JPH0232501A - 非直線抵抗体の製造方法 - Google Patents

非直線抵抗体の製造方法

Info

Publication number
JPH0232501A
JPH0232501A JP63181774A JP18177488A JPH0232501A JP H0232501 A JPH0232501 A JP H0232501A JP 63181774 A JP63181774 A JP 63181774A JP 18177488 A JP18177488 A JP 18177488A JP H0232501 A JPH0232501 A JP H0232501A
Authority
JP
Japan
Prior art keywords
raw material
cobalt
oxide
component raw
coo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63181774A
Other languages
English (en)
Other versions
JP2522522B2 (ja
Inventor
Zenichi Tanno
丹野 善一
Hiroyuki Hiramoto
裕行 平本
Hironori Suzuki
洋典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63181774A priority Critical patent/JP2522522B2/ja
Publication of JPH0232501A publication Critical patent/JPH0232501A/ja
Application granted granted Critical
Publication of JP2522522B2 publication Critical patent/JP2522522B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) 本発明は避雷器などに用いられる酸化亜鉛を主成分とし
た非直線抵抗体の製造方法に係り、特に酸化亜鉛に添加
する副成分の組成の改良に関する。
(従来の技術) 電力系統においては、発生する異常電圧を抑制し、電ツ
ノ系統を保護するために避雷器が用いられている。避雷
器においては、一般にバリスタと呼ばれ、正常な電圧で
は絶縁特性を示し、異常電圧が印加された際には低い抵
抗値となる性質を有する非直線抵抗体が使用されている
避雷器などに使用される代表的な非直線抵抗体は、酸化
亜鉛(ZnO)を主成分原料とし、ビスマス(Bib、
アンチモン(Sb)、コバルト(Co)、マンガン(M
rl)、クロム(Cr)、ニッケル(N i > 、ケ
イ素(Si)などの金属酸化物を副成分原料として、こ
れらの原料の混合、造粒、成形を行い、焼結した後、両
端面に電極を形成して製造している。
さらに詳しく述べれば、酸化亜鉛と酸化物かもしくは焼
結によって酸化物に変る副成分原料とを、水及び有機バ
インダと共に充分混合した後、スプレドライヤなどで造
粒し、得られた造粒粉末は、ふるい通しにて粗大粒子や
二次凝集粒子を取除いた後に金型に入れ、成形、焼結し
、抵抗体内部に発生するボイドヤピンホールを除去する
ことによってサージ耐量や課電寿命特性の低下を防止す
るようにした製造方法が存在している。(特開昭59−
65405号公報参照) (発明が解決しようとする課題) ところで、近年の電力系統は、送電コスト低減のため、
大容量化、高電圧化が進み、これに伴い、避雷器におい
ても500KV用避雷器が実用化されており、さらに、
近い将来1000KV (聞V)用避雷器の実用化も計
画されている。
これらの高電圧用避雷器に使用される非直線抵抗体は、
極めて大きなサージエネルギーを処理する必要があるた
め、従来の低電圧用の非直線抵抗体を大容量化するか、
或いは並列接続枚数を増加することが要求される。この
場合、並列接続枚数を増加すると電流分担のアンバラン
スを招き易いなどの特性上の問題を生じるため、必然的
に非直線抵抗体の大容量化を行うことになる。また、非
直線抵抗体の大容量化は、より具体的には、非直線抵抗
体の厚みまたは径を拡大することでおるが、非直線抵抗
体の厚みは避雷器の制限電圧などによって制限されるた
め、結局非直線抵抗体の径を拡大することになる。
このようにして大容量化した500KV、1000KV
用の非直線抵抗体−個の寸法は、径がφ100〜φ12
0mm、厚みは焼結時の変形および経済性からt20〜
t45mm程になる。しかしながら、このような大型の
非直線抵抗体は、小型のものに比べて焼結が不安定とな
り易く、放電耐量特性の低下やバリスタ電圧のばらつき
を生じ易い。
本発明は、上記のような従来技術の欠点を解決するため
に提案されたものであり、その目的は、大容量の非直線
抵抗体における焼結時の安定化を図り、放電耐量特性の
向上およびバリスタ電圧の安定化を果し得るような、優
れた非直線抵抗体の製造方法を提供することである。
[発明の構成] (課題を解決するための手段) 本発明による非直線抵抗体の製造方法は、副成分原料中
のコバルト原料として、酸化コバルト(CoO)の含有
率が10モル%以下である四・三酸化コバルト(Co3
04>を使用し、このコバルト原料中に5〜500pp
mのアルミニウム<AM)を含むことを特徴としている
(作用) 以上のような構成を有する本発明によれば、酸化亜鉛(
ZnO)と副成分原料とを混合することで、四・三酸化
コバルト(Co304)は酸化亜鉛(ZnO)中に均一
に分散する。この状態で焼結を行うと、四・三酸化コバ
ルト(Co304)が酸化コバルト(CoO)と酸素(
0)とに分解する。この結果、焼結素体内部に酸素が充
分に供給され、酸化性雰囲気になり、非直線抵抗体の焼
結にとって望ましい条件となるため、素体の内外共に正
常な反応が進行する。従って、内部まで均質な焼結体が
得られ、放電耐量特性を向上できる。
また、コバルト原料中の適度な量のアルミニウムは、酸
化亜鉛中に入り、比抵抗を下げる働きをするため、これ
によってバリスタ電圧のバラツキをなくし、安定化でき
る。
(実施例) 以下、本発明の非直線抵抗体の製造方法の一実施例を第
1図及び第2図を参照して具体的に説明する。
まず、原料としては、各0.5モル%の酸化ビスマス(
Bi203)、二酸化マンガン(MnO2)、酸化クロ
ム(Crz 03 ) 、及び二酸化ケイ素(Si02
)と、各1モル%の四・三酸化コバルト(Co304>
 、酸化アンチモン(Sb203)、及び酸化ニッケル
(Nip)と、残りの酸化亜鉛とから成る原料を使用す
る。そして、このような組成を有する原料を、水や分散
剤などの有機バインダ類と共に混合装置に入れ混合する
次に、混合物をスプレドライヤで噴霧造粒する。
これらの造粒粉を金型に入れて成形し、空気中で500
℃で焼成して添加した水と有機バインダ類を除き、さら
に、1050℃で予備焼成する。その後、側面に高抵抗
材料を塗布し、空気中で1200℃で焼成し、カラーコ
ーティングを行い、カラー焼成をする。最後に、両端の
平面を研磨した後、この両端面にアルミニウムの電極を
形成して径100mm、厚さ22mmの非直線抵抗体を
得た。
上記の工程で四・三酸化コバルト(Co304)量中の
酸化コバルト(CoO)の含有量の異なる非直線抵抗体
を製造して、2.5msの矩形波電流を5回印加したと
ころ、第1図に示すような結果が得られた。第1図にお
いて、縦軸は、素子が破裂しなかったエネルギー(J/
cc)を耐量特性として示し、横軸は、四・三酸化コバ
ルト(C0304)中の酸化コバルト(CoO)の含有
間を示しており、酸化コバルト(CoO)の含有量が1
0モル%以下の場合には、耐量特性はほぼ230J/c
cと高値安定しているが、酸化コバルト(CoO)の含
有量が10モル%を越えると急速に耐量特性が悪化する
ことが判明している。
さらに、第2図にコバルト原料中のアルミニウム(AM
>の含有量とバリスタ電圧(VlmA>の分布の関係を
示した。第2図において、へ曲線はコバルト原料中のア
ルミニウム(Ai>fflが250ppmの時のVlm
Aの分布であり、8曲線は2500C1mの時の分布で
ある。量産時において、第2図で例えば管理値から30
%以上外れたものがでた場合をロット不良と判定した場
合、8曲線の分布では約3割不良ロットを含んでいるが
、へ曲線の分布においては不良ロットを皆無にできる。
なお、第2図においては、コバルト原料中のアルミニウ
ム量を2501:1m、2500ppmとした場合を示
したが、5〜500ppmの範囲の場合は、へ曲線と、
5ppm未満か500ppm以上の場合は8曲線と同様
の傾向を示すことを確認している。
従って、コバルト原料として、酸化コバルト<Coo)
の含有率が10モル%以下である四・三酸化コバルト(
Co304)を使用し、且つアルミニウム(Ai>を5
〜500ppm含むものを用いることによって、優れた
放電耐量特性を有し、バリスタ電圧のバラツキの少ない
非直線抵抗体が得られることは明らかである。
ところで、以上のような条件のコバルト原料にて、優れ
た非直線抵抗体が得られる理由は、以下のように考えら
れる。
まず、酸化コバルト(CoO)と四・三酸化コバルト(
Co304)の関係については次のように考えられる。
即ち、四・三酸化コバルト(Co304)は、焼結過程
において、 CO304→ 3COO+0 に変化することが知られている。このとき放出される酸
素が、非直線抵抗体の生成反応に高影響を与えているも
のと考えられる。非直線抵抗体に拘らず酸化物系セラミ
ックスは空気中もしくは空気+酸素による酸化性雰囲気
で焼結することが良好な特性を得る条件であることが知
られている。
従って、焼結体の外からの酸素供給のみでは素体内部ま
で酸素が充分にゆきわたらない場合でも内部からの酸素
供給によって酸素雰囲気が形成され、内部まで正常な整
正反応が進行することにより、構造的に欠陥のない均質
な非直線抵抗体が得られ、放電耐量特性が向上したもの
と考えられる。
一方、酸化コバルト(CoO)は、焼結過程の低温領域
(〜450’C)において、 3CoO+O→ CO304 の酸化反応を起こすことが知られている。従って、四・
三酸化コバルト(Co304)とは逆に周囲から酸素を
奪うことになる。このため、この温度領域では酸素欠乏
状態になり、正常な生成反応が阻害される。しかし、こ
れらの酸化コバルト(C00)の含有率は、10モル%
以内であれば、放電耐量特性に悪影響を与えない。また
、適度の量のアルミニウム(Affi>は、酸化亜鉛結
晶中に入り比抵抗を下げる働きをするが、多すぎると粒
界に偏積してバリスタ電圧(VlmA>のばらつきを大
きくするなどの悪影響を与える。しかし、アルミニウム
(AM>母が5〜500ppmの範囲であれば、バリス
タ電圧(VlmA>のばらつきの少ない素子を得ること
ができる。
なあ、本実施例はφ100Xt22のものを示したが、
容量の小さなものでも同じ効果があることを確認してい
る。さらに、非直線抵抗体を大容量化した場合の効果は
、今まで述べてきた理由により、明らかである。
[発明の効果] 以上説明したように、本発明の製造方法によれば、コバ
ルト原料として、酸化コバルト(CoO)の含有率が1
0モル%以下の四・三酸化コバルト(Co304)で、
且つアルミニウム(A愛)を5〜500ppm含むもの
を用いることにより、焼結過程において、素体内部から
も酸素を供給することができ、素体の内外部共に正常な
反応が進行することにより、内部まで構造的に欠陥のな
い均質な焼結体が得られた結果、放電耐量特性が高く、
バリスタ電圧(VlmA)のばらつきの少ない、優れた
非直線抵抗体を製造できる。
【図面の簡単な説明】 第1図はコバルト原料中の酸化コバルト(C。 O)の含有率と放電耐量特性との関係を示すグラフ、第
2図はコバルト原料中のアルミニウム(A愛)の含有量
とバリスタ電圧(VlmA)の分布の関係を示すグラフ
である。

Claims (1)

  1. 【特許請求の範囲】 酸化亜鉛(ZnO)を主成分原料とし、少なくともコバ
    ルト(Co)を含む金属酸化物もしくは焼結によって酸
    化物に変る金属を副成分原料として、水及び有機バイン
    ダと共に混合し、この混合物を造粒し、これらの造粒粉
    を成形し、添加した水及び有機バインダを焼成して除去
    し、さらに予備焼成し、その後、高抵抗物を側面に塗布
    して焼成し、両端の平面を研磨した後、この両端面に金
    属の電極を形成する非直線抵抗体の製造方法において、 前記副成分原料中のコバルト原料として、酸化コバルト
    (CoO)の含有率が10モル%以下である四・三酸化
    コバルト(Co_3O_4)を使用し、且つこのコバル
    ト原料中に5〜500ppmのアルミニウム(Al)を
    含むことを特徴とする非直線抵抗体の製造方法。
JP63181774A 1988-07-22 1988-07-22 非直線抵抗体の製造方法 Expired - Lifetime JP2522522B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63181774A JP2522522B2 (ja) 1988-07-22 1988-07-22 非直線抵抗体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63181774A JP2522522B2 (ja) 1988-07-22 1988-07-22 非直線抵抗体の製造方法

Publications (2)

Publication Number Publication Date
JPH0232501A true JPH0232501A (ja) 1990-02-02
JP2522522B2 JP2522522B2 (ja) 1996-08-07

Family

ID=16106650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63181774A Expired - Lifetime JP2522522B2 (ja) 1988-07-22 1988-07-22 非直線抵抗体の製造方法

Country Status (1)

Country Link
JP (1) JP2522522B2 (ja)

Also Published As

Publication number Publication date
JP2522522B2 (ja) 1996-08-07

Similar Documents

Publication Publication Date Title
EP1150306B2 (en) Current/voltage non-linear resistor and sintered body therefor
US5225111A (en) Voltage non-linear resistor and method of producing the same
JPH0232501A (ja) 非直線抵抗体の製造方法
JP3323701B2 (ja) 酸化亜鉛系磁器組成物の製造方法
JP4443122B2 (ja) 電圧非直線抵抗体の製造方法
JPS6249961B2 (ja)
CN117497267A (zh) 一种氧化锌高梯度非线性电阻片及其制备方法
JPS6322602B2 (ja)
JPS63133502A (ja) 非直線抵抗体およびその製造方法
JP2572882B2 (ja) 電圧非直線抵抗体とその製造方法
JPH07249505A (ja) 電圧非直線抵抗体の製造方法
JP2549756B2 (ja) ギャップ付避雷器用電圧非直線抵抗体の製造方法
JPH06251909A (ja) 酸化亜鉛バリスタの製造方法
JPH01290204A (ja) 非直線抵抗体の製造方法
JPS63117402A (ja) 非直線抵抗体の製造方法
JPH01289218A (ja) バリスタの製造方法
JP2010219154A (ja) 電圧非直線抵抗体、電圧非直線抵抗体を搭載した避雷器及び電圧非直線抵抗体の製造方法
JPH03116902A (ja) バリスタの製造方法
JPH03178101A (ja) 電圧非直線抵抗体
JPH06151116A (ja) 非直線抵抗体の製造方法
JPH01309302A (ja) 非直線抵抗体の製造方法
JPH0812809B2 (ja) 電圧非直線抵抗体の製造法
JPH0754763B2 (ja) 電圧非直線抵抗体素子の製造方法
JPH05258915A (ja) 電圧非直線抵抗体の製造方法
JPH08203708A (ja) 非直線抵抗体