en) * 1998-03-10 2000-05-30 Ltv Steel Company, Inc. Process of making electrical steels having good cleanliness and magnetic properties
EP1838882A1 (en) * 2004-12-21 2007-10-03 Posco Co., Ltd. Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
EP1838882A4 (en) * 2004-12-21 2011-03-02 Posco Co Ltd Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPS5813606B2 (en) It&#39;s hard to tell what&#39;s going on.
JPH0586455B2 (en)
JPH03219020A (en) Production of nonoriented silicon steel sheet
EP0475710B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
US4116729A (en) Method for treating continuously cast steel slabs
JPH01198428A (en) Production of non-oriented silicon steel sheet having excellent magnetic characteristic
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH02232319A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH02166233A (en) Manufacture of cr-series stainless steel thin sheet using thin casting method
JPS6024325A (en) Production of ferritic stainless steel plate having less ridging and excellent formability
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JP2612074B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties and surface properties
JPS6044377B2 (en) Method for producing soft cold-rolled steel sheets for drawing with excellent aging resistance through continuous annealing
JP2883224B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0225518A (en) Production of hot-rolled steel sheet having excellent deep drawability
JPH10280040A (en) Production of grain-oriented electrical steel sheet excellent in iron loss characteristic
JP3697767B2 (en) Method for producing grain-oriented silicon steel sheets with extremely stable magnetic properties in the plate width direction
JPS592725B2 (en) Method for producing thermosetting high-strength cold-rolled steel sheet for deep drawing
JPS61243124A (en) Production of black plate for tin plate having excellent workability
JPS5980727A (en) Manufacture of cold rolled steel sheet with high drawability by continuous annealing
JPH0369967B2 (en)
CN117203355A (en) Method for producing oriented electrical steel sheet