JPS59226120A - Production of ferritic stainless steel sheet having excellent workability - Google Patents

Production of ferritic stainless steel sheet having excellent workability

Info

Publication number
JPS59226120A
JPS59226120A JP9851283A JP9851283A JPS59226120A JP S59226120 A JPS59226120 A JP S59226120A JP 9851283 A JP9851283 A JP 9851283A JP 9851283 A JP9851283 A JP 9851283A JP S59226120 A JPS59226120 A JP S59226120A
Authority
JP
Japan
Prior art keywords
temperature
annealing
soaking
hot
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9851283A
Other languages
Japanese (ja)
Other versions
JPH02417B2 (en
Inventor
Jiro Harase
原勢 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9851283A priority Critical patent/JPS59226120A/en
Publication of JPS59226120A publication Critical patent/JPS59226120A/en
Publication of JPH02417B2 publication Critical patent/JPH02417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys

Abstract

PURPOSE:To produce a ferritic stainless steel sheet having excellent workability by cold rolling a hot-rolled sheet of a ferritic stainless steel contg. specifically composed. Al and subjecting the steel sheet to soaking for short time at an adequate temp. then to finish annealing. CONSTITUTION:A hot-rolled steel sheet of a ferritic stainless steel contg. 0.08- 0.5% Al is subjected to soaking within 60sec in a temp. range of 850-900 deg.C in finish annealing after cold rolling of the hot-rolled sheet without annealing, by which the ferritic stainless sheet having a good (r) value and ridging and mechanical properties is obtd. Good mechanical properties are obtd. by the above-mentioned soaking under the conditions of about 60sec at 850 deg.C and about 20sec soaking at 900 deg.C. The effect is not enough at <=850 deg.C and the soaking at >900 deg.C is undesirable for the (r) value and ridging. If the content of Al is <0.08%, the (r) value is low and if >0.5%, the effect is basically the same and such content is uneconomical.

Description

【発明の詳細な説明】 本発明は加工性にすぐれたフェライト系ステンレス薄板
の製造法、詳しくは0.08〜0.5%のAtを含有す
る5US430鋼を代表とするフェライト系ステンレス
鋼の薄板の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ferritic stainless steel thin plate with excellent workability, and more specifically, a method for manufacturing a ferritic stainless steel thin plate, typified by 5US430 steel containing 0.08 to 0.5% At. This relates to a manufacturing method.

尼含有量が0.08%以下の通常の8US430型フエ
ライト系ステンレス薄板は、熱延板をほぼ800〜85
0℃の温度で2時間以上箱焼鈍した後、冷間圧延し、次
いで通常820〜850℃の温度で短時間焼鈍して製造
されるのが一般的であシ、製品のr値及びリジング特性
は均熱温度、均熱時間によって殆んど変化しないことが
知られている0この熱延板焼鈍工程において、熱延板の
状態で存在していたα′相は、フェライト相+炭化物に
変化し、熱延板焼鈍後にはフェライト相と炭化物相とな
る。このような素材を冷間圧延後加熱すれば回復、再結
晶がおこシ、再結晶後のミクロ組織は等釉粒とな)、結
晶粒径は均熱°温度、時間に殆んど影響を受けず一定と
なる。再結晶が完了する温度は、成分、熱延条件、冷延
圧下率によって若干異なるが、材料温度が800℃以上
に達すれば均熱時間に関係なく再結晶し、再結晶すれば
均熱温度、時間に関係なくほぼ一定のr値、リジング特
性が得られることがわかった。
Ordinary 8US430 type ferritic stainless steel sheet with a ferrite content of 0.08% or less is a hot-rolled sheet with approximately 800~85%
It is generally manufactured by box annealing at a temperature of 0℃ for 2 hours or more, followed by cold rolling, and then annealing for a short time at a temperature of usually 820-850℃, which improves the R value and ridging properties of the product. is known to hardly change depending on the soaking temperature and soaking time. In this hot-rolled sheet annealing process, the α' phase that existed in the hot-rolled sheet changes to a ferrite phase + carbide. However, after hot-rolled sheet annealing, it becomes a ferrite phase and a carbide phase. If such a material is heated after cold rolling, recovery and recrystallization will occur, and the microstructure after recrystallization will be uniformly glazed grains), but the grain size is almost unaffected by the soaking temperature and time. It will not be affected and will remain constant. The temperature at which recrystallization is completed varies slightly depending on the ingredients, hot rolling conditions, and cold rolling reduction ratio, but if the material temperature reaches 800°C or higher, recrystallization will occur regardless of the soaking time; It was found that almost constant r value and ridging characteristics can be obtained regardless of time.

しかしながら、μを多量に含有した5US430型フエ
ライト系ステンレス鋼の熱延板を、熱延板焼鈍なしで冷
間圧延して再結晶焼鈍した場合の再結晶温度は熱延板焼
鈍後冷間圧延した場合と比べてより高温とな多結晶粒も
混粒となシ、完全に再結晶した場合は結晶粒の大きさは
均熱温度、均熱時間に殆んど影響をうけず一定となるが
、r値、リジング特性は均熱温度及び時間によシ大幅に
変化すること、その際r値およびリジング特性を同時に
満足する焼鈍東件は、均熱温度850〜900℃、均熱
時間60秒以内の高温短時間焼鈍であることを確め本発
明を完成したものである。
However, when a hot-rolled sheet of 5US430 type ferritic stainless steel containing a large amount of μ is cold-rolled and recrystallized without hot-rolled sheet annealing, the recrystallization temperature is the same as that of the cold-rolled sheet after hot-rolled sheet annealing. Polycrystalline grains that are heated to a higher temperature than those in the case are not mixed grains, and if they are completely recrystallized, the size of the crystal grains is almost unaffected by the soaking temperature and soaking time and remains constant. , r value, and ridging properties vary greatly depending on the soaking temperature and time.In this case, the annealing process that satisfies the r value and ridging properties at the same time is a soaking temperature of 850 to 900°C and a soaking time of 60 seconds. The present invention was completed by confirming that the high-temperature, short-time annealing was within

すなわち本発明の要旨とするところはAt O,08%
〜0.5係を含有するフェライト系ステンレス鋼の熱延
板を熱延板焼鈍することなく冷間圧延後、仕上焼鈍する
にあたシ、850〜900℃の温度範囲で60秒以内の
均熱を行うことを特徴とする加工性のすぐれたフェライ
ト系ステンレス薄板の製造法にある。
That is, the gist of the present invention is At O, 08%
After cold rolling a hot-rolled sheet of ferritic stainless steel containing ~0.5 modulus without annealing the hot-rolled sheet, it is necessary to perform finish annealing in a temperature range of 850 to 900°C within 60 seconds. A method for producing a thin ferritic stainless steel plate with excellent workability, which involves heating.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、本発明の対象銀であるAt含有フェラ
イト系ステンレス鋼の熱延板を、熱延板焼鈍することな
く、冷間圧延した後、仕上焼鈍するにあたυ、仕上焼鈍
の均熱温度及び時間を850〜900℃、60秒以内と
限定した理由は以下のとおシである。
In the present invention, a hot-rolled sheet of At-containing ferritic stainless steel, which is the target silver of the present invention, is cold-rolled without hot-rolled sheet annealing, and then subjected to finish annealing. The reason why the temperature and time were limited to 850 to 900°C and within 60 seconds is as follows.

前記した均熱条件と製品r値との関係は、均熱温度87
5℃迄の範囲では高温長時間程向上し、875℃を超え
900℃まではゆるやかに劣化するが、850℃以下の
均熱温度の場合と比べて高いレベルにおる。また均熱時
間は長い程r値の向上は顕著であるが、それは均熱温度
が約875℃以下の場合に限られ、均熱温度が約875
℃を超えるとr値の向上がみられるのは均熱時間10秒
までであシ、それ以上均熱時間を長くしてもr値の向上
式は僅かである。
The relationship between the above-mentioned soaking conditions and product r value is as follows: soaking temperature 87
In the range up to 5°C, it improves as the temperature increases over a longer period of time, and when it exceeds 875°C and reaches 900°C, it gradually deteriorates, but it remains at a higher level than in the case of a soaking temperature of 850°C or lower. In addition, the longer the soaking time is, the more remarkable the improvement in r value is, but this is only when the soaking temperature is approximately 875°C or lower;
When the temperature exceeds .degree. C., an improvement in the r value is only observed up to a soaking time of 10 seconds, and even if the soaking time is increased beyond that, the r value is only slightly improved.

リジング特性に及ぼす最終焼鈍サイクルの影響は複雑で
あるが、均熱時間を一定として、種々の温度で焼鈍する
場合には、ある均熱温度の場合に最少のりソングを示し
、その温度よシ低い場合も、高い場合もリジングが増加
し、その最適温度は、均熱時間が短い程高温側に移行し
、しかも最適温度範囲が狭く、リジングの減少が大きい
という傾向がある。例えば均熱時間が60秒と長い場合
には、リジングの相対値は比較的大きく、850〜87
5℃の範囲でほぼ一定の値を示し、875℃を超える温
度又は850℃未満の温度では逆にリジングが劣化する
傾向を示し、均熱時間が10秒と短い場合は、均熱温度
が875〜900℃という比較的狭い温度範囲で、リジ
ングは低い値を示し、且つこの絶対値は、均熱時間が6
0秒と長い場合の最適温度で焼鈍して得られるリジング
の値と比べて良好である。
The influence of the final annealing cycle on the ridging properties is complex, but when annealing is performed at various temperatures with a constant soaking time, the least glue song is shown at a certain soaking temperature, and when it is lower than that temperature. There is a tendency that the optimal temperature shifts to the higher temperature side as the soaking time is shorter, and the optimal temperature range is narrower, and the reduction in ridging is greater. For example, when the soaking time is as long as 60 seconds, the relative value of ridging is relatively large, 850 to 87
It shows a nearly constant value in the range of 5℃, and on the contrary, the ridging tends to deteriorate at temperatures exceeding 875℃ or below 850℃, and when the soaking time is as short as 10 seconds, the soaking temperature is 875℃. In a relatively narrow temperature range of ~900°C, the ridging shows a low value, and this absolute value is lower than the soaking time of 6
This is better than the ridging value obtained by annealing at the optimum temperature for a long time of 0 seconds.

AAを含有した5US430型フエライト系ステンレス
鋼熱延板を熱延板焼鈍なしで冷間圧延して得られた薄板
の場合、再結晶して結晶粒がほぼ一定であるにもかかわ
らずr値およびリジング特性が大巾に変化する理由は次
のように考えられる。Atを含有した5US430型フ
エライト系ステンレス鋼ニおいては、Atを含有してい
ない通常の5US430型フエライト系ステンレス鋼と
比べて、熱延ままの状態ではマルテンサイト相やベイナ
イト相等の硬い相が少ないとはいえ、数10係程度存在
する。この硬い相は引続く冷間圧延工程で、圧延方向に
伸ばされ、仕上焼鈍工程で、分解し、フェライト相と炭
化物とな)、再結晶温度以上の温度で、このフェライト
相も再結晶する。まずr値が高温焼鈍で向上する理由は
、このような硬い相から分離した炭化物や、すでに存在
していた微細な炭化物が凝集し、これらの炭化物が塑性
変形に際して活動する転位の活動を妨げるような働きが
なくなシ、塑性変形しやすくなるためと、焼鈍中にju
Nが析出するためにr値を向上させるものと考えられる
。熱延板焼鈍した場合には、熱延板焼鈍工程で炭化物の
サイズ、分散状況が決まってしまい、更に固溶Nも窒化
Crや微量に含まれているAt等によシ固定され、仕上
焼鈍工程ではこれらの析出物の分散状況は焼鈍方法によ
っては変化しないので、再結晶が完了すればr値は焼鈍
条件にかかわらず変化しないものである。熱延板焼鈍温
度が875℃を超えるとr値がゆるやかに劣化するのは
、幻ツが再固溶をはじめることと、炭化物が再固溶し、
再′び微細化し、マ)IJワックス固溶CやN量が高く
なるからである。
In the case of a thin sheet obtained by cold rolling a 5US430 type ferritic stainless steel hot-rolled sheet containing AA without hot-rolled sheet annealing, the r value and the The reason why the ridging characteristics change drastically is considered as follows. 5US430 type ferritic stainless steel containing At has less hard phases such as martensite phase and bainite phase in the as-hot-rolled state compared to normal 5US430 type ferritic stainless steel that does not contain At. However, there are about 10 coefficients. This hard phase is elongated in the rolling direction in the subsequent cold rolling process, and decomposed in the final annealing process to form a ferrite phase and carbide), and this ferrite phase also recrystallizes at a temperature higher than the recrystallization temperature. First, the reason why the r value improves with high-temperature annealing is that the carbides separated from the hard phase and the fine carbides that were already present aggregate, and these carbides interfere with the activity of dislocations that become active during plastic deformation. This is because the plastic deformation becomes easier due to the loss of the
It is thought that the r value is improved due to the precipitation of N. When hot-rolled sheets are annealed, the size and dispersion of carbides are determined during the hot-rolled sheet annealing process, and solid solution N is also fixed by Cr nitride and a small amount of At, etc. In the process, the dispersion state of these precipitates does not change depending on the annealing method, so once recrystallization is completed, the r value does not change regardless of the annealing conditions. When the hot-rolled sheet annealing temperature exceeds 875°C, the r-value gradually deteriorates because the grains begin to dissolve into solid solution again, and the carbides begin to dissolve into solid solution again.
This is because the particles become fine again, and (ma) the amount of solid solution C and N in the IJ wax increases.

次にリジング特性であるが、焼鈍温度が低い場合に劣化
するのは、本発明の対象鋼の場合焼鈍中にA/1.?q
が析出し、再結晶完了温度が高温になるので完全な再結
晶が起こらず、集合組織のランダム化が不十分なだめで
ある。更に温度が高くなるとりジング特性が逆に劣化す
る傾向があるのは、微細炭化物が再固溶することによシ
、1日フェライト相の粒界に存在した微細結晶粒が消滅
し、隣接する伸長フェライト相は小傾角粒界からなって
いる場合が多いので、実質的に核結晶が粗大化したのと
同じように働き、リジング特性が劣化する。なお本発明
の対象鋼のMを0.08%以上としたのは、0.08%
未満では、製品の機械的性質、特に降伏点が高くなるこ
とと、どのような条件で熱処理してもr値が低いこと、
更にはきらきら疵と呼ばれる表面欠陥が出やすくなるた
めであp、0.5%以下と限定したのは、これよシ多く
含有しても実質的な効果は変らず、経済的でないからで
ある。又均熱時間を60秒以下と限定したのは、これ以
上長時間加熱してもr値、リジング特性が向上せず、し
かも温度が高い場合は逆に劣化するからである。
Next, regarding the ridging property, the steel subject to the present invention deteriorates when the annealing temperature is low. ? q
precipitates and the recrystallization completion temperature becomes high, so complete recrystallization does not occur and the randomization of the texture is insufficient. Furthermore, as the temperature rises, the aging properties tend to deteriorate because the fine carbides re-dissolve into solid solution, and the fine grains that existed at the grain boundaries of the ferrite phase disappear, and the adjacent grains disappear. Since the elongated ferrite phase is often composed of low-angle grain boundaries, it essentially acts in the same way as coarsened core crystals, deteriorating the ridging properties. In addition, the M of the target steel of the present invention is set to 0.08% or more because 0.08%
If the temperature is less than
Furthermore, surface defects called sparkling scratches are likely to appear.The reason why the content was limited to 0.5% or less is that even if it is contained in a larger amount, the actual effect will not change and it is not economical. . The reason why the soaking time is limited to 60 seconds or less is because the r value and ridging properties do not improve even if heated for a longer period of time, and if the temperature is high, they will deteriorate.

以下本発明を実施例に従って具体的に説明する。The present invention will be specifically described below according to examples.

実施例1 表1に示した厚さ2.70wのAtを含有した5US4
30型フエライト系ステンレス鋼の熱延板(4)を、熱
延板焼鈍することなく板厚1. Owts及び0.4m
の冷延板とした。これらの冷延板を塩浴中で熱処理を行
い、熱処理後r値及びリジングの測定を行った。比較の
ためhtを少量含有した5US430型フエライト系ス
テンレス鋼の熱延板(B)については、840℃x 4
 hrの熱延板焼鈍後板厚i、 o咽及び0.4mの冷
延板として、同様の熱処理を行い、r値及びリジング高
さの測定を行った。リジング高さ及びr値の測定結果を
表2に示したが、本発明の対象鋼を850〜900℃の
温度範囲で60秒以内の熱処理した場合は、r値、リジ
ング特性ともに良好であることがわかる。
Example 1 5US4 containing At with a thickness of 2.70w shown in Table 1
A hot-rolled sheet (4) of Type 30 ferritic stainless steel was reduced to a thickness of 1.3 mm without annealing the hot-rolled sheet. Owts and 0.4m
It was made into a cold-rolled sheet. These cold-rolled sheets were heat-treated in a salt bath, and after the heat treatment, the r value and ridging were measured. For comparison, hot-rolled sheet (B) of 5US430 type ferritic stainless steel containing a small amount of ht was heated at 840°C x 4
After annealing the hot-rolled sheet for hr, a cold-rolled sheet with a thickness of i and 0.4 m was subjected to the same heat treatment, and the r value and ridging height were measured. The measurement results of the ridging height and r value are shown in Table 2, and when the target steel of the present invention is heat treated within a temperature range of 850 to 900°C for 60 seconds or less, both the r value and the ridging property are good. I understand.

表 1  供試材の主要化学成分(重量%)手続補正書
(自発) 昭和59年3月10日 特許庁長官 若 杉 和 夫 殿 1、 事件の表示 昭和58年特許願第098512号 2、 発明の名称 加工性のすぐれたフェライト系ステンレス薄板の製造法 3、補正をする者 事件との関係 特許出願人 東京類5千代川区大手町二丁1−16番3号(665)
新1」本製鐵株式會社 代表者 武  1)   豊 4、代理人〒100 東京都千代田区丸の内二丁目4番1−号6、補正の灯象 明細書全文及び図面 (2)第1図及び第2図を別紙の通り゛補充する。
Table 1 Procedural amendment (voluntary) for the main chemical components (wt%) of the sample material March 10, 1980 Kazuo Wakasugi, Commissioner of the Patent Office1, Indication of the case, Patent Application No. 098512, 1982, Invention Name of Manufacturing Method for Ferritic Stainless Steel Thin Plate with Excellent Workability 3, Relationship with the Amendment Case Patent Applicant: Tokyo Group 5, No. 1-16-3, Otemachi 2-chome, Chiyogawa-ku (665)
New 1" Takeshi, Representative of Honshu Steel Co., Ltd. 1) Yutaka 4, Agent Address: 2-4-1-6, Marunouchi 2-4, Chiyoda-ku, Tokyo 100, Japan, Full text of the amended lighting specification and drawings (2) Figure 1 and Figure 2 is supplemented as shown in the attached sheet.

明     細     書 1、発明の名称 加工性のすぐれたフェライト系スシンレス薄板の製造法 2、特許請求の範囲 AtO,08%〜0.5チを含有するフェライト系ステ
ンレス鋼の熱延板を熱延板焼鈍することなく冷間圧延後
、仕上焼鈍するにあたり、850〜900℃の温度範囲
で60秒以内の均熱を行うことを特徴とする加工性のす
ぐれたフェライト系ステンレス薄板の製造法。
Description 1. Name of the invention. Method for manufacturing a ferritic stainless steel sheet with excellent workability. 2. Claims: A hot-rolled sheet of ferritic stainless steel containing AtO, 08% to 0.5%. A method for manufacturing a ferritic stainless steel sheet with excellent workability, characterized in that after cold rolling without annealing, soaking is performed within 60 seconds in a temperature range of 850 to 900° C. during final annealing.

3、発明の詳細な説明 本発明は加工性にすぐれたフェライト系ステンレス薄板
の製造法、詳しくは0.08〜0.5チのALf含有す
るSUS 430調音代表とするフェライト系ステンレ
ス鋼の薄板の製造法に関するものである。
3. Detailed Description of the Invention The present invention relates to a method for manufacturing a thin ferritic stainless steel plate with excellent workability, and more specifically, a method for manufacturing a thin plate of ferritic stainless steel such as SUS 430 containing 0.08 to 0.5 inches of ALf. It concerns the manufacturing method.

AA含有量が0.08%以下の通常のSUS 430型
フエライト系ステンレス薄板は、熱延板ヲハは800〜
850℃の温度で2時間以上箱焼鈍した後、冷間圧延し
、次いで通常820〜850℃の温度で短時間焼鈍して
製造されるのが一般的でるり、製品のr値及びリジング
特性は均熱温度、均熱時間によって殆んど変化しないこ
とが知られている。
Normal SUS 430 type ferritic stainless steel sheet with AA content of 0.08% or less has a hot-rolled sheet size of 800~
It is generally manufactured by box annealing at a temperature of 850℃ for 2 hours or more, followed by cold rolling, and then annealing for a short time at a temperature of usually 820~850℃.The r value and ridging properties of the product are It is known that the soaking temperature and soaking time hardly change.

この熱延板焼鈍工程において、熱延板の状態で存在して
いたα′相は、フェライト相十炭化物に変化し、熱延板
焼鈍後にはフェライト相と炭化物相となる。このような
素材を冷間圧延後加熱すれば回復、再結晶がおこυ、再
結晶後のミクロ組織は等釉粒となり、結晶粒径は均熱温
度、時間に殆んど影響を受けず一定となる。再結晶が完
了する温度は、成分、熱延条件、冷延圧下率によって若
干異なるが、材料温度が800℃以上に達すれば均熱時
間に関係なく再結晶し、再紅、晶すれば均熱温度、時間
に関係なくほぼ一定のr値、リジング特性が得られるこ
とがわかりた。更に降伏強度、降伏点のび、抗張力、全
伸び、均−伸び等の機械的性質も、再結晶すれば、はぼ
一定の特性が得られることがわかった。
In this hot-rolled sheet annealing step, the α' phase present in the hot-rolled sheet changes to a ferrite phase decacarbide, and becomes a ferrite phase and a carbide phase after the hot-rolled sheet annealing. If such a material is heated after cold rolling, recovery and recrystallization will occur.The microstructure after recrystallization becomes uniformly glazed grains, and the crystal grain size is almost unaffected by soaking temperature and time and remains constant. becomes. The temperature at which recrystallization is completed varies slightly depending on the ingredients, hot rolling conditions, and cold rolling reduction ratio, but if the material temperature reaches 800°C or higher, recrystallization will occur regardless of the soaking time, and if crystallization occurs, soaking will begin. It was found that almost constant r value and ridging characteristics were obtained regardless of temperature and time. Furthermore, it has been found that mechanical properties such as yield strength, yield point elongation, tensile strength, total elongation, and uniform elongation can be kept almost constant by recrystallization.

しかしながら、Atを多量に含有したSUS 430型
7エライト系ステンレス鋼の熱延板を、熱延仮焼、  
/ 鈍なしで冷間圧延して再結晶焼鈍した場合の再結晶温度
は熱延板焼鈍後冷間圧延した場合と比べてよシー温とな
シ結晶粒も混粒となる。r値、リジング特性は均熱温度
及び時間にょシ大幅に変化すること、その際r値および
リジング特性を同時に満足する焼鈍条件は、均熱温度8
50〜900℃、均熱時間60秒以内の高温短時間焼鈍
であることを確め本発明を完成したものである。更に機
械的性質も、再結晶が完了しても均熱温度および時間に
より大幅に変化すること、特に均−伸びを大きくシ、降
伏強度を下げ、降伏点伸びを小さくするには、850℃
〜900℃の温度域で高温程、又均熱時間が60秒以内
長い程効果的であることを見い出し、本発明を完成させ
たものである。
However, hot-rolled sheets of SUS 430 type 7 elite stainless steel containing a large amount of At, hot-rolled and calcined,
/ The recrystallization temperature when cold rolling without dulling and recrystallization annealing is lower than that when cold rolling is performed after hot-rolled plate annealing.The crystal grains also become mixed grains. The r value and ridging properties change significantly depending on the soaking temperature and time.The annealing condition that satisfies the r value and ridging properties at the same time is a soaking temperature of 8.
The present invention was completed by confirming that high-temperature, short-time annealing was performed at 50 to 900°C and soaking time was within 60 seconds. Furthermore, even after recrystallization is completed, the mechanical properties change significantly depending on the soaking temperature and time.
It was discovered that the higher the temperature in the temperature range of ~900°C, and the longer the soaking time is 60 seconds or less, the more effective it is, and the present invention was completed.

すなわち本発明の要旨とするところはAt0.08%〜
0.5%’e含有するフェライト系ステンレス鋼の熱延
板を熱延板焼鈍することなく冷間圧延後、仕上焼鈍する
にあたり、850〜900℃の温度範囲で60秒以内の
均熱を行うことを特徴とする特工性のすぐれたフェライ
ト系ステンレス薄板の製造法にめる。
That is, the gist of the present invention is At0.08%~
After cold rolling a hot-rolled sheet of ferritic stainless steel containing 0.5%'e without annealing the hot-rolled sheet, soaking is carried out within 60 seconds at a temperature range of 850 to 900°C for finish annealing. We will introduce a manufacturing method for ferritic stainless steel thin sheets with excellent special workability.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、本発明の対象鋼であるAt含有フェラ
イト系ステンレス鋼の熱延板を、熱延板焼鈍することな
く、伶間圧延した後、仕上焼鈍するKあたり、仕上焼鈍
の均熱温度及び時間i 850〜900℃、60秒以内
と限定した理由は以下のとお9である。
In the present invention, a hot-rolled sheet of At-containing ferritic stainless steel, which is the target steel of the present invention, is inter-rolled without hot-rolled sheet annealing, and then finish annealed at K, the soaking temperature of finish annealing, and The reason why the time i was limited to 850 to 900°C and within 60 seconds is as follows.

前記した均熱条件と製品r値との関係は、均熱温度87
5℃迄の範囲では高温長時間焼鈍上し、875℃を超え
900′Cまではゆるやかに劣化するが、850℃以下
の均熱温度の場合と比べて高いレベルにある。また均熱
時間は長い程r値の向上は顕著であるが、それは均熱温
度が約875℃以下の場合に限られ、均熱温度が約87
5℃を超えるとr値の向上がみられるのは均熱時間10
秒までであシ、それ以上均熱時間を長くしてもr値の向
上式は僅かである。
The relationship between the above-mentioned soaking conditions and product r value is as follows: soaking temperature 87
In the range of up to 5°C, high temperature and long-time annealing is performed, and in temperatures exceeding 875°C and up to 900'C, deterioration occurs slowly, but at a higher level than in the case of soaking temperatures of 850°C or lower. In addition, the longer the soaking time is, the more remarkable the improvement in r value is, but this is only when the soaking temperature is approximately 875°C or lower;
When the temperature exceeds 5℃, the r value improves after soaking time 10.
Even if the soaking time is increased by up to seconds, the r value will only improve slightly.

リジング特性に及ぼす最終焼鈍サイクルの影響は複雑で
あるが、均熱時間を一定として、種々の温度で焼鈍する
場合には、ある均熱温度の場合に最少のりジンクを示し
、その温度より低す場合も、高い場合もリジングが増加
し、その最適温度は、均熱時間が短い程高温側に移行し
、しかも最適温度範囲が狭く、リジングの減少が太き旨
という傾向がある。例えば均熱時間が60秒と長い場合
には、リジングの相対値は比較的大きく、850〜87
5℃の範囲でほぼ一定の値を示し、875℃を超える温
度又は850℃未満の温度では逆にリジングが劣化する
傾向を示し、均熱時間が10秒と短い場合は、均熱温度
が875〜900℃という比較的狭い温度範囲で、リジ
ングは低い値を示し、且つこの絶対値は、均熱時間が6
0秒と長い場合の最適温度で焼鈍して得られるリジング
の値と比べて良好である。
The effect of the final annealing cycle on the ridging properties is complex, but when annealing is performed at various temperatures with a constant soaking time, a certain soaking temperature exhibits the least glue zinc, and lower temperatures There is a tendency that the optimal temperature shifts to the higher temperature side as the soaking time is shorter, and the optimal temperature range is narrower, and the reduction in ridging is greater. For example, when the soaking time is as long as 60 seconds, the relative value of ridging is relatively large, 850 to 87
It shows a nearly constant value in the range of 5℃, and on the contrary, the ridging tends to deteriorate at temperatures exceeding 875℃ or below 850℃, and when the soaking time is as short as 10 seconds, the soaking temperature is 875℃. In a relatively narrow temperature range of ~900°C, the ridging shows a low value, and this absolute value is lower than the soaking time of 6
This is better than the ridging value obtained by annealing at the optimum temperature for a long time of 0 seconds.

本発明鋼の均熱条件と製品の機械的性質の関係は次の通
シである。第1図に均熱時間、均熱温度と降伏強度の代
表的な関係を模式的に示した。図で比較品は、At含有
量が0.08%以下の通常の430鋼の熱延板を箱焼鈍
後伶延焼鈍した材料である。図から明らかの如く、比較
品は均熱時間、温度の影響が小さいが、不発明鋼の場合
は、低い降伏強度を得るには、均熱時間、温度に最適組
合わせがあることがわかる。最適組合わせ条件は、熱延
条件特にスラブ加熱温度と捲取条件によっても異なる。
The relationship between the soaking conditions for the steel of the present invention and the mechanical properties of the product is as follows. Figure 1 schematically shows the typical relationship between soaking time, soaking temperature, and yield strength. The comparative product in the figure is a material obtained by box annealing and then rolling annealing a hot rolled sheet of ordinary 430 steel with an At content of 0.08% or less. As is clear from the figure, the influence of soaking time and temperature is small for the comparative product, but in the case of non-inventive steel, it can be seen that there is an optimum combination of soaking time and temperature in order to obtain a low yield strength. The optimum combination conditions also vary depending on the hot rolling conditions, particularly the slab heating temperature and winding conditions.

即ちスラブ加熱温度が1150℃又はそれ以下の低温の
場合は、低温になる程、1200℃又はそれ以上の高温
スラブ加熱した材料と比べて、最適均熱条件は、低温、
短時間側に変わり、且つ、均熱温度条件の影響が小さく
なり、比較品に近い挙動を示す。捲取温度の影響は、ス
ラブ加熱温度の影響程顕著ではないが、捲取温度を高く
することは、スラブ加熱温度を下げるのと同様な作用効
果がある。影響は更に小さbが、均熱温度に達する首で
の昇温速度、冷却速度も影響し、昇温、冷却の速度が遅
いのは、均熱時間を長くするのと同傾向の効果がある。
In other words, when the slab heating temperature is 1150°C or lower, the optimum soaking conditions are lower and lower than when the slab is heated to a high temperature of 1200°C or higher.
It changes to the short time side, and the influence of soaking temperature conditions becomes smaller, showing behavior similar to the comparative product. Although the influence of the winding temperature is not as remarkable as that of the slab heating temperature, increasing the winding temperature has the same effect as lowering the slab heating temperature. The effect is even smaller b, but the rate of temperature rise and cooling at the neck that reaches the soaking temperature also has an effect, and slow heating and cooling speeds have the same effect as lengthening the soaking time. .

以上述べた如く、降伏強度を下げる為の最適温度、時間
の組合わせ条件は、素材の前歴によって異なるが、最も
高温長時間焼鈍が必要と考えられる1200℃以上の高
温スラブ加熱で、且つ600℃以下の低温捲取全行った
熱延板を出発素材とし、ソールトバス加熱等によシ急速
昇温した場合に35 kIf/m+n2以下の低込降伏
強度を得るには、均熱温度825℃では60秒以上、8
50℃〜875℃では30秒〜60秒以上、900℃〜
925℃では20秒以上の均熱時間をとればよい。95
0℃では、10秒程度の均熱で降伏点がさがるが、逆に
これ以上均熱時間が長くなると再び降伏点が増加し、好
ましくない。これはr相析出によるものである。
As mentioned above, the optimal combination of temperature and time to lower the yield strength varies depending on the previous history of the material, but the highest temperature and long-term annealing is considered to be high-temperature slab heating of 1200°C or higher, and 600°C. In order to obtain a low yield strength of 35 kIf/m+n2 or less when using a hot-rolled sheet that has undergone all the following low-temperature rolling as a starting material and rapidly raising the temperature by salt bath heating, etc., at a soaking temperature of 825°C, it is necessary to more than seconds, 8
30 seconds to 60 seconds or more at 50℃ to 875℃, 900℃ to
At 925° C., a soaking time of 20 seconds or more is sufficient. 95
At 0°C, soaking for about 10 seconds lowers the yield point, but if the soaking time is longer than this, the yield point increases again, which is not preferable. This is due to r-phase precipitation.

第2図に均熱時間、均熱温度と降伏点伸ひの代表的な関
係を模式的に示した。図から降伏点のびの挙動は、降伏
点の挙動とほぼ類似していることがわかる。熱延条件、
昇温、冷却速度の影響も降伏点に及ばず影響とほぼ対応
している。第2図で均熱温度が高温では、比較品も本発
明品もと鮫に降伏点伸びがなくなるのはr相析出による
ものであシ、この場合降伏強度が上が9、伸びも減少す
るので好ましくない。
Figure 2 schematically shows the typical relationship between soaking time, soaking temperature, and elongation at yield point. It can be seen from the figure that the behavior of yield point elongation is almost similar to that of yield point. hot rolling conditions,
The effects of temperature rise and cooling rate also do not reach the yield point and almost correspond to the effects. In Figure 2, when the soaking temperature is high, the yield point elongation disappears in both the comparative product and the inventive product due to r-phase precipitation.In this case, the yield strength increases to 9 and the elongation decreases. So I don't like it.

全伸び、均−伸び、抗張力のいづれも、従来品は均熱温
度条件の影響はきわめて小さいが、本発明鋼では、均熱
温度、・時間の影響が大きく、従来の焼鈍より、高温長
時間とすることで改良される。
Total elongation, uniform elongation, and tensile strength are all affected by soaking temperature conditions very little for conventional products, but for the steel of the present invention, the soaking temperature and time have a large effect, and it can be annealed at high temperatures for a long time compared to conventional annealing. It is improved by doing this.

具体的には、素材の前歴を考慮して、850℃以上、9
00℃以下の温度で最長60秒以内の均熱を与えれば、
従来品と同等レベルの良好な値ヲ得ることが出来る。
Specifically, taking into consideration the previous history of the material, we will
If soaked for up to 60 seconds at a temperature below 00℃,
It is possible to obtain good values on the same level as conventional products.

Atヲ含有したSO8430型フエライト系ステンレス
鋼熱延板を熱延板焼鈍なしで冷間圧延して得られた薄板
の場合、再結晶してもr値およびリジング特性、機械的
性質が大巾に変化する理由は次のように考えられる。A
tを含有したSO8430型フエライト系ステンレス鋼
においては、Atf含有していない通常のSUS 43
0型フエライト系ステンレス鋼と比べて、熱延ままの状
態ではマルテンサイト相やベイナイト相等の硬い相が少
ないとはいえ、数10チ程度存在する。この硬い相は引
続く冷間圧延工程で、圧延方向に伸ばされ、仕上焼鈍工
程で、分解し、フェライト相と炭化物となシ、再結晶温
度以上の温度で、このフェライト相も再結晶する。まず
r値が高温焼鈍で向上する理由は、このような硬い相か
ら分離した炭化物や、すでに存在゛していた微細な炭化
物が凝集し、これらの炭化物が塑性変形に際して活動す
る転位の活動を妨げるような働きがなくなシ、塑性変形
しやすくなるためと、焼鈍中にAtNが析出するために
r値を向上させるものと考えられる。熱、廷板焼鈍した
場合には、熱延板焼鈍工程で炭化物のサイズ、分散状況
が決まってしまい、更に固溶Nも窒化Orや微量に含ま
れているAt等によシ固定され、仕上焼鈍工程ではこれ
らの析出物の分散状況は焼鈍方法によって変化しないの
で、再結晶が完了すればr値は焼鈍条件にかかわらず変
化しないものである。熱延板焼鈍温度7bX875℃を
超えるとr値がゆるやかに劣化するのは、AtNが再固
溶全はじめることと、炭化物が再固溶し、再び微細化し
、マトリックスの固溶CやN量が高くなるからである。
In the case of a thin plate obtained by cold rolling an SO8430 type ferritic stainless steel hot-rolled plate containing Atwo without hot-rolled plate annealing, the r value, ridging properties, and mechanical properties are significantly improved even after recrystallization. The reason for the change is thought to be as follows. A
In SO8430 type ferritic stainless steel containing Atf, ordinary SUS 43 which does not contain Atf
Compared to type 0 ferritic stainless steel, hard phases such as martensitic phase and bainite phase are present in the as-hot-rolled state, although there are fewer hard phases such as martensite phase and bainite phase. This hard phase is elongated in the rolling direction in the subsequent cold rolling process, and decomposed in the final annealing process to form a ferrite phase and carbide, and this ferrite phase also recrystallizes at a temperature higher than the recrystallization temperature. First, the reason why the r value improves with high-temperature annealing is that carbides separated from such hard phases and fine carbides that were already present aggregate, and these carbides hinder the activity of dislocations that become active during plastic deformation. It is thought that the r value is improved because this action is eliminated and plastic deformation becomes easier, and because AtN is precipitated during annealing. When hot-rolled sheet annealing is performed, the size and dispersion of carbides are determined in the hot-rolled sheet annealing process, and solid solution N is also fixed by nitriding Or or a small amount of At, etc., resulting in poor finishing. In the annealing process, the dispersion state of these precipitates does not change depending on the annealing method, so once recrystallization is completed, the r value does not change regardless of the annealing conditions. When the hot-rolled sheet annealing temperature exceeds 7b x 875°C, the r value gradually deteriorates because AtN begins to dissolve completely again, carbides re-dissolve, become finer again, and the amount of solute C and N in the matrix decreases. This is because it becomes expensive.

次にリジング特性であるが、焼鈍温度が低り場合に劣化
するのは、本発明の対象鋼の場合焼鈍中にAtNが析出
し、再結晶完了温度が高温になるので完全な再結晶が起
こらず、集合組織のランダム化が不十分なためである。
Next, regarding ridging properties, the reason for deterioration when the annealing temperature is low is that in the case of the target steel of the present invention, AtN precipitates during annealing, and the recrystallization completion temperature becomes high, so complete recrystallization does not occur. First, this is due to insufficient randomization of the texture.

更に温度が高くなるとりジング特性が逆に劣化する傾向
かめるのは、微細炭化物が再固溶することにより、旧フ
ェライト相の粒界に存在した微細結晶粒が消滅し、隣接
する伸長フェライト相は小傾角粒界からなっている場合
が多いので、実質的に粗結晶が粗大化したのと同じよう
に働き、リジング特性が劣化する。
Furthermore, as the temperature rises, the aging properties tend to deteriorate.As the fine carbides re-dissolve, the fine grains existing at the grain boundaries of the old ferrite phase disappear, and the adjacent elongated ferrite phase Since they are often composed of small-angle grain boundaries, they act essentially in the same way as if coarse crystals have become coarser, and the ridging properties deteriorate.

次に本発明鋼の場合、機械的性質が焼鈍条件によって大
幅に変化する理由を説明する。本発明鋼の最終焼鈍工程
における主たる冶金的変化は■再結晶、■α′相→α十
炭化物への分離と、それに伴うフリーNの放出、■Cr
 2 N等の分解に伴なうフリーNの放出、■■、■で
放出されたN及び本焼鈍前に過飽和に固溶していたフリ
ーNとAtの反応にょるAtHの析出、■フェライトマ
トリックスの固溶C,Nの溶解度変化、■微小炭化物の
凝集又は再固溶、■γ相の析出(焼鈍温度が高い場合)
と冷却に伴うγ相のα′相への変態等々が考えられる。
Next, the reason why the mechanical properties of the steel of the present invention vary significantly depending on the annealing conditions will be explained. The main metallurgical changes in the final annealing process of the steel of the present invention are: (1) recrystallization, (2) separation from α' phase to α decacarbide and the associated release of free N, and (2) Cr.
2. Release of free N due to decomposition of N, etc.; ■■, ■Precipitation of AtH due to reaction of At with the N released in ■■ and free N that was in supersaturated solid solution before main annealing; ■ Ferrite matrix. Solubility change of solid solution C and N, ■ Agglomeration or re-solid solution of micro carbides, ■ Precipitation of γ phase (when the annealing temperature is high)
This is thought to be due to the transformation of the γ phase to the α′ phase with cooling.

まず降伏強度の変化とこれらの冶金的変化、焼鈍条件の
変化との関係について説明する。焼鈍温度が低い場合(
例えば775℃〜800℃、 第1図(−)和尚)は、
従来品と比べて降伏点が著しく高く、焼鈍時間が長くな
ると、それに従って降伏点が低下するのは、主として■
の再結晶挙動に関連するもので、従来品がこのような低
温焼鈍でも完全に再結晶するのに対し、本発明鋼では、
再結晶温度が高くなっているため、焼鈍温度が低温では
再結晶が不充分であるためであυ、均熱時間が長くなる
と低下してくるのは、再結晶率が増すためである。焼鈍
温度がやや高い場合(例えば850℃〜875℃、第1
図(b)相当)には主として■。
First, the relationship between changes in yield strength, these metallurgical changes, and changes in annealing conditions will be explained. When the annealing temperature is low (
For example, 775℃~800℃, Fig. 1 (-) Osho),
The yield point is significantly higher than that of conventional products, and as the annealing time increases, the yield point decreases mainly due to ■
This is related to the recrystallization behavior of the steel, and while the conventional steel completely recrystallizes even after such low-temperature annealing, the steel of the present invention
This is because recrystallization is insufficient when the annealing temperature is low because the recrystallization temperature is high, and the reason why the recrystallization rate decreases as the soaking time increases is because the recrystallization rate increases. When the annealing temperature is slightly high (e.g. 850°C to 875°C, the first
(corresponding to figure (b)) is mainly ■.

■、■によるフェライトマトリックスの固溶Nの変化に
対応するものである。従来品は熱延板のフェライト域で
の長時間の箱焼鈍にょシ、α′相は消滅しており、Nは
大部分AtN及びCr 2Nの形で固定され、固溶C,
Nは、はぼ一定の低い値(箱焼鈍温度(中840℃)と
ほぼ平衡するC、N、相描量)となっておシ、この程度
の焼鈍温度条件ではCr 2Nが若干分解することでツ
リーNが放出されるが、その号が少々いので、固溶Nの
増加はわずかであシ、それに比例して降伏強度の増加は
少ないと考えられる。本発明鋼の場合は、まずα′相の
分解によるフリーNの放出、Cr2Nの分解にょる7リ
ーNの放出によシ、フェライトマトリックス中にフリー
Nが増加し、その結果均熱時間に比例して降伏強度が増
加する。均熱時間が更に増すと逆に降伏強度が低下して
いくのは、α′相→α相に変態することでAtNとして
固定されることによるフェライトマトリックスの固溶N
の低下にもとづくものが主因であシ、更には微細炭化物
の凝集による強度低下によるものと考えられる。
This corresponds to the change in solid solution N in the ferrite matrix due to (1) and (2). In the conventional product, due to long-time box annealing in the ferrite region of the hot-rolled sheet, the α' phase has disappeared, and most of the N is fixed in the form of AtN and Cr2N, and solid solution C,
N is a constant low value (the amount of C, N, and phase drawn is almost in equilibrium with the box annealing temperature (middle 840°C)), and Cr2N decomposes slightly under such annealing temperature conditions. Although tree N is released, since the number is a little small, the increase in solid solution N is small, and it is thought that the increase in yield strength is proportionally small. In the case of the steel of the present invention, free N increases in the ferrite matrix due to the release of free N due to the decomposition of the α' phase and the release of 7 LiN due to the decomposition of Cr2N, and as a result, free N increases in proportion to the soaking time. yield strength increases. As the soaking time increases further, the yield strength decreases because the solid solution N in the ferrite matrix is fixed as AtN by transforming from α' phase to α phase.
The main cause is thought to be due to a decrease in the strength of the steel, and a further decrease in strength due to agglomeration of fine carbides.

焼鈍温度が更に高い場合(例えば9oo℃〜925℃、
第1図1(c)相当)も主として■、■。
When the annealing temperature is higher (e.g. 90°C to 925°C,
(corresponding to Fig. 1 (c)) are also mainly ■ and ■.

■のフェライトマトリックスの固溶Nの変化に対応する
ものである。この場合均熱時間がある程度以上長いと、
本発明品が比較品と比べて降伏強度が低くなるという逆
転現象が生じる。これは従来品がAt含有量が少なく 
、Cr2Nの分解によって放出されるフリーのNはAt
が0.08%以下と少ないので、AtNの形で固定され
ないため、マトリックスの固溶Nが増して、降伏強度が
増加するのに対し、本発明品は、α′相の分解、Cr2
Nの分解によって放出されるNがAt含有鼠が多く、A
tHの析出しやすい温度域であるため、AtNとして固
定され、マトリックδの固溶Nが、従来品よル逆に低く
なるので、従来品より降伏強度が下がるという逆転現象
が生じるものである。この場合、均熱時間が長い程降伏
強度が低下するのは、α′相の分解とALNの析出が、
均熱時間が長い程多くなるためと考えられる。
This corresponds to the change in solid solution N in the ferrite matrix (2). In this case, if the soaking time is longer than a certain level,
A reversal phenomenon occurs in which the product of the present invention has a lower yield strength than the comparative product. This is because the conventional product has a low At content.
, the free N released by the decomposition of Cr2N is At
Since N is small at 0.08% or less, it is not fixed in the form of AtN, so the solid solution N in the matrix increases and the yield strength increases.
The N released by the decomposition of N is mostly At-containing rats, and A
Since this is the temperature range in which tH is likely to precipitate, it is fixed as AtN, and the solid solution N in the matrix δ is lower than that of the conventional product, resulting in a reverse phenomenon in which the yield strength is lower than that of the conventional product. In this case, the reason why the yield strength decreases as the soaking time increases is due to the decomposition of the α' phase and the precipitation of ALN.
This is thought to be because the longer the soaking time is, the more the amount increases.

焼鈍温度が著しく高い場合(例えば950℃〜1000
℃以上、第1図(d)相当)には、従来品、本発明品と
もに、均熱時間が長い程降伏強度が上昇する。これは前
述の■→■に加え■→■も関与するからである。即ちγ
相析出以下の温度領域でも高温長時間加熱では、C,N
の溶解度が増して、C,Nが再固溶し、冷却速度が速い
(空冷以上)場合、主としてフェライトマトリックスの
過飽和C,Nの増加、冷却過程での微細炭化物相の析出
によシ、降伏強度が上昇するものである。更に高温の場
合、γ相が析出し、冷却過程でα′相になシ、主として
α′相により、降伏強度が増加することになる。
When the annealing temperature is extremely high (e.g. 950°C to 1000°C)
℃ or higher (corresponding to FIG. 1(d)), the longer the soaking time, the higher the yield strength of both the conventional product and the product of the present invention. This is because, in addition to the aforementioned ■→■, ■→■ is also involved. That is, γ
Even in the temperature range below phase precipitation, C, N
When the solubility of C and N increases, C and N become solid solutions again, and when the cooling rate is fast (above air cooling), the supersaturation of C and N in the ferrite matrix increases, the precipitation of fine carbide phases occurs during the cooling process, and yielding occurs. The strength increases. Furthermore, at higher temperatures, the γ phase precipitates and the α' phase is lost during the cooling process, resulting in an increase in yield strength mainly due to the α' phase.

降伏点伸びについても降伏強度と同様主としてフェライ
トマトリックス中の固溶Nの変化にもとづき変化するも
のであり、降伏強度と同一のメタラジ−で整理できる。
Like the yield strength, the yield point elongation also changes mainly based on the change in solid solution N in the ferrite matrix, and can be summarized using the same metallurgy as the yield strength.

即ち焼鈍温度が低い場合に降伏点伸びがみられないのは
、主として未再結晶部分によるものであシ、焼鈍温度が
きわめて高い場合も降伏点伸びがないのは、焼鈍中のγ
相の析出によるα′相影形成よるものであシ、その中間
温度領域で、焼鈍条件によって微妙に降伏点伸びが変化
するのは熱延中に形成されたα′相、Cr2Nの分解に
よシフリーNの増加と、AtNの析出によるフリーNの
減少関係によって決まるものである。
In other words, the reason why no yield point elongation is observed when the annealing temperature is low is mainly due to the unrecrystallized portion, and the reason why there is no yield point elongation even when the annealing temperature is extremely high is due to the γ during annealing.
This is due to the formation of an α' phase shadow due to the precipitation of the phase, and the subtle changes in yield point elongation depending on the annealing conditions in the intermediate temperature range are due to the decomposition of the α' phase and Cr2N formed during hot rolling. This is determined by the relationship between the increase in Schiffly N and the decrease in free N due to the precipitation of AtN.

抗張力、全伸び、均−伸びの変化は主としてα′相→フ
ェライト+炭化物への分解によるもので、高温、長時間
程フェライトマトリックスが清浄化され、炭化物が凝集
粗大化すとため、伸びは増加し、抗張力は低下すること
になる。しかじなが′ら焼鈍温度が高すぎると、γ相の
再析出に基づくα′相の生成によシ、伸びが減少し、抗
張力が高くなるのは言うまでもない。以上のメタラジ−
の説明から自づから明らかの如く、スラブ加熱が低温に
なる程スラブ加熱の状態ですでにAtNが析出すること
、更にスラブ加熱温度が約1150℃以下低温になる程
スラブ加熱時に存在するγ相が減少するので、熱延まま
の状態でα′相が減少し、このような状態で熱延された
熱延板は、熱延ままの状態で全Nの数10チはA/1.
Nの形で固定されておシ、最終焼鈍工程で固定すべきN
の量が少なく、かつα′相をフェライト+炭化物に変態
させることが容易でおるので、高温スラブ加熱材と比較
して良好な機械的性質を得るために必要な均熱温度はよ
シ低く、均熱時間はよシ短かくても良いことになる。ス
ラブ加熱後の抽出から熱延して捲取る迄の時間が長い程
、又捲取温度が高い程、ALNの析出が促進され、α′
相も減少するので、良好な機械的性質を得るために必要
な均熱温度は低く、均熱時間は短かくなる。
Changes in tensile strength, total elongation, and uniform elongation are mainly due to the decomposition of α' phase → ferrite + carbide. The longer the temperature and longer time, the more the ferrite matrix is cleaned and the carbides aggregate and coarsen, resulting in an increase in elongation. , the tensile strength will decrease. However, it goes without saying that if the annealing temperature is too high, the elongation decreases and the tensile strength increases due to the formation of the α' phase based on the redecipitation of the γ phase. The above metallurgy
As is obvious from the explanation, the lower the slab heating temperature is, the more AtN is already precipitated in the slab heating state, and the lower the slab heating temperature is about 1150°C or lower, the more the γ phase that exists during the slab heating. As a result, the α' phase decreases in the as-hot-rolled state, and a hot-rolled sheet hot-rolled in such a state has an A/1.
It is fixed in the shape of N, and the N should be fixed in the final annealing process.
Since the amount of α′ phase is small and it is easy to transform the α′ phase into ferrite + carbide, the soaking temperature required to obtain good mechanical properties is lower than that of high-temperature slab heating materials. This means that the soaking time can be much shorter. The longer the time from extraction after heating the slab until hot rolling and winding, and the higher the winding temperature, the more precipitation of ALN will be promoted.
Since the phases are also reduced, lower soaking temperatures and shorter soaking times are required to obtain good mechanical properties.

粗圧延終了後仕上圧延開始1でに粗圧延片をコイルボッ
クス等で保熱したシ、積極的な加熱をしないでも、60
秒以上の時間を置く等のいわゆるディレー圧延等を行う
と、この工程でγ→α変態が促進され、ktNの析出も
進行するので、最終焼鈍工程の焼鈍条件を緩和できるこ
とは言うまでもない。熱延条件はど顕著ではないが、最
終焼鈍時の昇温冷却速度、特に800℃以上から均熱温
度までの速度が遅い程、均熱温度は低く、均熱時間は短
かくても良好な機械的性質を得ることが可能となる。な
お本発明の対象鋼のAlt−0,08%以上としたのは
、O,OS*未満では、製品の機械的性質、特に降伏点
がどのような焼鈍温度、時間を選んでも高くなることと
、どのような条件で熱処理してもr値が低いこと、更に
はきらきら疵と呼ばれる表面欠陥が出やすくなるためで
1)、0.5チ以下と限定したのは、これより多く含有
しても実質的な効果は変らず、経済的でないからである
If the rough rolled piece is kept warm in a coil box or the like at the start of finish rolling after rough rolling, it will reach 60
It goes without saying that if so-called delay rolling, such as a period of time longer than 2 seconds, is performed, the γ→α transformation will be promoted in this step, and the precipitation of ktN will also proceed, so that the annealing conditions in the final annealing step can be relaxed. Although the hot rolling conditions are not particularly important, the slower the heating and cooling rate during final annealing, especially the speed from 800°C or higher to the soaking temperature, the lower the soaking temperature, and even if the soaking time is short, it is good. It becomes possible to obtain mechanical properties. The reason why the Alt of the target steel of the present invention is set to 0.08% or more is because if the Alt content is less than O.OS*, the mechanical properties of the product, especially the yield point, will become high regardless of the annealing temperature and time selected. , the r value is low regardless of the heat treatment conditions, and surface defects called sparkling scratches are more likely to occur1).The reason for limiting the content to 0.5 tres or less is that if the content is higher than this, This is because the actual effect remains the same and it is not economical.

成品の機械的性質、特に降伏強度、降伏点のび、全伸び
、均−伸び等は以上述べた如く、特に熱延条件、中でも
スラブ加熱温度や捲取温度条件によっても最適焼鈍条件
は変化するが、最もきびしい熱延条件の場合(高温スラ
ブ加熱、低温捲取)でも850℃で約60秒、900℃
で約20程度度、950℃なら10秒以下の均熱で良好
な機械的性質を得ることが出来る。熱延条件がこのよう
にきびしい場合は、最も良好なr値、リジングが得られ
る熱処理条件と比べ、最も良好な機械的性質が得られる
熱処理条件は高温、長時間側にずれている。
As mentioned above, the mechanical properties of the product, especially the yield strength, elongation at yield point, total elongation, uniform elongation, etc., vary depending on the hot rolling conditions, especially the slab heating temperature and winding temperature conditions, but the optimal annealing conditions also change. , even under the most severe hot rolling conditions (high-temperature slab heating, low-temperature rolling), 850℃ for about 60 seconds, 900℃
If the temperature is about 20 degrees Celsius, or 950 degrees Celsius, good mechanical properties can be obtained by soaking for less than 10 seconds. When the hot rolling conditions are severe like this, the heat treatment conditions that yield the best mechanical properties are shifted toward higher temperatures and longer times than the heat treatment conditions that yield the best r value and ridging.

機械的性質のみに着目すれば均熱温度は950℃でも短
時間焼鈍すれば良いが、この場合、r値、リジングには
好ましくない。本発明で均熱温度を900℃以下と限定
したのはこの点を考慮したものであシ、850℃以上と
したのは、r値、リジング、機械的性質の3点を考慮し
たものである。均熱時間を60秒以内としたのは素材の
前歴に応じて均熱温度を適当に選べば機械的性質は満足
できるし、前述の如く、r値、リジングも均熱時間60
秒以上としても効果が少なく、経済的でガいためである
If we focus only on mechanical properties, it is sufficient to anneal for a short time even if the soaking temperature is 950°C, but in this case, it is not preferable for the r value and ridging. In the present invention, the soaking temperature was limited to 900°C or lower in consideration of this point, and the soaking temperature was set at 850°C or higher in consideration of three points: r value, ridging, and mechanical properties. . The reason for setting the soaking time to within 60 seconds is that if the soaking temperature is appropriately selected according to the previous history of the material, the mechanical properties can be satisfied, and as mentioned above, the r value and ridging can also be maintained within the soaking time of 60 seconds.
This is because even if it is longer than seconds, the effect is small and it is economical.

以上説明した如く、Atを0.08%以上0.5%以下
含有したSUS 430銅においては、曲常行われる熱
延板焼鈍を行うことなく1回の冷延で最終板厚まで冷間
圧延後、仕上焼針するにあたシ、850〜900℃の温
度範囲で60秒以内の均熱を行うことにょシ、加工性、
即ち良好なr値、リジング、機械的性質を与えることが
出来るものである。
As explained above, SUS 430 copper containing 0.08% or more and 0.5% or less of At can be cold-rolled to the final thickness in one cold rolling without the usual hot-rolled sheet annealing. , It is necessary to perform the finishing baking process, it is necessary to soak the needle within 60 seconds in the temperature range of 850 to 900 ° C, processability,
That is, it can provide good r value, ridging, and mechanical properties.

以下本発明を実施例に従って具体的に説明する。The present invention will be specifically described below according to examples.

実施例1 表1に示した厚さ2.70 tanのAtを含有した5
US430型6フエライト系ステンレス鋼の熱延板(4
)を、熱延板焼鈍することなく板厚1.0調及び0.4
mの冷延板とした。これらの冷延板を塩浴中で熱処理を
行い、熱処理後r値及びリジングの測定を行つた。比較
のためAtを少量含有したSUS 430型フエライト
系ステンレス鋼の熱延板(B)については、840 ′
cX 4 hrの熱延板焼鈍後板厚1. Ottrm及
び0、4 traの冷延板として、同様の熱処理を行い
、r値及びリジング高さの測定を行った。リジング高さ
及びr値の測定結果を表2に示したが、本発明の対象鋼
を850〜900℃の温度範囲で60秒以内の熱処理し
た場合は、r値、リジング特性ともに良好であることが
わかる。
Example 1 5 containing At with a thickness of 2.70 tan shown in Table 1
US430 type 6 ferritic stainless steel hot rolled plate (4
), the plate thickness is 1.0 and 0.4 without annealing the hot rolled plate.
It was made into a cold-rolled sheet of m. These cold-rolled sheets were heat-treated in a salt bath, and after the heat treatment, the r value and ridging were measured. For comparison, the hot rolled sheet (B) of SUS 430 type ferritic stainless steel containing a small amount of At was 840'
After cX 4 hr hot rolled sheet annealing, sheet thickness 1. Ottrm and 0.4 tra cold-rolled sheets were subjected to similar heat treatment, and the r value and ridging height were measured. The measurement results of the ridging height and r value are shown in Table 2, and when the target steel of the present invention is heat treated within a temperature range of 850 to 900°C for 60 seconds or less, both the r value and the ridging property are good. I understand.

表1 供試材の主仮化学成分(重量%)実施例2 表3に示した化学成分の厚さ200叫の5US430型
フエライト系ステンレススラブを1220℃の温度で2
時間加熱後6ノぐスで厚さ20洞まで粗圧延し、引続き
6パスで2.3朧の熱延コイルとした。2.3諭に仕上
った時の温度は900℃であシ、仕上熱延終了後直ちに
急冷して600℃の低温で捲取った。このようにして製
造した熱延コイルを従来のAtの低い素側については、
840℃X 4 hrの箱焼鈍後、1回の冷間圧延で0
.4 wnまで冷延した。
Table 1 Main temporary chemical components (wt%) of test materials Example 2 A 5US430 type ferritic stainless steel slab with a thickness of 200 cm and the chemical components shown in Table 3 was heated at a temperature of 1220°C.
After heating for a period of time, it was roughly rolled to a thickness of 20 cavities with 6 nogs, and then rolled with 6 passes to form a hot-rolled coil with a thickness of 2.3 mm. The temperature when finished to 2.3 degrees was 900°C, and immediately after finishing hot rolling, it was rapidly cooled and rolled up at a low temperature of 600°C. Regarding the conventional low At element side of the hot-rolled coil manufactured in this way,
After box annealing at 840°C for 4 hours, 0 after one cold rolling.
.. It was cold rolled to 4 wn.

AAを含有した本発明鋼は、熱延板焼鈍を行うことなく
1回の冷間圧延で0.4 rran’tで冷延した。つ
いでこれらの冷延板を775℃〜1000℃の各温度で
均熱時間を0秒から最大2分まで変化させて加熱後空冷
した。このように熱処理した材料の機械的性質を表3に
示した。表4から明らかの如く、従来材の機械的性質は
、いづれの熱処理条件でも良好な機械的性質を示すが、
本発明鋼の場合は、熱延板焼鈍なしの場合も、本発明の
特許請求の範囲に示した如く、850℃以上900℃の
温度で30秒〜60秒の均熱時間を付与することにょシ
、従来品と同等又はそれ以上の良好な機械的性質を付与
できることがわかる。
The steel of the present invention containing AA was cold rolled at 0.4 rran't in one cold rolling without hot-rolled plate annealing. These cold-rolled sheets were then heated at various temperatures from 775° C. to 1000° C. while changing the soaking time from 0 seconds to a maximum of 2 minutes, and then air-cooled. Table 3 shows the mechanical properties of the thus heat-treated materials. As is clear from Table 4, the mechanical properties of the conventional material show good mechanical properties under any heat treatment conditions.
In the case of the steel of the present invention, even when the hot rolled sheet is not annealed, it is necessary to apply soaking time of 30 seconds to 60 seconds at a temperature of 850°C or higher and 900°C, as shown in the claims of the present invention. It can be seen that good mechanical properties equivalent to or better than conventional products can be imparted.

表3 供試材の主機化学成分 (重量%)実施例3 表5に示したAtを含有したSUS 430型フエライ
ト系ステンレススラブ(厚さ250 mm ) ヲ12
50℃の温度で2時間加熱後、7パスで厚さ20閣まで
粗圧延を行った。粗圧延終了温度は1150℃であった
。ついで6/′1′スで仕上圧延を行い厚さ3.0間の
熱延板とした。仕上圧延終了温度は920℃であった。
Table 3 Main chemical components of test materials (wt%) Example 3 SUS 430 type ferrite stainless steel slab containing At shown in Table 5 (thickness 250 mm) 12
After heating at a temperature of 50° C. for 2 hours, rough rolling was performed in 7 passes to a thickness of 20 mm. The rough rolling completion temperature was 1150°C. Then, finish rolling was performed at 6/'1' speed to obtain a hot rolled sheet with a thickness of 3.0 mm. The finishing temperature of finish rolling was 920°C.

こうして圧延した熱延板は直ちに急冷して630℃の温
度で捲取シ後、室温まで冷却し、熱延板焼鈍を行うこと
なく厚さ1.0調まで冷間圧延し、本発明の特許請求の
範囲で示した熱処理条件及び、比較のため従来の430
鋼で一般に行われている熱処理条件で熱処理を行い、機
械的性質を測定し、表6に示した。表6に示した如く本
発明鋼を本発明で示した熱処理条件で処理することによ
シ、良好な機械的性質を得ることが出来る。
The hot-rolled sheet thus rolled was immediately quenched and rolled at a temperature of 630°C, cooled to room temperature, and cold-rolled to a thickness of 1.0 without annealing the hot-rolled sheet. The heat treatment conditions shown in the claims and the conventional 430 for comparison.
Heat treatment was performed under heat treatment conditions commonly used for steel, and mechanical properties were measured and are shown in Table 6. As shown in Table 6, good mechanical properties can be obtained by treating the steel of the present invention under the heat treatment conditions specified in the present invention.

表5  供試材の主要化学成分 (重置%)CSt  
   Mn     Cr     At   FeO
,0470,150,1516,80,14残シ4、図
面の簡単な説明 第1図は本発明鋼の降伏強度と均熱時間、温度の関係を
示す模式図、第2図は本発明鋼の降伏点伸びと均熱時間
、温度の関係を示す模式図を示したものである。
Table 5 Main chemical components of sample materials (overlapping %) CSt
Mn Cr At FeO
, 0470, 150, 1516, 80, 14 Residue 4, Brief explanation of the drawings Figure 1 is a schematic diagram showing the relationship between the yield strength, soaking time, and temperature of the steel of the present invention. A schematic diagram showing the relationship between yield point elongation, soaking time, and temperature.

Claims (1)

【特許請求の範囲】[Claims] At0.08%〜0.5係を含有するフェライト系ステ
ンレス鋼の熱延板を熱延板焼鈍することなく冷間圧延後
、仕上焼鈍するにあたjl)、850〜900℃の温度
範囲で60秒以内の均熱を行うことを特徴とする加工性
のすぐれたフェライト系ステンレス薄板の製造法。
When a hot-rolled sheet of ferritic stainless steel containing 0.08% to 0.5% At is cold-rolled without hot-rolled sheet annealing and then finish annealed, in a temperature range of 850 to 900°C. A method for producing a thin ferritic stainless steel plate with excellent workability, characterized by soaking within 60 seconds.
JP9851283A 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability Granted JPS59226120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9851283A JPS59226120A (en) 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9851283A JPS59226120A (en) 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability

Publications (2)

Publication Number Publication Date
JPS59226120A true JPS59226120A (en) 1984-12-19
JPH02417B2 JPH02417B2 (en) 1990-01-08

Family

ID=14221697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9851283A Granted JPS59226120A (en) 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability

Country Status (1)

Country Link
JP (1) JPS59226120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190527A (en) * 1984-03-12 1985-09-28 Nippon Steel Corp Manufacture of ferritic stainless steel sheet having superior workability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770233A (en) * 1980-10-20 1982-04-30 Nippon Steel Corp Production of ferritic stainless steel sheet having excellent workability
JPS5770236A (en) * 1980-10-20 1982-04-30 Nippon Steel Corp Manufacture of ferritic stainless thin steel plate excellent in deep drawability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770233A (en) * 1980-10-20 1982-04-30 Nippon Steel Corp Production of ferritic stainless steel sheet having excellent workability
JPS5770236A (en) * 1980-10-20 1982-04-30 Nippon Steel Corp Manufacture of ferritic stainless thin steel plate excellent in deep drawability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190527A (en) * 1984-03-12 1985-09-28 Nippon Steel Corp Manufacture of ferritic stainless steel sheet having superior workability
JPH0227411B2 (en) * 1984-03-12 1990-06-18 Nippon Steel Corp

Also Published As

Publication number Publication date
JPH02417B2 (en) 1990-01-08

Similar Documents

Publication Publication Date Title
US5405463A (en) Continuous annealing process of producing cold rolled mild steel sheet excellent in deep drawability and aging resistibility
CA1054029A (en) Continuous annealing process for steel sheet manufacture
US4014717A (en) Method for the production of high-permeability magnetic steel
US4374682A (en) Process for producing deep-drawing cold rolled steel strips by short-time continuous annealing
JPH0713262B2 (en) Method for producing silicon iron plate having excellent soft magnetic characteristics
US4116729A (en) Method for treating continuously cast steel slabs
JPH0770650A (en) Production of cold rolled steel sheet extremely excellent in deep drawability
JPS59226120A (en) Production of ferritic stainless steel sheet having excellent workability
JP3389402B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPS5830934B2 (en) Manufacturing method of cold-rolled steel sheet with good formability by short-time continuous annealing
EP0247264A2 (en) Method for producing a thin casting of Cr-series stainless steel
JPH08295943A (en) Production of ferritic stainless steel thin sheet excellent in cold rolled surface property
JPS6349726B2 (en)
JPS6043432A (en) Manufacture of cold rolled aluminum killed steel sheet
JPH1053819A (en) Production of cold rolled steel sheet excellent in deep drawability and surface characteristic
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPS5831033A (en) Production of cold rolld steel plate having good workability by continuous annealing
JPS5810447B2 (en) Manufacturing method by continuous annealing of cold-rolled steel sheets with excellent workability and aging resistance
JPH08311557A (en) Production of ferritic stainless steel sheet free from ridging
JPH0369967B2 (en)
JPS59219407A (en) Manufacture of cold rolled steel sheet with superior drawability
JPS6254017A (en) Production of thin-walled cr stainless steel slab
JPH01177322A (en) Manufacture of cold rolled steel sheet extremely excellent in deep drawability
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPH07100817B2 (en) Method for manufacturing slow-aging cold-rolled steel sheet